Constrained peptides mimic a viral suppressor of RNA silencing

Arne Kuepperl’z, Niall M. McLoughIin3, Saskia Neubacher®, Estel Collado-Camps4, Chandran Nithin®,
Sunandan Mukherjee®, Lucas Bethge®, Janusz M. Bujnicki®, Roland Brock®, Stefan Heinrichs’, Tom N.
Grossmann***

'Chemical Genomics Centre of the Max Planck Society, Dortmund, 44227, Germany,

2Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund, 44227,
Germany,

*Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HZ, The Netherlands,
*Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University,
Nijmegen Medical Center, Nijmegen, 6525 GA, The Netherlands,

5Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell
Biology in Warsaw, Warsaw, 02-109, Poland,

®Silence Therapeutics GmbH, Robert-Rdssle-Str. 10, 13125 Berlin, Germany,

"University Hospital Essen, Institute for Transfusion Medicine, Essen, 45147, Germany.

* To whom correspondence should be addressed. Email: t.n.grossmann@vu.nl

ABSTRACT

The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the
unique structural properties of RNA, often involving relatively polar surfaces and structural dynamics.
In addition, the frequent lack of well-defined binding pockets complicates the development of small
molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among
these, peptide-derived molecules represent appealing entities as they can mimic structural features
also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is
hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-
based design of constrained a-helical peptides derived from the viral suppressor of RNA silencing
TAV2b is described. We observe that the introduction of two inter-side chain crosslinks provides
peptides with increased a-helicity and protease stability. One of these modified peptides (B3) shows
high affinity for different double-stranded RNA structures including a palindromic siRNA as well as
microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer
processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry.
Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering

them potentially useful for the design of bioactive RNA-targeting ligands.



INTRODUCTION

Viruses represent a universal infectious threat to all forms of life, from bacteria to fungi, plants and
animals. In response, these organisms have evolved nhumerous mechanisms to fend off viral attack
(1). One such defense mechanism in eukaryotes is RNA silencing, a central cellular process that
triggers the degradation of viral double-stranded RNA (ds RNA) arising from replication intermediates
or self-complementary viral genome sequences (2, 3). In this process, Dicer-like proteins cleave long
ds RNA into short fragments (19 — 23 base pairs long) known as small interfering RNAs (SiRNAS).
One of the two siRNA strands can then be incorporated into the RNA-induced silencing complex
(RISC) which recognizes and cleaves complement viral messenger RNA (MRNA) (4). To suppress
RNA silencing, viruses have evolved proteins which directly bind to siRNA structures thereby
preventing RISC incorporation (5). Such viral suppressors of RNA silencing are diverse in structure
and size, and belong to the large group of RNA-binding proteins (6—8). This group of proteins features
a broad spectrum of functionalities beyond post-transcriptional regulation, and several efforts have
been made to harness their scaffolds to design biomolecular tools that recognize specific RNA
structures and sequences (9-12).

In contrast to the progress made in re-engineering RNA-binding proteins, the design of small
molecular scaffolds that recognize RNA structures has proven more challenging (13-16). This is due
to the unique structural features of RNA often involving dynamic and polar surfaces which tend to lack
well-defined binding pockets. For this reason, alternative scaffolds of intermediate size have been
exploited (17-19). Among those, peptide-derived molecules represent appealing entities as they can
mimic structural features found in RNA-binding proteins. To date, peptide-based approaches have
seen limited RNA-targeting applications. Examples have used the HIV-1 RNA-binding peptides, Tat
and Rev, as starting points to apply different strategies to stabilize their bioactive conformation
including lactam-bridge formation, head-to-tail cyclization, and thioether crosslinking (20-24).
Moreover, the screening of modified peptide libraries has resulted in the discovery of novel RNA-
binding ligands (25—-27). However, the cellular uptake of such peptide-derived ligands has been a
limiting factor.

For the development of inhibitors of protein-protein interactions, peptide-derived ligands have
been widely used (28). In those cases, protein fragments have been stabilized in their bioactive
conformation to provide medium-sized, cell-permeable ligands (28-30). Among the most common
design approaches is the stabilization of a-helical peptide conformations via inter-side chain
crosslinks (30-32). In particular, the design of so-called hydrocarbon-stapled peptides has seen broad
application (32, 33). In this setup, macrocyclization is conducted between a pair of a-methylated, non-
natural amino acids featuring terminal alkene side chains. Through ring-closing metathesis, these
alkenes are connected to form an intramolecular crosslink (staple) which supports the helical fold (34,
35). So far, hydrocarbon-stapled peptides have not been used to target RNA and it is unclear if such
structures are suitable for RNA-targeting. Also, questions remain over the general applicability of
peptidomimetics as RNA-binding ligands.

Herein, we describe the design of hydrocarbon-stapled peptides derived from the tomato

aspermy virus 2b (TAV2b) protein, a viral suppressor of RNA silencing (36). Using a reported crystal



structure of TAV2b bound to ds siRNA (37), we identified a mainly a-helical 33-mer peptide that binds
ds RNA with moderate affinity. To constrain the a-helical conformation, we developed a series of
mono- and double-stapled peptides among which we identified a protease-stable and cell-permeable
double-stapled analog with high affinity for a palidromic siRNA. Notably, we also observe binding of
this stapled peptide to the microRNA-21 duplex (miR-21) and its precursor, pre-miR-21, which both
share structural features with siRNA. In biochemical assays, we observe that pre-miR-21 binding
inhibits Dicer-mediated maturation.

MATERIAL AND METHODS

Abbreviations

Fmoc: fluorenylmethyloxycarbonyl, SPPS: solid-phase peptide synthesis, EMSA: electrophoretic
mobility shift assay; EDTA: ethylenediaminetetraacetic acid; PBS: phosphate buffered saline (137 mM
NacCl, 2.7 mM KCI, 10 mM Na,HPO,, 2 mM KH,PO,, pH 7.4); TFA: trifluoroacetic acid; ACN:
acetonitrile; DMSO: dimethyl sulfoxide; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;
FCS: fetal calf serum; qRT-PCR: quantitative reverse transcription polymerase chain reaction; PAGE:

polyacrylamide gel electrophoresis.

Oligonucleotides

The sequences and names of all oligonucleotides used in this study are presented in Supplementary
Table S1. High-performance liquid chromatography (HPLC)-purified oligonucleotides were purchased
from Eurofins Genomics and NOXXON Pharma. Transfer-RNA (t-RNA) from baker’s yeast was
purchased from Hoffmann La Roche. For quantification, the ultraviolet (UV) absorbance of the
oligonucleotides was measured in the buffer of the corresponding experiment using a V-550
ultraviolet/visible (UV/Vis) spectrophotometer (Jasco). Respective concentrations were calculated with
a molar extinction coefficient at A = 260 nm, determined according to the nearest-neighbor model
using published parameters for oligonucleotides (38—42). RNA duplexes were heated to 95 °C for 10

min and slowly cooled to room temperature (RT) for 1 h prior to experiments.

Solid-phase peptide synthesis

Peptides were synthesized according to standard Fmoc-chemistry for SPPS (43) using HCTU (O-(6-
chlorobenzotriazol-1-yl)-N,N,N’,N'-tetramethyluronium hexafluorophosphate), PyBOP (benzotriazol-1-
yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate), COMU (1-cyano-2-ethoxy-2-
oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate) and Oxyma (ethyl
cyano(hydroxyimino)acetate) as coupling reagents. For more detailed information about peptide
synthesis and characterization see Supplementary Methods, Supplementary Table S2 and

Supplementary Figures S22-S26.

Electrophoretic mobility shift assay
Electrophoretic mobility shift assays (EMSAs) were performed using a Bio-Rad Mini-Protean gel
system paired with a direct current (DC) power source (PowerPac™ HC, Bio-Rad). Typically, 6 uL

solutions containing ds RNA (c = 3 uM) and N-terminally fluorescein-isothiocyanate-labeled peptide (c



= 6 uM) were incubated for 1 hour at 4 °C in a binding buffer of 10 mM Tris (pH = 8.0), 0.5 mM EDTA,
12.5 % glycerol, and 150 mM KCI. After incubation, bound RNA was resolved from peptide-free RNA
using 10 % non-denaturing polyacrylamide gels at 120 V in running buffer (25 mM Tris (pH = 8.0), 200
mM glycine, 20 mM NaCl) at 4 °C for 1 hour. Visualization of fluorescent gel-bound species was
conducted using a Typhoon Trio + fluorescence scanner (GE Healthcare Life Sciences). For nucleic
acid visualization gels were stained using 2 uL of SYBR™ gold nucleic acid gel dye (Molecular
Probes) in 20 mL of 1xTAE buffer (40 mM Tris, 1 mM EDTA, 20 mM acetic acid) for 45 minutes at RT

before being visualized using a FluorChem™ gel documentation system (Alpha Innotech).

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) was conducted using a MicroCal VP-ITC (Malvern Panalytical).
Before measurement, oligonucleotide and peptide samples were dissolved in 1xPBS and degassed
using a ThermoVac (Malvern Panalytical) and heated to 30 °C. N-terminally acetylated peptides (c = 3
UM - 12 uM) were then transferred into the sample cell and oligonucleotides (¢ = 12 uM - 72 uM) were
transferred into the syringe. 35 injections per measurement were performed at 30 °C (8 pL injection
volume, 2 s injection time, 180 s spacing, high feedback mode) with an initial delay of 60 s and a
stirring speed of 307 rpm. Measurements were performed in triplicate. Using the MicroCal LLC ITC
software (Origin; OriginLab Corporation), the heat associated with each injection was calculated by
integrating the area under the curve in microcalories per second (uca /s) versus time (min) for each
injection and then normalized to concentration. A ‘single set of identical binding sites’ model was used
to fit the binding curves from which thermodynamic parameters (AG, AH, AS) and binding parameters

(N and Ky) were obtained.

Circular dichroism spectroscopy & T, determination

Circular dichroism (CD) spectra of N-terminally acetylated wt33 and ds RNA were recorded with a
Jasco J-1500 spectropolarimeter (Jasco) equipped with a programmable Peltier thermostat in a
stoppered quartz cuvette (10 mm; Hellma). Samples of pal-RNA (c = 2 yM) and wt33 (c = 4 yM) were
prepared in a buffer of 10 mM sodium phosphate buffer and 100 mM NacCl (pH 7.4). For each sample
10 CD spectra were measured between A = 200 nm and A = 350 nm with continuous scan mode (1
mdeg sensitivity, 1.0 nm resolution, 1.0 nm bandwidth, 2 s integration time, 100 nm/min scan rate).
Obtained spectra were averaged and then subtracted from a reference buffer spectrum. CD data

were normalized to oligonucleotide strand concentration using Formula 1:
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where 6 = observed ellipticity / mdeg, ¢ = DNA strand concentration / mol-L™ and | = path length / cm.

Melting temperature (T,,) determination was conducted using the same instrumentation and sample
preparation, where ellipticity (6 = 267 nm) was measured by ramping the temperature from 15-90 °C
(4 °C/minute ramp, £0.05 °C equilibration tolerance, 6 seconds delay after equilibration). Points were
taken every 0.5 °C. Raw data were normalized as described above and T,-values were determined

using the CDpal program (44) before being plotted in Prism 5.0 (GraphPad).



Spectra of N-terminal fluorescein-isothiocyanate-labeled peptides were recorded with a J-715
circular dichroism spectrometer (Jasco) using a stoppered quartz cuvette (1 mm; Hellma). Peptide
samples (¢ = 75 uM) were prepared in 10 mM disodium hydrogen phosphate buffer (pH = 7.4). For
each sample 10 CD spectra were measured between A = 190 nm and A = 260 nm with continuous
scan mode (10 mdeg sensitivity, 1.0 nm resolution, 1.0 nm bandwidth, 2 s integration time, 50 nm/min
scan rate). Obtained spectra were averaged, then subtracted from a reference buffer spectrum and
smoothed using a fast Fourier transform filter (FFT filter). The mean residue ellipticity
[©]/deg'cm?**dmol 10" was calculated using Formula 2 (below) and plotted against wavelength A/nm.
The ratio of secondary structure elements was calculated with CDNN using the PEPFIT set of

reference spectra for secondary structure determination (45, 46).
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where [O],, = mean molar ellipticity per peptide bond / degree-cm?-dmol™-10%, © = measured ellipticity
/ degree, ¢ = peptide concentration / mol-L™, d = optical path length / cm, Cy = mass concentration /
g'L™*, MRW = mean residue weight, M = molar mass of the peptide / g'mol™, and N = number of
peptide bonds.

Protease stability assay

Protease stability assays were performed similarly to a previously published protocol (47). Stocks of
N-terminally fluorescein-isothiocyanate-labeled peptides were prepared to a concentration of 55.5 uM
in assay buffer (10 mM Tris, pH = 8.0, 150 mM NaCl) and separately stocks of proteinase K also in
assay buffer (c = 100 ug'mL™). To begin each experiment, peptide and proteinase K stocks were
mixed (final concentrations: ¢ = 10 yg-mL™ proteinase K, ¢ = 50 uM fluorescein-isothiocyanate-
modified peptide; final volume = 500 yL) and incubated at room temperature. At each time point, 50
uL of the reaction mixture was quenched by adding 100 yL of TFA/ACN/H,O (v/v/v, 1/49/49) and
subsequently incubated for 2 minutes on ice. Following centrifugation (15 minutes, 13200 rpm, 4 °C)
samples (45 uL) were monitored by analytical HPLC using a linear gradient of 10 — 60 % HPLC
solvent B over 20 minutes. The amount of remaining peptide was quantified via absorbance at A =
210 nm (intact peptide / %) and plotted against time (t / h). Half-life (t;,») was calculated by fitting the

data to an exponential decay using the software Prism 5.0 (GraphPad).

Peptide uptake

2x10° K562 cells were plated per well in 48-well plates in presence of N-terminally fluorescein-
isothiocyanate-labeled peptides (c = 1 pM, 0.5 % DMSO) in a total volume of 300 pL. After 90 minutes,
cells were treated with proteinase K (2 pg'mL™) for 10 minutes to remove non-incorporated peptides.
Cells were extensively washed and total uptake of labeled peptide was measured by flow cytometry
(Cytoflex, Beckman Coulter with the CytExpert software version 2.3). For each peptide 20,000 events

/ sample were collected with >85 % viable cells (forward/side scatter) that were considered for



analysis using a 525/40 filter. DMSO was used as a control to distinguish general DMSO-related and

peptide-specific effects. Each experiment was performed in triplicate.

Pull-down

2x10° K562 cells were incubated with N-terminally biotinylated peptides (c(peptide) = 10 uM, t = 2.5
hours) for uptake on a rotating wheel at 37 °C. The cells were extensively washed in 1xPBS and lysed
in lysis buffer (25 mM HEPES, pH = 7.5, 150 mM NacCl, 0.05 % IGEPAL CA-630, 1 mM EDTA)
supplemented with 0.5 U/uL RNAse inhibitor (Superase-in, Thermofisher). The lysate was cleared by
centrifugation at 21,000 x g (4 °C), an aliquot of the supernatant was removed and re-suspended in
Trizol, while the remaining was incubated with streptavidin-coupled magnetic beads (Dynabeads
M280, ThermoFisher) on a rotating wheel (2 h, 4 °C). After magnetic separation and washing (3x in
lysis buffer), the beads were re-suspended in 20 pL lysis buffer, re-suspended in Trizol
(ThermoFisher), and 400 ng transfer-RNA was added per sample as a carrier. RNA was extracted
from Trizol using the standard protocol and the gRT-PCR was performed according to a previously
published protocol (11) using the primers h-miR21-3p-FW (CAGCAACACCAGTCGATG), h-miR21-
3p-RV (GGTCCAGTTTTTTTTTTTTTTTACAG), h-miR21-5p-FW (GCAGTAGCTTATCAGACTGATG),
h-miR21-5p-RV (GGTCCAGTTTTTTTTTTTTTTTCAAC) in a CFX96 real time machine (Bio-Rad).

The relative enrichment was calculated as a ratio of copies in the immunoprecipitate over input

normalized to the enrichment of the control peptide D1.

Modeling of wt33 peptide and RNAs

Structural models of miR-21 and pre-miR-21 RNAs were generated by a stepwise modeling approach
(48). Briefly, the initial model was generated with the ModeRNA server (49) using the loop region from
the nuclear magnetic resonance (NMR) structure (PDB ID: 5UZT) (50) as the template. It was then
refolded with SImRNA (51), a method for simulations of RNA folding which uses a coarse-grained
representation and relies on the Monte Carlo method for sampling the conformational space. SImRNA
employs a statistical potential to approximate the energy using additional restraints on the secondary
structure taken from miRBase database (52). Finally, the best-scoring model from SImRNA was
optimized in the full-atom representation with QRNAS (53). The starting model of the wt33 peptide
was generated based on the crystal structure of the TAV2b/siRNA complex (PDB ID: 2Z10) (37).
Models of the peptide/RNA complexes were generated using SImRNP, an extension of SImRNA (51),
which uses a representation of protein structures as in REFINER (54) and an energy function derived
from experimentally solved RNA and RNP structures. Both miR-21 and pre-miR-21 RNAs were
simulated in the presence of single, double, and triple copies of the wt33 peptide.

For best-scored complexes generated from SimRNP simulations all-atom molecular dynamics
(MD) simulations were carried out for miR-21 and pre-miR-21 RNAs with complexes of one, two, and
three copies of wt33 peptide using the Amber 18 program suite (55). The starting structures for the
simulation were prepared using tleap in a truncated octahedral box of 10 A allowance along with
TIP3P water model (56). A combination of two force-fields, Amber ff14sb force-field for proteins (57)
and the xOL3 force-field for RNA (58, 59), were used to describe the biomolecules during the

simulations. A two steps energy-minimization (each with 10,000 cycles) was performed with and



without restraints, respectively, followed by heating, density equilibration, and short runs of
equilibration. The heating was done from 100 K to 300 K for 500 picoseconds with restraints on the
entire structure and the density equilibration was performed for 500 picoseconds, also with restraints
on the entire structure. The equilibration of the structures was run for four short rounds. The first three
rounds of equilibration were run for 200 picoseconds each with the main chain atoms constrained.
The final round of equilibration was performed for 2 nanoseconds, followed by the production run for
100 nanoseconds. Sander was used for performing the minimization steps and the following steps

were performed using the CUDA version of PMEMD from the Amber program suite (60, 61).

Confocal microscopy

Non-adherent K562 cells were counted and collected in 1.5 mL Eppendorf tubes at 30,000 cells/tube.
After a wash, cells were re-suspended in 200 pL of phenol-red free media containing 5 % FCS and N-
terminally fluorescein-isothiocyanate-labeled peptides (c(peptide) = 1 uM, t = 30 minutes) in the
Eppendorf tubes at 37 °C with vertical rotation to avoid cell pelleting. After incubation, cells were
washed once with phenol-red free media, re-suspended again in the same media, and transferred into
the wells of an 8-chamber p-slide (Ibidi). Cells were immediately imaged e at 37 °C with an SP5 Laser

Scanning Confocal Microscope (Leica).

Dicer cleavage assay

To assess the inhibitory ability of stapled peptides B3 and D1 for pre-miR-21 Dicer cleavage, 10 pL
solutions of each N-terminally acetylated peptide at varying concentrations (¢ = 10, 50, 150, 300 or
600 nM) were prepared with ds pre-miR-21 (c = 40 nM) in a buffer of 20 mM Tris hydrochloride
(Tris.HCI), 12.5 mM NacCl, 2.5 mM MgCl,, 1 mM dithiothreitol (DTT), 2 % DMSO, and 0.02 % bovine
serum albumin (BSA) (pH = 6.8). Next, RhDicer (0.5 U/pL solution; Genlantis) was diluted in a buffer
of 20 mM Tris.HCI, 100 mM NacCl, 1 mM MgCl,, 1 mM DTT, 5 mM B-mercaptoethanol, 10 % glycerol,
and 0.1 % Triton-X 100 (pH = 6.8) to a concentration of 40 U/mL and then added to the peptide/RNA
solutions (final RhDicer concentration: 4 U/mL). The reaction solution was incubated for 150 minutes
at 37 °C, then denatured for 5 min at 70 °C, and stored at 4 °C. Subsequently, a 1:10 dilution in H,O
of the reaction solution was performed and added to a Poly(A) Tailing and reverse transcription
solution as reported by Cirera et al.(62). The samples were incubated at 42 °C for 1 hour before
subsequent inactivation for 5 minutes at 95 °C and cooling to 4 °C. Next, gRT-PCR of each sample
was performed using the primers miR21-5p-RV1 (GGTCCAGTTTTTTTTTTTTTTTCAAC), miR21-5p-
FW1 (GCAGTAGCTTATCAGACTGATG), and miRNA-RT1 (CAGGTCCAGTTTTTTTTTTTTTTTVN)
in a StepOnePlus™ real-time PCR system (Thermo Fisher Scientific). Briefly, 1 pL of template DNA

solution was added to a solution of Luna® Universal Probe gPCR Master Mix (New England Biolabs)
with a final primer concentration of 125 nM in 20 pL per sample. Samples were initially denatured for
5 minutes at 95 °C followed by 45 temperature cycles of 15 seconds at 95 °C and 30 seconds at
66 °C. The quantification was done using miR-21-5p standard curves. To visualize the inhibitory
potential of each peptide the normalized abundance of mature miR-21 / % is plotted against the

peptide concentration c(peptide) / nM.



RESULTS

Design of TAV2b-derived stapled peptides

The TAV2b protein consists primarily of a helix-loop-helix motif which binds double-stranded (ds)
A-form RNA in a hook-like manner (Supplementary Figure S1)(37). Both helices sit within the RNA
major groove with the majority of contacts formed with RNA backbone resulting in the sequence-
independent recognition of ds RNA structures (37). In the crystal structure, TAV2b is bound to a ds
palindromic RNA (pal-RNA; single strand sequence: AGACAGCAUUAUGCUGUCUUU) which was
also used in our subsequent binding studies. We aimed to exploit the unique structural properties of
TAV2b to generate RNA-targeting peptides. To identify the minimal peptide sequence of TAV2b, we
synthesized a series of truncated fragments containing both helices but with different lengths
(Supplementary Figure S2). The affinity of each fluorescein-isothiocyanate-labeled truncate was then
assessed using an electrophoretic mobility shift assay (EMSA). From the truncation series, a 33-mer
peptide (wt33, orange, Figure 1A) ranging from K21 to R53 was the shortest analog to retain RNA-
binding (Supplementary Figure S2). Isothermal titration calorimetry (ITC) was next used to study the
interaction of an unlabeled version of wt33 with ds pal-RNA, revealing moderate affinity (Kq = 1.19 uM,;
Figure 1B). The affinity is about 16-fold lower than the entire RNA-binding domain of TAV2b (amino
acids 1-69, K4 = 75 nM)(37). The reported enthalpy-driven binding behavior of TAV2b was also
observed for wt33 (AH = -50 kcal-mol‘l). Subsequently, circular dichroism (CD) spectroscopy was
used to characterize unbound peptide wt33 and pal-RNA. The spectra indicate the expected double-
helical structure for pal-RNA (gray line, Figure 1C) but a mainly unstructured character for unbound
wt33 (black line). Co-incubation of pal-RNA and wt33 (orange line, pal-RNA + wt33) resulted in a
pronounced negative ellipticity between A = 208 and A = 222 nm. Notably, this is not the case when
the individual spectra of wt33 and pal-RNA are simply added (black dashed line, [pal-RNA + wt33],
Figure 1C). The spectral differences between the unbound and bound wt33 suggest that the peptide
experiences an increase in a-helicity upon RNA-binding.

To stabilize the helical conformation of the unbound peptide and thereby increase its binding
affinity a series of wt33-derived hydrocarbon-stapled peptides were designed. Hydrocarbon-stapling
involves the introduction of two olefin-bearing, non-natural a-methylated amino acids (Ss or Rg,
Supplementary Figure S3) during solid-phase synthesis (43). The preferred spacing is i, i+4 and i, i+7
aiming at amino acid positions that are not directly involved in target binding (35). The olefin side
chains are crosslinked via ring-closing metathesis providing macrocyclic peptides (Supplementary
Figure S4). Based on the crystal structure of TAV2b in complex with the pal-RNA duplex, suitable
amino acid positions within the wt33 sequence (orange, Figure 1A) were identified (A24, K27, L31,
E35, Q44, E48, and A52). These positions facilitate the introduction of three different crosslinks in the
N-terminal helix (A1-A3) and two in the C-terminal helix (B and C). In addition to single-stapled
peptides, crosslinks were combined resulting in six double-stapled peptides (B1-B3 and C1-C3;
Figure 1D).
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Figure 1. (A) Crystal structure (PDB ID: 2ZI0) highlighting the wt33 sequence (K21-R53, orange, cartoon
representation) in complex with ds pal-RNA (gray and white, surface representation). Selected wt33 side chains
are shown as ball-and-stick representations. (B) Representative ITC of unlabeled wt33 with the pal-RNA duplex
(for full data see Supplementary Table S3 and Figure S5). (C) CD spectra of wt33 (c = 4 uM), pal-RNA (c(duplex)
= 2 uM), spectra of pal-RNA (c(duplex) = 2 pM) with wt33 (c = 4 pM) in solution (pal-RNA + wt33), and the sum
of the two individual spectra ([pal-RNA + wt33]). Buffer: 10 mM sodium phosphate (pH = 7.4), 100 mM NacCl. (D)
Sequences of TAV2b-derived peptides highlighting macrocyclization points. (E) EMSA of ds pal-RNA incubated
with fluorescein-isothiocyanate-labeled TAV2b-derived peptides (A1-A3, B—B3, C-C3). Experiments employed
10 % native PAGE (c(RNA) = 3 uM, c(peptide) = 6 pM). Running buffer: 25 mM Tris (pH = 8.0), 200 mM glycine,
20 mM NacCl. For full gels including fluorescein readout see Supplementary Figure S6 (ds = double-stranded, ss
= single-stranded).

Eleven stapled peptides were synthesized and their binding to ds pal-RNA assessed via EMSA
(Figure 1E and Supporting Figure S6). Here, pal-RNA mainly appeared as a band corresponding to
the ds structure. Formation of the peptide/RNA complex is indicated by the disappearance of the pal-
RNA duplex band and the appearance of a new elevated band. Peptides were labeled with
fluorescein-isothiocyanate (FITC) as a means to verify the formation of such peptide/RNA complexes
using fluorescence visualization (Supplementary Figure S6). Due to their positive charge unbound
peptides did not migrate into the gel. Elevated bands, indicative of RNA binding, were observed for all
peptides. The disappearance of free ds pal-RNA was only observed for the double-stapled peptides
B1, B3, and C1 hinting at particularly potent RNA-binding.

Double-stapled peptides show enhanced helicity and affinity for ds pal-RNA

ITC binding experiments with unlabeled analogs of B1, B3, and C1 reveal 4.6-, 17.0-, and 6.0-fold
increased affinity, when compared to linear peptide wt33 (Figure 2A). In analogy to wt33, all three
stapled peptides exhibit enthalpy-driven binding, though to a reduced extent (AH(wt33) = 5.0 vs.
AH(stapled peptides) = 3.9—4.1 kcal-mol_l). This decrease in binding enthalpy is compensated by a



reduction in the entropic penalty upon binding (-T-AS(wt33) = 42 vs. —T-AS(stapled peptides) = 30-32
kcal-mol™) which likely stems from the helical pre-organization induced by stapling. Evidence of this
structural pre-organization was also observed with CD spectroscopy. In solution, peptides B1, B3,
and C1 display characteristic a-helical spectra. Unlike wt33, an enhancement in ellipticity between A =
208 and A = 222 nm was not observed when these peptides were incubated with ds pal-RNA
(Supplementary Figures S7-S9). These data indicate that stapling indeed enforced the a-helical
conformation of peptides B1, B3, and C1, thereby promoting pal-RNA duplex binding. For subsequent
experiments, control peptide D1 was included which features two hydrocarbon crosslinks within the
RNA-interface and does not bind to ds pal-RNA in EMSAs (Supplementary Table S2 and Figure S10).
Initially, the entire FITC-labeled peptide panel including D1 was characterized via CD spectroscopy to
determine a-helicity in the unbound form (Figure 2B). Notably, all stapled peptides showed higher
a-helicity than wt33 (a-helicity = 7.3 %) with the double-stapled derivatives exhibiting a stronger
helical character than the mono-stapled analogs (Figure 2B). High-affinity peptides B1, B3, and C1
are among the most helical sequences (a-helicity = 82 — 85 %) with their CD spectra showing minima
at A =208 nm and A = 222 nm characteristic for a-helices (Figure 2C).
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Figure 2. (A) Thermodynamic profiles of unlabeled wt33, B1, B3, and C1 as determined by ITC, including Kg-
values (measurements were performed in triplicate, errors account for 10; for full data see Supplementary Table
S3 and Figure S11-S13). (B) Percentage of a-helical secondary structure content for each FITC-labeled peptide
(for complete secondary structure distribution see Supplementary Table S4). (C) Overlaid CD spectra of FITC-
labeled wt33, B1, B3, and C1 (c(peptide) = 75 pM). Buffer: 10 mM sodium phosphate (pH = 7.4).

Peptide stapling increases protease stability and cell permeability

A protease stability assay was conducted by incubating the FITC-labeled peptides with proteinase K
and monitoring peptide integrity over time by HPLC-MS to determine peptide half-life (ty,, Figure
3A)(47). Linear peptide wt33 experienced rapid cleavage (t1», = 2.4 minutes, Supplementary Table
S5), whereas the introduction of crosslinks in the C-terminal helix resulted in increased stability (B

and C, ty» = 65 and 78 minutes, respectively) while stapling of the N-terminal helix did not improve
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protease resistance (A1-A3, t;», = 3 minutes). A combination of both N- and C-terminal staples
yielded the most stable peptides, with double-stapled peptides B1 and C1 experiencing the strongest
increase in tolerance towards proteinase K (B1: 354-fold and C1: 265-fold increased stability

compared to wt33, Figure 3B).
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Figure 3. (A) Half-life (t12) values for each fluorescently-labeled peptide (c = 50 uM) in the presence of proteinase
K(c=10 pg-mL'l). Buffer: 10 mM Tris (pH = 8.0), 150 mM NaCl. (B) Percentage of intact fluorescently-labeled
peptide remaining over time in the presence of proteinase K. (C) mFl values of K562 human leukemia cells
treated with fluorescently-labeled derivatives of each peptide (¢ = 1 uM, t = 90 minutes). (D) Fluorescence
intensity distribution of K562 cells exposed to fluorescently-labeled wt33, B1, B3, and C1 (triplicate of

measurements, errors account for 10).

The cellular uptake of the peptides was assessed using K562 human leukemia cells and flow
cytometry as readout (63). Cells were treated with FITC-labeled peptides (¢ = 1 uM, t = 90 min) which
was followed by a stringent wash protocol including tryptic digestion. Flow cytometry-based mean
fluorescence intensities (mFI) were then determined (Figure 3C). Compared to wt33 (mFI = 4031 AU)
all stapled peptides caused increased fluorescence intensities indicative of increased cellular uptake.
In line with trends observed for a-helicity (Figure 2B) and proteolytic stability (Figure 3A), the double-
stapled peptides displayed an increased cellular uptake when compared to their mono-stapled
analogs. Overall, double-stapled peptide C1 showed the highest increase in uptake relative to wt33
(264-fold; Figure 3D). Despite its lower ds RNA affinity, considerably enhanced cellular uptake was
also observed for control peptide D1. Based on these observations and their high affinity for ds pal-
RNA, we considered the use of double-stapled peptides B3, C1 and control D1 for further
investigations. For that reason, cellular uptake of the peptides was also investigated by live cell

confocal microscopy confirming their cell permeability (Supplementary Figure S14).
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Double-stapled peptides bind ds miR-21 structures

The protein TAV2b was reported to preferably bind ds RNA and we therefore assessed the binding of
B3 and C1 to alternative nucleic acid structures using EMSA. Analog to TAV2b, both stapled peptides
did not bind single-stranded RNA (ss RNA) or the ds DNA analog of pal-RNA (Supplementary Figures
S15 and S16). Notably, we also did not observe binding of B3 and C1 to a mixture of yeast transfer
RNAs (t-RNAs) indicating that peptide binding indeed require accessible RNA duplex structures.
Although not reported for TAV2b, other viral suppressors of RNA silencing are known to bind
microRNAs (miRNAs) (64). Similar to sSiRNAs, miRNAs are short non-coding RNAs that are
incorporated into the RISC complex leading to the blockage or degradation of complement mRNA
(65). MiRNAs arise from long stem-loop-bearing RNAs in the nucleus (pri-miRNAs) which are
processed and exported as shorter hairpin structures, so-called pre-miRNAs. Pre-miRNAs are further
processed by the endoribonuclease Dicer resulting in the formation of mature ds miRNAs (66).

Given the sequence-independent nature of TAV2b-binding, we suspected double-stapled
peptides B3 and C1 to also bind miRNAs. To test this hypothesis, ds miRNA-21 (miR-21) was chosen
as an example. Similar to pal-RNA, the miR-21 duplex is comprised of two short RNA strands but
features a central one-nucleotide bulge as well as a single mismatched base pair (black, Figure
4A)(67, 68). In pre-miR-21, the two RNA strands (black) are connected by a partially self-
complementary sequence (gray, Figure 4A) resulting in the adaption of a hairpin-like structure. Initially,
EMSAs were used to investigate the ability of FITC-labeled B3, C1, and D1 to bind ds miR-21. While
we observed the formation of peptide/RNA complexes for B3 and C1, control peptide D1 did not show
binding (Supplementary Figure S17-S19). It has been reported that the binding of ligands can
increase the stability of nucleic acid duplexes (69). Therefore, thermal denaturation experiments were
performed to test the effect of peptide binding on the stability of the miR-21 duplex. Indeed, the
incubation of miR-21 (c = 2 uM) with unlabeled peptides B3 or C1 (c = 4 uM) resulted in increased
melting temperatures (AT,, > 10 °C), while D1 only showed a mild effect on duplex stability (Figure
4B).

Having confirmed ds miR-21-binding of B3 and C1, we assessed their binding to endogenous
miR-21 in a cellular context. For that purpose pull-down experiments were performed in which K562
human leukemia cells were initially incubated with biotinylated analogs of B3, C1, or D1 (c = 10 uM, t
=180 minutes). Subsequently, cells were rigorously washed, lysed, and finally lysates were treated
with streptavidin beads to capture the peptides in complex with RNA. After extraction of RNA from the
beads, the amount of miR-21 was evaluated by quantitative reverse transcription polymerase chain
reaction (QRT-PCR). In this experimental setup, peptide cell permeability, bio-stability, and RNA-
binding contribute to pull-down efficiency. For peptides B3 and C1 we observed enrichment when
compared to the control peptide D1 (Figure 4C), which was particularly pronounced for B3 (35-fold).
Given the structural similarities between ds miR-21 and its hairpin precursor, pre-miR-21 (Figure 4A),
we also tested binding of FITC-labeled B3 and C1 to pre-miR-21 initially using EMSA. For both
double-stapled peptides, EMSA indicated pre-miRNA-binding (Supplementary Figures S17 and S18).
In pull-down experiments, however, we only observed enrichment of pre-miR-21 when using
biotinylated B3 (4-fold, Figure 4D), though to a lower extent than miR-21 (35-fold, Figure 4C). In line

12



with its lower miR-21 pull-down efficiency, C1 did not show detectable pre-miR-21 enrichment. Based

on the good performance of B3 in the miR-21 and pre-miR-21 pull-down experiments, this double-

stapled peptide was selected for further investigations.
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Figure 4. (A) Sequence of miR-21 (black) and hairpin structure pre-miR-21 (black/gray). Locations of the Dicer

cleavage sites are indicated (red). (B) Melting profiles of miR-21 in absence and presence of unlabeled double-
stapled peptides B3, C1, and D1, respectively (A = 267 nm, c(miR-21) = 2 pM, c(peptide) = 4 uM. Buffer: 10 mM
sodium phosphate (pH = 7.4), 100 mM NacCl). (C/D) Enrichment of miR-21 and pre-miR-21, respectively,

following treatment of K562 cells with the biotinylated peptides B3, C1, and D1 as well as streptavidin-mediated

selection of peptide-bound RNA relative to total RNA after cell lysis (triplicate of measurements, errors account

for 10). (E) ITC-based thermodynamic profiles of acetylated B3 binding to miR-21 and pre-miR-21

(measurements were performed in triplicate; for full data see Supplementary Table S3 and Figures S20 and S21).

(F) SImRNP model of a complex involving three wt33 peptides (white, cartoon representation) and pre-miR-21

(black and gray, cartoon representation). Coordinates of the model can be found as supplementary data.

Locations of the Dicer cleavage sites are indicated (red). (G) Relative miR-21 abundance after Dicer processing

of pre-miR-21 in the presence and absence of acetylated B3 or D1 using qRT-PCR (relative to absence of

peptide control; c(pre-miR-21) = 40 nM, c(Dicer) = 4 u-mL™ triplicate of measurements, errors account for 10).

Having qualitatively assessed B3 binding to ds miR-21 and pre-miR-21, we next investigated complex

formation using ITC (Figure 4E and Supplementary Figure S20) with acetylated peptide versions. For

the B3/miR-21 complex ITC revealed a very high stability (Ky = 18 +2 nM) exceeding the binding

affinity of B3 for the pal-RNA duplex (Kq = 70 £1 nM, Supplementary Table S3). The binding process

was again enthalpy-driven with the expected binding stoichiometry of about 2:1 (B3/miR-21, N = 0.43).

We also used ITC to investigate B3 binding to pre-miR-21, revealing a high affinity (Kg = 75 £8 nM)

though with a changed binding stoichiometry indicative of 3:1 binding (B3/pre-miR-21, N = 0.28;

Supplementary Table S3). Given the elongated stem region in pre-miR-21 we suspected the binding

of an additional B3 molecule. To test the general feasibility of such a complex involving one RNA-

hairpin and three peptides, replica-exchange Monte Carlo simulations of the unmodified peptide

sequence with pre-miR-21 were performed using SImRNA and SimRNP, computational methods that
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allow for flexible modeling of protein/RNA complexes (51). According to the simulation, pre-miR-21
can indeed accommodate up to three peptide sequences (Figure 4F), two of them (ligand 1 and 2) in
the area of the miR-21 duplex region (black) while the third peptide (ligand 3) mainly contacts the
apical loop (gray, Figure 4F). Notably, ligand 3 is predicted to bind the region that is recognized by the
endoribonuclease Dicer.

Dicer binding of pre-miR-21 eventually results in strand cleavage at two sites (C30 and G47;
red, Figure 4F) yielding mature ds miR-21 (black, Figure 4F). Based on the presumably overlapping
binding sites of our peptides and Dicer, we were interested to test how the high-affinity acetylated
double-stapled peptide B3 affects pre-miR-21 maturation. For this purpose a biochemical maturation
assay was established where recombinant Dicer (c = 4 U-mL_l) was used to process pre-miR-21 (c =
40 nM) into mature miR-21. A gRT-PCR detection protocol (62) was adapted to monitor miR-21
formation. Notably, pre-miR-21 maturation by Dicer was inhibited in a concentration-dependent
manner by double-stapled peptide B3 (green, Figure 4G) while control peptide D1 (gray, Figure 4G)
showed only small effects. Half-maximal Dicer inhibition by B3 is about 50 nM which is in the
concentration range of pre-miR-21 (c = 40 nM) in this assay. This indicates efficient competition with

Dicer under these conditions.

DISCUSSION

The design of RNA-targeting ligands remains an outstanding challenge. Antisense oligonucleotides
represent the most established entities and while possessing high affinity and selectivity they tend to
suffer from delivery issues (70). Alternative approaches to target RNA make use of extended or
multivalent ligands derived from natural products such as aminoglycosides (18, 71, 72). However,
these approaches involve complicated development processes since only limited structural
information is available. With the growing number of strategies to derive protein mimetics (73), new
avenues towards the design of potent nucleic acid binders are being explored (74-77). Herein, we
applied a structure-based design approach to derive constrained peptide mimetics of the RNA-binding
protein TAV2b. As an initial starting point, we identified a 33-mer TAV2b-derived peptide (wt33) as a
minimal sequence for ds siRNA binding. Based on this peptide, a panel of hydrocarbon-stapled
peptides was designed aiming at the stabilization of the RNA-bound a-helical conformation of TAV2b.
The obtained stapled peptides show enhanced a-helicity, protease stability, and cell permeability,
particularly pronounced for double-stapled analogs. From that panel, double-stapled peptide B3 was
investigated in most detail. It binds palindromic siRNA with high affinity but not single-stranded,
transfer RNA or ds DNA. Notably, B3 also shows high affinity for additional double-stranded RNA
structures including microRNA-21 and its precursor pre-miR-21. Binding of B3 to pre-miR-21 was also
shown to inhibit RNA maturation by the endoribonuclease Dicer in a biochemical assay.
Double-stapled peptide B3, represents a structural mimetic of the RNA-binding TAV2b protein.
Recapitulating central features of TAV2b binding, B3 engages ds RNA in a sequence-independent
and enthalpy-driven manner. In analogy to TAV2b, complex formation with ds RNA is strongly
preferred over ss RNA, likely due to the absence of a defined binding groove in the unpaired and

highly flexible ss RNA chain. B3 also exhibits a strong preference for ds RNA over ds DNA. This can

14



be explained as ds DNA tends to exist in the B-form possessing wider and shallower major grooves
than A-form RNA thereby preventing analogous interaction patterns (78). The a-helical conformation
of TAV2b is central to its high affinity for ds RNA. Our studies indicate that a truncated version of
TAV2b (wt33) is unstructured in its free form but shows high a-helicity upon binding. This can be
expected to result in a considerable entropic penalty and likely contributes to wt33’s relatively low
affinity. Introduction of chemical constraints to stabilize the a-helical conformation, as seen for B3,
consequently increases binding affinity for ds RNA.

Overall, our results highlight that RNA-binding proteins represent a valuable starting point for
the structure-based design of cell-permeable, high affinity RNA ligands, in particular when considering
the growing number of available protein:RNA complex structures (8). Such design strategies can
complement established protein- and nucleic acid-based targeting approaches as well as
combinatorial screening efforts (17, 70, 79, 80). Additionally, peptide-based ligands can offer new
opportunities to develop probes with fine-tuned or switchable RNA-binding characteristics. The
double-stapled peptide B3 is a prime example of a modular scaffold combining bioavailability and —
stability with high affinity binding. With this, B3 represents an attractive starting point for the future

design of ligands with altered RNA-recognition properties.

SUPPLEMENTARY DATA

Supplementary data are can be found on ChemRxiv. Coordinates of the model shown in Figure 4F
are available upon request.
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