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Abstract

A priori knowledge of physicochemical properties such as melting and boiling could

expedite materials discovery. However, theoretical modeling from first principles poses

a challenge for efficient virtual screening of potential candidates. As an alternative,

the tools of data science are becoming increasingly important for exploring chemical

datasets and predicting material properties. Herein, we extend a molecular represen-

tation, or set of descriptors, first developed for quantitative structure-property rela-

tionship modeling by Yalkowsky and coworkers known as the Unified Physicochemical

Property Estimation Relationships (UPPER). This molecular representation has group-

constitutive and geometrical descriptors that map to enthalpy and entropy; two thermo-

dynamic quantities that drive thermal phase transitions. We extend the UPPER repre-

sentation to include additional information about sp2-bonded fragments. Additionally,

instead of using the UPPER descriptors in a series of thermodynamically-inspired cal-

culations, as per Yalkowsky, we use the descriptors to construct a vector representation

for use with machine learning techniques. The concise and easy-to-compute represen-

tation, combined with a gradient-boosting decision tree model, provides an appealing
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framework for predicting experimental transition temperatures in a diverse chemical

space. An application to energetic materials shows that the method is predictive,

despite a relatively modest energetics reference dataset. We also report competitive

results on diverse public datasets of melting points (i.e., OCHEM, Enamine, Bradley,

and Bergström) comprised of over 47k structures. Open source software is available at

https://github.com/USArmyResearchLab/ARL-UPPER.

Introduction

Transition temperatures such as melting and boiling point are fundamental thermo-

dynamic properties that influence applications including the design of pharmaceuticals, [1]

melt-casted explosives, [2–4] and energy harvesting materials. [5,6] Discovering materials with

acceptable transition temperatures is difficult, in part because they are not known prior to

synthesis and measurement. Theoretical prediction of such properties may reduce the chem-

ical space of candidate compounds and expedite discovery. Thus, a great amount of effort

has been expended in both high-fidelity physics-based simulations and in regression-based

modeling of phase transition temperatures. The main advance in this work is the extension

of a set of thermodynamically-inspired descriptors, combined with a gradient-boosting ma-

chine learning technique to create a new, accurate, and rapid model for predicting phase

transition temperatures.

Atomistic simulations of phase transitions are computationally demanding. Furthermore,

in the case of melting, such simulations often require knowledge of crystal structure, [7–10]

thus limiting their use during materials discovery. An alternative approach is to utilize sur-

rogate models that map descriptors to reference data. Linear regression-based quantitative

structure-property relationships (QSPRs) have had success, [11–16] but by design cannot dis-

cover a new, nonlinear mapping between descriptors and melting point. Nonlinearity may be

provided in advance using knowledge of relevant physics and chemistry. Nonlinear machine

learning (ML) algorithms have no such requirement for prior knowledge of nonlinear relation-
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ships [17–20] and when carefully applied, possess other advantages such as transferability to

species outside of the reference dataset and computational efficiency. [21–23] An accurate ML

model may help identify target compounds and circumvent expensive atomistic simulations.

ML is becoming an indispensable and versatile tool in the chemical sciences [24] with

application to molecular properties, [25–31] spectroscopy, [32–36] and chemical synthesis. [37–40]

Model performance depends concomitantly on the learning algorithm, the quality of the

reference training set, and the input representation of the chemical system. [41–47] The focus

of this paper is on the combination of a molecular representation, derived from a microscopic

basis, with a gradient-boosting algorithm in order to predict macroscopic properties such as

melting and boiling point.

The molecular representation reflects the level of chemical resolution needed for predict-

ing the target property. [48,49] For quantum molecular properties, geometry and atom type

are typically chosen as input because even the slightest changes in geometry can affect the

wavefunction and its observables. [50–53] On the other hand, macroscopic properties are more

robust to higher-level or coarse-gained descriptors. [54–58] In the case of melting, for example,

a molecular crystal may be identified by descriptors [59–62] derived from its repeating struc-

tural unit. [20] The mapping of a multi-molecule process from a single molecule is ambiguous

however, thus emphasizing the importance of suitable descriptors.

The proposed representation is both inspired by and is an extension of the UPPER

method of Yalkowsky and coworkers. [63] UPPER, which stands for Unified Physicochemical

Property Estimation Relationships, is a comprehensive QSPR based on intuitive and thermo-

dynamic relationships relating phase transition properties to one another including transition

enthalpies, entropies, and temperatures. The method extends to other properties including

heat of sublimation and solubility. UPPER’s descriptors are derived purely from 2D struc-

ture (i.e., Simplified Molecular-Input Line-Entry System or SMILES [64]), allowing for simple

and fast property prediction following regression with a learning algorithm. While it is a

challenge to train models to limited and noisy experimental data, we find that this molecu-
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lar representation combined with gradient boosting, [65] provides an appealing framework for

accurately predicting experimental transition temperatures in a diverse chemical space. Our

software is freely available at https://github.com/USArmyResearchLab/ARL-UPPER.

Methods

We provide an overview of the UPPER method for transition properties and the un-

derlying descriptors that will be supplied as input for ML. The addition of heat to a ther-

modynamic system increases its temperature. When a first-order phase transition occurs,

the temperature levels off, remaining constant even as the system continues absorbing heat.

Intermolecular binding forces are overcome as heat converts the state of the system from

solid to liquid or liquid to gas. When the two phases of matter are in equilibrium with one

another, the Gibbs energy is ∆Gtr = 0. The first-order transition temperature can therefore

be written as

Ttr =
∆Htr

∆Str

, (1)

where ∆Htr and ∆Str are enthalpy and entropy of transition, respectively. Here, ∆Htr is

the amount of heat absorbed per mole for the transition to take place, while ∆Str is the

change in the system’s entropy. UPPER defines analytical forms for ∆Htr and ∆Str with

parameters determined using separate linear regression analysis of composition for ∆Htr and

geometry for ∆Str.

Group-Constitutive Descriptors

Within UPPER, enthalpy is computed as a group-constitutive property,

∆Htr =
∑
i

pini, (2)
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where pi is the contribution of the i-th fragment and ni is the number of i fragments in the

molecule. Fragmentation is based on the scheme proposed in Ref. [66], where each fragment

consists of the least number of atoms (including all carbons, hydrogens, heteroatoms, and

nonbonded electrons) that are not separated by an isolating carbon. An isolating carbon is

a carbon that is not doubly or triply bonded to a heteroatom. Such carbons and their at-

tached hydrogens are considered hydrophobic fragments and the remaining groups of atoms

are polar fragments. Fragments are represented by their SMARTS (SMiles ARbitrary Target

Specification) strings and subsequently assigned to an environmental group (Fig. 1). Envi-

ronmental groups (Table 1) reflect interactions such as the connectivity and hybridization

that each fragment has with its neighboring fragments. New environmental groups added in

this work include YYY, YYYY, YYZ, and YYYZ. These groups generalize the featurization

to fragments with several sp2-hybridized bonds. Throughout this work, we use our extended

set of descriptors as described in Table 1.

Table 1: Environmental groups.

Group Description
X Group bonded to only sp3 atoms
Y Group singly bonded to 1 sp2 atom
YY Group bonded to 2 sp2 atoms
YYY Group bonded to 3 sp2 atoms
YYYY Group bonded to 4 sp2 atoms

Z Group bonded to 1 sp atom
YZ Y and Z group
YYZ YY and Z group
YYYZ YYY and Z group
RG Group within an aliphatic ring
FU Aliphatic bridge-head group
AR Group within an aromatic ring
BR2 Aromatic carbon shared by 2 rings
BR3 Aromatic carbon shared by 3 rings
BIP Central carbon in biphenyl substructure
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Fragment

Assign fragments 
to environmental 

groups

Figure 1: 2D structure of almotriptan molecule fragmented according to the isolating carbon
method. Dashed lines represent broken bonds. Fragments (actually labeled by SMARTS strings in
the software to avoid ambiguity) are then assigned to environmental groups.

Geometrical Descriptors

Entropy depends on molecular geometry and encodes translational, conformational, and

rotational changes of a molecule that affect properties such as packing efficiency and the

likeliness for initial and final states of a phase transition to exist. Entropy is given by

∆Str = ∆Strans
tr + ∆Sconf

tr + ∆Srot
tr . (3)

Components of ∆Str are computed from geometrical descriptors (descriptions below): ec-

centricity (ε), flexibility (φ), and symmetry (σ).

Eccentricity is computed as the sum of atoms in and directly attached to aromatic rings.

It is a qualitative measure of the packing efficiency since flat molecules tend to have less

than average free volume due to their efficient packing, requiring more energy and a higher

temperature to melt. Conversely, crystals made up of spherical molecules pack less efficiently

and are more prone to attaining their free rotation.

Flexibility is a measure of the internal conformational freedom of a molecule. Flexible
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molecules tend to have a greater entropy change during melting than rigid molecules. In

UPPER, flexibility is calculated by an ad hoc expression uniting flexible segments,

φ = 0.3ROT + LINSP3 + 0.5 (BRSP3 + SP2 + RING)− 1 (4)

where LINSP3 is the number of nonring, nonterminal, nonbranched sp3 atoms, ROT is the

extra entropy produced by freely rotating sp3 atoms and is calculated as ROT = LINSP3−4,

BRSP3 is the total number of nonring, nonterminal, branched sp3 atoms, SP2 is the number

of nonring, nonterminal sp2 atoms, RING is the number of single, fused, or conjugated ring

systems. Compounds with negative φ computed using Eq. 4 are assigned φ equal to zero.

Symmetry affects entropy and in particular the melting point. Symmetric molecules have

a higher probability of being in the right orientation for crystallization than nonsymmetrical

molecules of roughly the same weight. As a result, they tend to have a lower entropy of

melting and higher melting point. Here, the method to compute σ (see Ref. [67]) operates

by locating the center or centers of graphical symmetry and the equivalence classes of atoms

connected to those centers. σ is estimated based on a few simple rules determined by the

hybridization of the graphical center as well as the number of connected atoms and their

equivalence classes.

UPPER-Inspired Fingerprint

A combination of group-constitutive and geometrical descriptors make up what we call

an UPPER-inspired fingerprint. It is single vector molecular representation, which can be

used as input for machine learning techniques. The overall size of this fingerprint depends

on the molecules in the dataset, as this affects the types of fragments and environmental

groups (Table 1). Figure 2 shows example fingerprints for two molecules.
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XNH2- XCH2 YCON
HNH2-

YCH2 YOH- ARC ARCH ARN 𝝓 𝝈 𝜺

0 0 1 0 0 1 4 1 0.5 1 7
1 1 0 1 2 3 3 0 1.5 1 9

Figure 2: Isoniazid and dopamine molecules fragmented and their UPPER-inspired fingerprints
consisting of group-constitutive and geometrical (φ, σ, and ε) descriptors.

Datasets and Learning Algorithms

The dataset used in this work includes experimental transition enthalpies, entropies, and

temperatures for both melting and boiling. Compounds of this dataset include open-chain,

aliphatic, and aromatic compounds including polyhalogenated biphenyls, dibenzo-p-dioxins,

diphenyl ethers, anisoles, and alkanes. There are a wide variety of functional groups such

as alcohol, aldehyde, ketone, carboxylic acid, carbonate, carbamate, amine, amide, nitrile,

acetyl, and nitro groups. The minimum, maximum, and mean number of atoms of the

dataset are 2 (4), 42 (122), and 12 (24), where values in parentheses include hydrogen

atoms. See Supporting Information showing a small subset of the compounds in this dataset

as well as distributions of enthalpies, entropies, and temperatures. The exact dataset used

is proprietary, supplied by an industrial collaborator of one of the authors. Thus, we cannot

provide that particular dataset with this report. However, for the sake of transparency,

another dataset that is very similar to the one used here is provided and described in Ref. [68].

This dataset has been collected and provided in our GitHub repository, allowing readers to

reproduce our methods using the source code and data provided at the repository.
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In order to highlight usefulness of the proposed method of this work, two applications are

carried out. The first is to predict melting points of energetic materials. Energetic materials

must meet strict criteria to be developed and designated viable for applications. Knowledge

of melting temperatures prior to synthesis would be particularly beneficial for the design of

melt-casted explosives. [2–4] A small dataset of energetic materials made up of ∼130 melting

points of nitroaliphatic and nitroaromatic compounds is added to the dataset. Finally, we

carry out another application using large and diverse public datasets of melting points,

labeled OCHEM, Enamine, Bradely, and Bergström. We refer readers to Refs. [69] and [20]

for descriptions of these datasets. Both the energetic and public datasets are provided in the

GitHub repository.

Calculations are carried out with two learning algorithms. UPPER is the reference model,

where coefficients pi for enthalpy (Eq. 2) are determined using ridge regression. Ridge re-

gression is a variant of linear regression with regularization to reduce overfitting. Although

linear regression is actually used for Yalkowsky’s UPPER, [63] ridge regression proves to be

significantly better on the held-out test sets and thus will be used here as the standard.

Entropies are also parameterized using ridge regression. The second model is a variant of

Gradient Boosting (GB) called eXtreme GB or XGBoost. [65] A GB model is an ensemble

of decision trees, where subsequent trees are trained to the residual error of the preceding

tree. [70] XGBoost controls overfitting better than GB, giving it strong performance. [71] An

added advantage is XGBoost’s computational speed. [72] Ref. [72] compares XGBoost to deep

neural networks for QSPRs and found that XGBoost achieved the same accuracy of neural

networks with significantly less computational resources. XGBoost achieved its results on a

single CPU, whereas efficient neural networks generally run on GPUs. This detail is an im-

portant practical advantage of XGBoost, especially in the laboratory setting with a standard

workstation class computer. Although nonlinear machine learning generally provides more

flexibility to learn the input data, it is important to note that the experimental datasets

can be rather limited and noisy, greatly influencing a model’s accuracy and transferability.
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Thus, the learning algorithms should be adequately assessed. Training details for the models

including hyperparametrization are provided in Supporting Information.

Results and Discussion

We compare UPPER using ridge regression (UPPER-RR) and gradient boosting (UPPER-

GB). Models of enthalpy (∆Htr) and entropy (∆Str) are compared across these two learning

algorithms. Following enthalpy and entropy predictions, we compare transition tempera-

tures (Ttr), evaluated using Eq. 1. Our analysis suggests that gradient boosting does not

provide significant improvement over ridge regression for enthalpies, entropies, and transition

temperatures within the UPPER framework.

The main advance of this work is to use all group-constitutive and geometrical descriptors

of UPPER and train directly to Ttr with the GB algorithm, eliminating intermediate models

for ∆Htr and ∆Str. We find this approach (ARL-UPPER) predicts Ttr to greater accuracy

than UPPER-RR and UPPER-GB. Finally, ARL-UPPER is applied to predict the melting

points of energetic materials and large public datasets. Throughout this work, data are

randomly split into 90% for training and 10% for testing. Prediction errors are quantified

by the Root-Mean-Square-Error (RMSE) and the Mean-Absolute-Error (MAE).

Enthalpy

Fig. 3 shows parity plots of enthalpy of melting (∆Hm) and boiling (∆Hb). Only group-

constitutive descriptors (Table 1) were used in the models of Fig. 3. The results using

UPPER-RR and UPPER-GB are comparable, showing that the nonlinear GB algorithm does

not provide any added improvement in predicting ∆Htr given group-constitutive descriptors.

The prediction accuracy of ∆Hm is not as strong as that of ∆Hb likely due to missed

intermolecular interactions in the crystal and liquid phases such as hydrogen bonding. These

interactions are not as significant during a liquid-to-gas transition since molecules are more
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spatially separated. As a result, ∆Hb is predicted with greater accuracy than ∆Hm (i.e.,

RMSEs of ∼2 compared to ∼4 kJ/mol) using knowledge of only a single molecular unit.
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Figure 3: Parity plots of predicted versus experimental∆Hm (top panels) and∆Hb (bottom panels)
using UPPER-RR (left panels) and UPPER-GB (right panels). Results are of the 10% held-out test
set consisting of 108 and 68 molecules for ∆Hm and ∆Hb, respectively. Prediction errors are shown
in subpanels. Intermolecular interactions in the crystal-liquid phases (e.g., hydrogen bonding) are
not completely accounted for with the group-constitutive descriptors. These missed interactions are
likely the cause for the difference in prediction accuracy between ∆Hm and ∆Hb.

Entropy

Parity plots of ∆Sm and ∆Sb are provided in Supporting Information. Similar to ∆Htr,

∆Str predictions are not significantly improved using GB. Trends in the entropy data can be

explained by considering physical differences between melting and boiling. For the majority

of the data, ∆Sm is smaller than ∆Sb; a consequence of the relative change of molar volume

during a crystal-to-liquid transition versus a liquid-to-gas transition. In particular, boiling

produces a volumetric change of usually more than 20 liters per mol, whereas melting pro-
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duces a smaller change of a few cubic centimeters per mole. Further, ∆Sb data are clumped

around 85− 90 J/mol.K (Trouton’s rule1), whereas ∆Sm shows more variability with a few

compounds in the 150− 350 J/mol.K range. The high ∆Sm compounds are long chain-like

structures with single bonds that tend to orient themselves in parallel fashion to achieve

maximum dispersion in the crystal phase (see Supporting Information). In the liquid phase,

their flexible segments have a high degree of conformational freedom. Cross-validation results

of ∆Htr and ∆Str are provided in Supporting Information.

Transition Temperatures

Given trained models of ∆Htr and ∆Str, the ratio of their predictions (Eq. 1) gives Ttr

(Fig. 4).2 UPPER-GB slightly outperforms UPPER-RR, but the overall prediction error is

still quite high (RMSEs of 45 − 55 K). This result raises the question whether indirectly

training to Ttr and enforcing Eq. 1 impedes the model’s predictive ability. Constructing the

ARL-UPPER model, we may feed the entire set of group-constitutive and geometrical de-

scriptors into the GB algorithm and train the model directly to Ttr. In this way, Eq. 1 is not

directly enforced, allowing the learning algorithm to choose respective weights over its input

features. The same 90-10 split is used here. The parity plots of Fig. 5 suggest that this flexi-

bility is important as RMSEs decrease by about 20 K for Tm and Tb. For reliable evaluation,

averaged results (± one standard deviation) over a 10-fold cross-validation are provided in

Table 2. To identify the added benefit of using a combination of group-constitutive and ge-

ometrical descriptors, models were trained solely to group-constitutive descriptors, resulting

in slightly increased RMSEs (Table 2).

ARL-UPPER provides a systematic way of assessing new descriptors. For example,

Ref. [73] relates molecular mass (m) to Tm using an expression for atomic vibrations in a

monatomic solid in a thermal environment. The use of m as a descriptor has been shown
1Trouton’s rule states that the ratio of the volume of an organic compound as a gas to its volume as a

liquid is constant at about 84 J/mol.K.
2Due to limited experimental data, ∆Htr and ∆Str models were trained to all available data. Therefore,

results of Fig. 4 are likely biased.
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Figure 4: Parity plots of predicted versus experimental Tm (top panels) and Tb (bottom panels)
using UPPER-RR (left panels) and UPPER-GB (right panels). Trained models of ∆Htr and ∆Str
were used to supply predictions of ∆Htr and ∆Str to compute Ttr (Eq.1). Test results consist of 202
and 168 molecules for Tm and Tb, respectively. Prediction errors are shown in subpanels. Despite
clear correlations, prediction errors are rather high and could use improvement.

to improve Tm predictions. [17] Indeed, we find that the cross-validation RMSE of Tm reduces

slightly (Table 2). Significant improvement of ∼5 K is observed in the case of Tb. Lighter

molecules have greater thermal motion than heavier molecules with the same kinetic energy.

Thus, lighter molecules boil at lower temperatures, justifying the strong dependence of Tb

on m.

The results of ARL-UPPER are certainly encouraging (Table 2). However, it is impor-

tant to acknowledge weaknesses of the approach. For example, the method’s descriptors

inadequately represent certain compounds. In particular, an example in Supporting In-

formation shows structurally similar compounds with different Tm. Each molecule has an

anthracene substructure functionalized by a methyl group, differing only by the methyl’s

position. Their UPPER-inspired fingerprints are the same, yet Tm of 2-methylanthracene
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Figure 5: Parity plots of directly predicted Tm (top panel) and Tb (bottom panel) values using
ARL-UPPER vs. experiment. Results are of the 10% held-out test sets consisting of 202 and 168
molecules for Tm and Tb, respectively. Prediction errors are shown in subpanels. Compared to
Fig. 4, ARL-UPPER shows significant improvement in predicting Ttr.

is much larger than 1- and 9-methylanthracene. This significant difference is likely the re-

sult of packing arrangement. Unfortunately, packing is difficult to predict from molecular

shape, especially when only using the 2D structure. We attempted replacing the current

2D eccentricity descriptor with 3D descriptors of eccentricity (ε3D) and asphericity (q3D). [74]

Cross-validation predictions are slightly improved (Table 2), but while these conformational

descriptors help distinguish the methylanthracene compounds, the added information is not

sufficient enough for the model to map to their correct melting points. Thus, new descrip-

tors encoding the effect of molecular shape on intermolecular interactions and subsequent

expansion that occurs during melting are needed. The Wiener index–famous for its ability to

encode topological information and its strong connection to boiling points of alkanes [75]–was

also tested as a descriptor (w). Prediction errors further improved (Table 2), but overcoming
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Table 2: Prediction errors (RMSEs) of Tm, Tb averaged over the 10-fold cross-validation test
sets (± one standard deviation). Models were trained to combinations of group-constitutive
(gc), geometrical (geo), and mass (m) descriptors. Significant improvement in predictive
ability is observed by directly training to Ttr (ARL-UPPER) and adding descriptors that
map to Ttr.

Method Descriptors Tm, Tb
UPPER-RR ∆Htr (gc), ∆Str (geo) 62.9± 4.1, 59.2± 6.8
UPPER-GB ∆Htr (gc), ∆Str (geo) 59.2± 5.9, 44.2± 5.5

ARL-UPPER gc 37.9± 3.4, 22.3± 3.4
ARL-UPPER gc, geo 36.0± 3.5, 21.8± 4.4
ARL-UPPER gc, geo, m 34.7± 2.6, 19.5± 5.9
ARL-UPPER gc, geo(ε3D, q3D), m 31.4± 2.5, 19.3± 4.6
ARL-UPPER gc, geo(ε3D, q3D), m, w 30.6± 2.5, 17.2± 3.9

the indistinguishability of the methylanthracene compounds remains a challenge (Supporting

Information). Quantum-chemical prediction of crystal density [76] relates to packing and may

provide useful information. Besides packing, the symmetry descriptor [67] warrants improve-

ment and is an opportunity for future research, as it does not distinguish stereoisomers such

as cis-trans.

Melting Points of Energetic Materials

Fig. 6 shows an application of ARL-UPPER to predict Tm of energetic materials contain-

ing many nitro groups. The descriptors of the model include all those used to produce the

best cross-validation predictions of Table 2 (i.e., gc, geo (ε3D, q3D), m, and w). The melting

points reference dataset of the preceding subsection was augmented with energetics, making

up about 5% of the entire training set (∼130 compounds). The test set is a diverse set of

nitroaliphatic and nitroaromatic compounds including nitropyrimidines and nitropyridines.

Prediction accuracies are experimentally informative with overall test set RMSE of 35 K.

The model is particularly strong in the case of nitroaliphatic compounds with a RMSE of

25 K. These results give promise toward predictive ML models of exotic energetics given

comprehensive datasets.
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Figure 6: Parity plots of predicted versus experimental Tm of energetic materials using ARL-
UPPER. Test set includes nitroaliphatics (♦), nitroaromatics (©), nitropyridines (�), and nitropy-
rimidines (4).

Melting Points of Public Datasets

Finally, we apply ARL-UPPER to train and test on public datasets of Tm (i.e., OCHEM,

Enamine, Bradley, and Bergström). Due to their relatively small sizes and comparable tem-

perature ranges, Bradley and Bergström are combined into one dataset, labeled BradBerg.

Further details of the datasets can be found in Refs. [69] and [20]. Separate models were

trained and tested on each dataset, again using the same 90-10 split. The top panel of Fig. 7

shows prediction error as a function of temperature for each of the datasets, while the bottom

panel shows the distribution of temperatures. Not surprisingly, smallest errors are obtained

for temperatures that make up the majority of the data. Table 3 reports cross-validation

errors over the middle 50% and 323.15–523.15 K; the latter being a popular range for medic-

inal compounds. [69] The 30–40 K RMSE performance is very encouraging given the diversity

of these datasets.

The datasets used for this application are unique in that they are both large and diverse
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Figure 7: ARL-UPPER prediction errors (RMSEs) as a function of melting temperature for each
dataset (top panel). Models were trained and tested on each dataset separately. Distributions of
melting points for each dataset (bottom panel). Temperatures are binned every 30 K. Performance
correlates to the density of available data.

and can therefore be used for further curation, which would likely benefit applications target-

ing a specific chemical space. A model’s applicable chemical space and accuracy are largely

determined by the training dataset. [69] Thus, building a robust model is heavily dependent

on the use of sufficient and high-quality data. Future work may benefit from advanced sam-

pling techniques such as active learning; a semi-supervised procedure for data generation

that interactively queries from a large dataset. [77] As opposed to merely increasing the size

of the dataset, active learning finds the right data for the task. During the curation process,

it is also important to be mindful of sources of error such as experimental conditions and
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human error as trained models cannot overcome this irreducible error. It is worth noting

that the Bradley and Bergström datasets are highly curated datasets of melting points and

are considered the “gold standards”.

Table 3: ARL-UPPER prediction errors (RMSEs, MAEs) of Tm over the 10-fold cross-
validation test sets for the middle 50% and 323.15–523.15 K ranges.

Dataset Size Tm, middle 50% Tm, 323.15–523.15 K
Enamine 22381 29.7, 22.9 34.1, 26.3
OCHEM 21840 34.4, 25.7 37.3, 27.7
BradBerg 3161 34.2, 25.3 41.8, 30.9

Conclusion

We presented a method that shows significant promise toward predicting experimental

melting and boiling points of molecular materials. The descriptors originate from a lin-

ear regression based QSPR developed by Yalkowsky and coworkers known as UPPER (see

Ref. [63]). UPPER’s descriptors are primarily categorized as group-constitutive or geomet-

rical, which model enthalpy and entropy; two thermodynamic quantities that drive thermal

phase transitions. A notable advantage of UPPER’s descriptors is that they are derived

purely from SMILES string. Thus, besides simple structural characteristics such as con-

nectivity and hybridization, there are no numerically intensive calculations necessary. This

attribute of the method differs from other molecular representations that use expensive quan-

tum mechanical calculations. [20,69] In this work, we generalized UPPER to a more diverse

chemical space by including descriptors that capture fragments with several sp2-hybridized

bonds. We also showed that an UPPER-inspired molecular representation, consisting of

group-constitutive and geometrical descriptors, combined with eXtreme Gradient Boost-

ing (denoted ARL-UPPER) produces highly competitive transition temperature predictions

compared to the best results from the literature. [20,69] Open-source software of our work is

available at https://github.com/USArmyResearchLab/ARL-UPPER.
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Cross-validation RMSEs of melting and boiling points were found to be 36 and 20 K, re-

spectively (Table 2). Meanwhile, the dataset ranged from about 90−700 K and 150−850 K.

The model improved (reducing RMSEs to 31 and 17 K) with mass, 3D descriptors of eccen-

tricity and asphericity, and topological information using the Wiener index. ARL-UPPER

also provided experimentally informative prediction of melting temperatures of energetic ma-

terials, highlighting its transferability to materials containing a significant number of nitro

groups (compared to the majority of compounds used for training). The proposed method

also achieved strong prediction errors within 30–40 K on melting points of large diverse public

datasets. Its easy-to-compute descriptors, in combination with the accuracy and computa-

tional efficiency of XGBoost, makes ARL-UPPER a practical tool for screening transition

temperatures in a laboratory setting.

This work has inspired other projects such as how the present method compares to

common molecular fingerprints (see Supporting Information showing ARL-UPPER outper-

forming MACCS or Molecular ACCess System [78] structural keys using XGBoost). This task

goes hand-in-hand with thorough evaluation of fingerprints across learning algorithms. Ad-

ditionally, the intelligent sampling of a training set and more robust descriptors of hydrogen

bonding [79] and polymorphs [80] could further improve the model’s performance. In its original

form, UPPER is a comprehensive QSPR, combining structural information to physicochem-

ical properties including heat of sublimation, solubility, and vapor pressure. Furthering this

work could make the ARL-UPPER framework a user-friendly screening tool for the design

and discovery of materials in chemistry, physics, and materials science.

Supporting Information Available

Dataset information, training details, model predictions of phase transition properties

including transition enthalpies, entropies, temperatures, and an example calculation of the

ARL-UPPER fingerprint. Our software and datasets are freely available at

19



https://github.com/USArmyResearchLab/ARL-UPPER.
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