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Abstract 12 

 13 

Mass spectrometry imaging (MSI) is a powerful and convenient method to reveal the spatial 14 

chemical composition of different biological samples. The molecular annotation of the detected 15 

signals is only possible when high mass accuracy is maintained across the entire image and the m/z 16 

range. However, the heterogeneous molecular composition of biological samples could result in 17 

fluctuations in the detected m/z-values, called mass shift. Mass shifts impact the interpretability of 18 

the detected signals by decreasing the number of annotations and by affecting the spatial 19 

consistency and accuracy of ion images. The use of internal calibration is known to offer the best 20 

solution to avoid, or at least to reduce, mass shifts. The selection of internal calibrating signals for 21 

a global MSI acquisition is not trivial, prone to false positive detection of calibrating signals and 22 

therefore to poor recalibration. To fill this gap, this work describes an algorithm that recalibrates 23 

each spectrum individually by estimating its mass shift with the help of a list of internal calibrating 24 

ions generated automatically in a data-adaptive manner. The method exploits RANSAC (Random 25 

Sample Consensus) algorithm, to select, in a robust manner, the experimental signal corresponding 26 

to internal calibrating signals by filtering out calibration points with infrequent mass errors and by 27 

using the remaining points to estimate a linear model of the mass shifts. We applied the method to 28 

a zebrafish whole body section acquired at high mass resolution to demonstrate the impact of mass 29 

shift on data analysis and the capacity of our algorithm to recalibrate MSI data. We illustrate the 30 

broad applicability of the method by recalibrating 31 different public MSI datasets from 31 

METASPACE from various samples and types of MSI and show that our recalibration significantly 32 

increases the numbers of METASPACE annotations, especially the high-confident annotations at 33 

a low false discovery rate. 34 

 35 

 36 

 37 

 38 
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Introduction 39 

 40 

In biology and medicine, the in situ determination of the molecular environment is of prime 41 

importance to understand biological processes and pathology evolution [1]. This growing interest 42 

pushes the development of analytical methods that correlate spatial distribution with the detection 43 

of different biological molecules such as peptides [2], metabolites and lipids [3]. Mass 44 

spectrometry imaging (MSI) has been demonstrated particularly powerful as it can rapidly reveal, 45 

in an untargeted manner, a wide range of compounds present in small amounts in biological 46 

samples as various as whole body sections [4,5], tissue sections, bacteria colonies [6], plants [7] or 47 

again single cells [8,9]. MSI is a particular application of Mass spectrometry (MS) in which spectra 48 

are recorded, usually thanks to MALDI or to a lesser extent DESI [10], at different positions, called 49 

pixel, over a sample forming a 2D image. A pixel is then a spectrum identified by its (x, y) 50 

coordinates, containing m/z values (channels) and their intensities [11,12]. 51 

If high resolution in mass is mandatory to distinguish isobaric and quasi-isobaric compounds in 52 

complex mixtures and to exploit isotopic signatures, high accuracy of m/z measurement is essential 53 

for a confident identification of compounds, leading to a deeper interpretation of the molecular 54 

content of samples. Therefore, high resolution mass spectrometry (HRMS), combining both high 55 

resolution and mass accuracy, is promoted for annotating molecular signatures of biological 56 

samples [13]. However, MSI data acquired with HRMS have shown to suffer from inconsistent 57 

variation of measured m/z values, from a pixel to another. The analysis of MSI images is based on 58 

a so-called average spectrum, representing all the ions detected in the image, i.e., summing each 59 

spectrum from every pixel. This pixel-to-pixel fluctuation reaches up to several ppm and strongly 60 

influences the global accuracy and resolution of the MSI average spectra [14–16]. It has therefore 61 

a crucial impact on MSI interpretation. Indeed, mass shifts affect the quality of the results by (i) 62 
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decreasing the number of identifications, (ii) increasing the number of false identifications, (iii) 63 

reducing the confidence of each identification and (iv) by impacting the capacity to reconstruct the 64 

proper spatial distributions of specific detected species. We have earlier shown that the automated 65 

metabolite annotation for MSI data critically depends on the m/z accuracy and requires the accuracy 66 

of at least +3 ppm in m/z [17]. Mass shifts are, in summary, strongly weakening the advantages of 67 

HRMS instruments for MSI data analysis.  68 

The mass accuracy depends mainly on the quality of the MS calibration of the instrument while 69 

the mass resolving power which is linked to the mass analyzer device [18]. The instrument 70 

calibration is performed by locking experimental m/z signals on their theoretical m/z values with 71 

an adapted mathematical function (e.g., linear, quadratic, or cubic functions). In MSI, as in MS in 72 

general, internal and external calibration can be considered. In external calibration, mostly used by 73 

the community, the signal of a calibrating substance is acquired before the acquisition of the MSI 74 

data. The calibration function is determined from this acquisition and then applied to each spectrum 75 

(pixel) of the MSI data [19]. Because it is very easy to set up, this calibration procedure is the most 76 

exploited in MSI. However, since mass shift is a pixel-dependent effect, the consistency of MSI 77 

data across all pixels when using an external calibration is strongly and negatively impacted by the 78 

phenomenon [14]. The reasons behind mass shift phenomenon in MSI are multiple and depend on 79 

the mass analyzer design. For example, it has been shown that the number of ions in Fourier-80 

transform ion cyclotron resonance cell (FT-ICR) is correlated with mass shifts [20]. Due to the 81 

partial or total incapacity of predicting mass shifts in MSI experiments, internal calibration appears 82 

as the method of choice. MSI data acquired with an internal calibration are less affected by mass 83 

shifts, as they are directly corrected by the calibration made from specific signals present in the 84 

same spectrum (pixel) [14,21]. Reference molecules can be added to the matrix or during sample 85 

acquisition (by exploiting dual ESI/MALDI ionization sources) [14,16]. A potential drawback may 86 
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be due to the ion suppressive effect generated by the reference molecules to the sample signals. 87 

Another strategy for internal calibration is to exploit the presence of endogenous molecules [21], 88 

avoiding the much-feared suppressive effect. Even pertinent, this approach is hardly achievable in 89 

MSI experiments, as a set of identified ions present in every pixel, has to be known in advance and 90 

have to be present in sufficient number [15]. This is highly restrictive as MSI samples are 91 

heterogeneous by nature and that the complexity of MSI spectra increases the chance to select non-92 

suitable ions for calibrating all the pixels.  93 

Other approaches have been proposed to solve this problem. Alignment methods have been 94 

developed to reduce the mass variation from pixels to pixels, by aligning each spectrum of an MSI 95 

between themselves. However, despite increasing the consistency of spectra, alignment does not 96 

necessarily correct for mass shifts, contrary to the recalibration [22–25]. Others used the signal 97 

produced by peptides for recalibration. In LC/MS it was possible to recalibrate the signals based 98 

on confidently identified peptides from a database [26]. In MSI, another work shows that the 99 

chemical noise produced in MALDI can be used for recalibration [27]. However, those methods 100 

require using specific signals which may not be applicable when using MSI for other molecules 101 

than peptides.  102 

In this context, this work aims at proposing a post-acquisition data-adaptive recalibration 103 

methodology to correct mass shifts in MS data. The idea is based on the automation of the selection 104 

of calibrant/reference signals in each spectrum of a MSI dataset, based on the signal of the lipids 105 

and metabolites confidently identified in a similar MSI dataset by METASPACE. METASPACE is 106 

a tool of choice for MSI users as it is an open and free access platform for annotating a broad range 107 

of metabolites and lipids in MSI data in a confident way controlled with a false discovery rate 108 

(FDR) [17].  In this work, we take advantage of METASPACE platform at two different levels. 109 

First, we generate a list of potential calibrating ions for the MSI data subjects to recalibration by 110 
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selecting similar already annotated MSI data publicly available in METASPACE. Second, we use 111 

the numbers of the METASPACE annotations to quantify the data improvement after recalibration. 112 

Comparing the numbers of molecular annotations across different datasets or after data 113 

recalibration represents an advantage of using an FDR-controlled molecular annotation as 114 

established in other omics and represents an advantage of METASPACE in contrast to other ways 115 

of metabolite or lipid annotation such as m/z-matching (see [17] for more details).  Therefore, an 116 

efficient recalibration method would be expected to increase the number of METASPACE 117 

annotations at the same FDR. For validation of our recalibration method and for showing its broad 118 

applicability, we considered 31 public MSI sets from METASPACE coming from various 119 

laboratories, acquired with different MS analyzers and representing diverse samples.  120 

 121 

Material  122 

 123 

In this work, two types of datasets have been analyzed: a zebrafish cryo-section and a set 31 public 124 

MSI datasets from METASPACE. First, a 12µm thick slices of one-month-old zebrafish embedded 125 

in gelatin were realized on the Cryostar NX70 (Thermo Scientific) then placed on an Indium Tin 126 

Oxide glass slide (ITO slide, Bruker, Bremen, Germany). After 15 minutes of desiccation, tissue 127 

slices were covered by CHCA matrix (97% purity, Sigma-Aldrich, Taufkirchen, Germany) using 128 

an automatic sprayer SunCollect System (SunChrom). MSI acquisition was performed on a SolariX 129 

XR 9.4T (Bruker) using the automation software FlexImaging 5.0 (Bruker, Bremen, Germany). 130 

Acquisition method consists of 400 laser shots per pixel fired at 1000 Hz with the laser power fixed 131 

at 70%. The minimum laser focus was employed with a raster width of 60µm leading to images 132 

ranging from 10 to 15k pixels. All MSI data were converted to imzML format using FlexImaging 133 

5.0. On the other hand, 31 public MSI datasets were selected in METASPACE as representative 134 
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for different ion sources (MALDI/DESI), analyzers (Orbitrap/FTICR), polarities 135 

(positive/negative) and MALDI matrices (DHB for positive mode, DAN for negative mode, 136 

CHCA/Norharmane for both modes). To represent a maximum of the METASPACE samples, we 137 

have selected human/mouse samples when possible. In addition, 6 datasets from Waters were 138 

included to cover several TOF-based analyzers. All the MSI were downloaded as centroided 139 

imzML (see SI_2 for more details).  The metadata about the sample preparation was, however, only 140 

partially provided (see SI_2) and the parameters used to convert the raw image into centroided 141 

imzML are not known.   142 

 143 

Methods 144 

 145 

General approach 146 

In this work, the term “hit” is used to depict a match between experimental signal m/z and internal 147 

calibrating ion m/z within a given mass tolerance from the internal calibrating ion m/z. We will call 148 

“mass error” the difference in mass between the experimental signal m/z and its linked calibrating 149 

ion m/z. A hit is considered as true if the detected experimental signal corresponds to the calibrating 150 

ion. Otherwise, an erroneous match between the experimental signal and the internal calibrating 151 

ion is a false hit. In MSI, the mass spectra are information-rich and often contain 10e4 peaks per 152 

spectrum. Therefore, it’s particularly difficult to discriminate true hits from false hits as multiple 153 

signals can be found in the mass range of the m/z value of an internal calibrating ion. This difficulty 154 

is amplified by the presence of mass shifts since higher mass tolerance is required to capture the 155 

internal calibrating signal. However, increasing the mass tolerance inevitably increases the number 156 

of false hits, decreasing the recalibration performances. Therefore, the algorithm presented in this 157 

work optimizes the selection of true hits for recalibration for each pixel. We assume that true hits 158 
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have mass errors directly correlated to the mass shifts. Therefore, by increasing the similarities 159 

between the sample signal and the list of internal calibrants, it is expected that the hits with the 160 

most frequent mass errors over all the hits predominantly correspond to true hits. The hits with the 161 

most frequent mass errors are thus selected for fitting a linear model of the mass errors according 162 

to m/z. Finally, the recalibration is performed by removing the estimated errors in every detected 163 

m/z values. 164 

This algorithm is divided into 5 steps (Figure 1). (1) The generation of a list of internal calibrating 165 

ions for the whole MSI data according to similar public MSI datasets from METASPACE (i.e., 166 

representing the same kind of biological samples) since we assume them to share metabolites with 167 

the sample of interest. (2) Centroid MS spectra are extracted from each pixel. (3) The calibrant hits 168 

are generated by computing the mass errors between the list of potential internal calibrating ions 169 

and the spectrum signals for each pixel. (4) The preferential calibrant hits are selected as those with 170 

the most frequent mass errors with the aim to select true hits. (5) A linear model for predicting the 171 

mass shifts based on the preferential hits is then constructed and applied to all spectra for their 172 

recalibration. 173 

 174 

 175 

 176 
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 177 

Figure 1: Overview of the recalibration algorithm. 178 

 179 

180 

Generation of the list of internal 181 

calibrating ions182 

Generating a list of internal calibrating ions covering the signals from the sample of interest is a 183 

critical step for accurate estimation of mass shifts as it directly influences the collection of true hits. 184 

Therefore, for each MSI data subject to recalibration, a list of annotations from similar public 185 

METASPACE datasets is generated.  Similar METASPACE MSI data are selected by their 186 

metadata which entails the sample type and experimental parameters of the MSI experiment. We 187 

search for data with similar acquisition mode, organisms and organs (regardless of the molecular 188 
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database used in METASPACE for annotation). Once selected, the combined list of annotations is 189 

reduced to the annotations annotated with an FDR ≤ 10% and detected in at least 10% of considered 190 

public datasets. This aims at removing any atypical compound identified only in a few 191 

METASPACE MSI datasets, which would have a low chance to be present in the sample of interest. 192 

To increase the number of potential calibrating ions we include the two most intense isotopes for 193 

each selected calibrating ion.  Once a meaningful list of internal calibrating ions generated, the 194 

algorithm was applied to each spectrum (pixel), in centroid profile, for hits generation, hits 195 

selection, errors estimation and recalibration. 196 

 197 

Generation of Hits 198 

Only the 300 most intense peaks are taken into account for each pixel (Figure 1.2). This number is 199 

set in advance for all MSI data and is optimized to maximize true signals over noisy signals. This 200 

selection is not necessary if denoising is already applied but mandatory when no information is 201 

known concerning the generation of the centroid MSI (see material). The 300 m/z values are then 202 

compared to the list of the internal calibrating signals, within a mass tolerance of ± 0.01 Da (Figure 203 

1.3). This mass tolerance window is considered large enough to encompass most extreme mass 204 

shifts in the data, and small enough to discard the contribution of non-relevant peaks and isotopes. 205 

The mass errors in Da, used for calculating the regression and the error distribution, are calculated 206 

for each hit using Equation 1 where Merror, Mexact and Mexperiment are, respectively, the mass error, 207 

the exact mass (from the internal calibration list) and the experimental mass. 208 

𝑀𝑒𝑟𝑟𝑜𝑟 = 𝑀𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 −𝑀𝑒𝑥𝑎𝑐𝑡  Equation 1 209 

Merror values are expressed in Da instead of ppm to ensure a linear evolution of Merror errors along 210 

the m/z axis (See Figure 2A).  211 
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 212 

Selection of Hits 213 

Since the mass tolerance window for finding true hits can be large, a preselection of hits is 214 

necessary before fitting any model (Figure 1.4). The calculated mass errors of the hits (with 215 

Equation 1) are used for discarding false hits. As discussed previously, the assumption is that true 216 

hits display similar mass errors and the most populated errors should therefore contain a maximum 217 

of true hits. A kernel density estimation of the errors is estimated with the Python library SciPy by 218 

a Gaussian kernel [28], a bandwidth of 0.002 divided by the standard deviation of the mass errors 219 

was used as illustrated in Figure 2.a. The hits of interest are finally selected within a certain range 220 

from the maximum of the density distribution. This range was set at ±0.002 Da for all the MSI 221 

data, which was chosen according to the data subject to recalibration.  222 

 223 

Mass errors estimation and recalibration 224 

Hits selection reduces the probability to select false hits. Unfortunately, the application of simple 225 

linear regression function such as OLS (Ordinary Least Squares) leads to poor results since false 226 

hits are still present due to the complexity of biological signals. Therefore, RANSAC (Random 227 

Sample Consensus) algorithm from Python library [29], scikit-learn, is used for regression as it is 228 

more robust to outliers compared to OLS. A minimum of 10 hit (i.e., calibration point) and an upper 229 

limit of 300 trials for the random points selection are imposed to increase the chance of performing 230 

a correct recalibration. If this number of hits is met and if RANSAC algorithm is able to perform a 231 

linear regression (Figure 2.b), the recalibration is performed by removing the mass errors estimated 232 

by the linear fit, from the original spectrum. This step is made for each detected m/z value. (Figure 233 

1.5) 234 

 235 
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Single spectrum example of application 236 

 237 

Figure 2: “Selection of hits” (a) and errors estimation (b) from the hits of a pixel from the MSI 238 

of the zebrafish slice. 239 

The Figure 2 highlights the application of our algorithm to a single pixel of the zebrafish MSI data. 240 

The selection of hits based on the density estimation of the mass errors is shown in Figure 2.a, the 241 

selected hits are the points located within the red lines. The goal of this step is to filter out as many 242 

as possible of those hits which have too high error deviations from true hits, to maximize the chance 243 

of not including false hits during the model estimation. RANSAC linear model is then estimated 244 

on the selected hits. As many outliers are still present in the selected hits, the use of a robust linear 245 

estimator is necessary for detecting only true hits (Figure 2b). In this example, two limitations of 246 

this method can already be highlighted. The efficiency of the selection of hits will decrease 247 

according to the amplitude of the slope of the linear model (impact of the increase in mass on the 248 

error). This effect will disperse true hits over a larger region of mass errors. Therefore, values of 249 

the selection of hits tolerance and the density bandwidth must increase, which will decrease the 250 

efficiency of the approach as more false hits will be introduced in the calibration points. Secondly, 251 
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the errors must follow a linear trend according to the m/z due to the model estimation. Non-linear 252 

error trends may lead to non-uniform recalibration efficiency across the m/z range of the spectrum.  253 

 254 

Summary of the Pipeline 255 

The only input needed for the recalibration program is an imzML file [30] composed of centroid 256 

spectra. The metadata of this input is exploited to select similar MSI data from METASPACE and 257 

generate a suitable list of internal calibrating ions. In each spectrum (pixel), the most 300 intense 258 

peaks are selected and matched with a certain mass tolerance (0.01 Da in this work) against the list 259 

of internal calibrating ions. A selection of the hits according to the most frequent mass errors (+- 260 

0.002 Da in this work) is made. If a minimum10 hits are maintained after selection, a recalibration 261 

function is learned from the resulting hits by their errors and m/z values. The m/z of the initial 262 

spectrum are recalibrated. Finally, a new imzML is generated from the recalibrated MS spectra.  263 

 264 

Discussion and Results 265 

 266 

Recalibration impact on data analysis 267 

To evaluate the efficiency of our internal calibration algorithm, a zebrafish slice has been imaged 268 

with a MALDI FT-ICR. Mass shift is the result of the highly heterogeneous molecular composition 269 

of the organs and the tissues of this sample leading to different amounts of generated ions in the 270 

FT-ICR cell [20] . The settings of the recalibration are detailed in the method section. In this case, 271 

too few public MSI datasets of zebrafish in positive mode were found on METASPACE. Therefore, 272 

we decide to generate the list of internal calibrating ions from Lipidmaps database [31] with a 273 

selection of glycerophospholipids and sphingolipids ions (Na+, K+ and H+ adducts). The Figure 3 274 

shows a comparison of the mean spectra of the image before and after recalibration for two different 275 
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well-characterized ions (Figure 3A and 3B), as well as the consequence on the reconstructed images 276 

of the ions for different tolerance (Figure 3C to 3J). The two peaks chosen for this evaluation are 277 

the phosphatidylcholine lipids [C42H82NO8P+Na]+ and [C40H80NO8P+Na]+(m/z: 782.5670 and 278 

756.5514 respectively).  279 

Figure 3A and 3B clearly show a large distribution of the experimental m/z values (in red) scattered 280 

over 7.5 mDa and centered quite far from the exact theoretical m/z (2.1% and 3.3% of the pixels 281 

are located within 1 ppm from the exact mass of [C40H80NO8P+Na]+ and [C42H82NO8P+Na]+, 282 

respectively). After recalibration (in green), the distribution of the m/z is thinner (spread over ± 0. 283 

5 mDa) and more accurate (97.35 % and 98.74 % of the pixels are located within 1 ppm from the 284 

exact mass of [C40H80NO8P+Na]+ and [C42H82NO8P+Na]+ respectively). The 2D distribution of 285 

these two compounds extracted at +- 1 ppm and +- 5 ppm around their theoretical m/z value are 286 

represented before calibration (Figure 3C and 3G for 1 ppm and 3D and 3H for 5 ppm) and after 287 

recalibration (Figure 3E and 3I for 1 ppm and 3F and 3G for 5 ppm). 288 

Before recalibration, a mass tolerance window of 5 ppm was necessary to reconstruct the ion 289 

distribution as no image was obtained with 1 ppm. However, a large selection window increases 290 

the risk to get other ions included in the selected window and to create composite images. After 291 

recalibration, the vast majority of the signals of the investigated ions are included in the mass 292 

selection window of ± 1ppm (green distributions). It results that these images are much more 293 

contrasted and more detailed, enhancing molecular description and interpretation. This highlight 294 

the impact of mass shift on the reconstruction of m/z image. The comparison of MSI data before 295 

and after recalibration supports that our recalibration procedure avoids the loss in mass accuracy 296 

in the average MS signal due to mass shifts. 297 

 298 
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 299 

Figure 3: From a zebrafish MSI data. Comparison of the mean spectra before and after 300 

recalibration for two different well-characterized ions [C40H80NO8P+Na]+ and 301 
[C42H82NO8P+Na]+, with a theoretical m/z of 756.5514 m/z and 782.5670 m/z respectively 302 
(Figure 3A and 3B), as well as the consequence on the reconstructed images at +- 1 ppm  (Figure 303 

3C to 3G and 3E to 3I) and at +- 5 ppm (Figure 3D to 3H and 3F to 3J). The images are 304 
reconstructed from the theoretical mass of the two ions.  305 

 306 

Impact of Recalibration on the Numbers of Molecular Annotations 307 

High mass accuracy is a crucial parameter for obtaining accurate annotations of molecular ions in 308 

MSI in absence of MS/MS (fragmentation information). As shown above, the recalibration 309 

increases the accuracy of the MS measurement (mass error from 4.3 ppm to 0.12 ppm). Errors 310 

below 1 ppm are totally in line with the SolariX FT-ICR mass analyzer precision for single 311 

spectrum (considering adequate MS calibration). To quantify the impact of the recalibration on the 312 

annotation quality, both unprocessed (original) and recalibrated MSI data have been submitted to 313 
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METASPACE for automatic annotation. The numbers of annotations at various FDR levels are 314 

considered to evaluate the performance of the recalibration algorithm. Moreover, any 315 

METASPACE annotation is provided with its MSM score that quantifies the likelihood of the 316 

measured signal to match the signal predicted for the molecule from a target database. The MSM 317 

score is computed by integrating (i) measure of spatial chaos of the ion image at the selected m/z, 318 

(ii) the similarity between the experimental and theoretical isotopic patterns and (iii) the spatial 319 

correlation between the reconstructed images of the isotopes. The estimation of false positives is 320 

made by employing a target-decoy approach where the decoy database contains implausible ions. 321 

From METASPACE, the target database can be selected among different popular options such as 322 

ChEBI (Chemical Entities of Biological Interest), HMDB (Human Metabolome Database), and 323 

LipidsMaps. The FDR is estimated as the proportion of signals that matches the decoy database for 324 

that score against the signal that matches the target database for the same score. Therefore, mass 325 

shifts should decrease the number of annotations for a given FDR by decreasing the true positive 326 

matches in the target database, by increasing the possibility of matching decoy signals and by 327 

decreasing the structure of the spatial localization of an ion (Figure 2). The number of 328 

METASPACE annotations for a given FDR appears then as an adequate criterion to evaluate the 329 

performance of a recalibration strategy. Original and recalibrated MSI are annotated by 330 

METASPACE, using the Lipidmaps database and considering the following adducts: [M+H]+, 331 

[M+Na]+ and [M+K]+. Mass tolerances used for the identification are 0.5, 1.0, 1.5, 2.0, 2.5 and 332 

from 3.0 to 10 ppm with a step of 1 ppm. The performance of the recalibration is assessed by 333 

comparing the number of annotations of the original and recalibrated MSI (Figure 4). Classically, 334 

annotations with a FDR of 10% or lower are kept for analysis, as lower FDR corresponds to better 335 

annotation quality [17]. The most important increase would be at 1 ppm with an FDR of 10 % 336 

where more than 200 additional compounds were identified. This increase of annotation strongly 337 
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supports the effectiveness of our recalibration strategy for reducing mass shift effect and for 338 

increasing the accuracy of MSI data. 339 

 340 

FDR and Tolerance Selection  341 

The evolution of annotation numbers with the tolerance for any FDR is due to two main factors. 342 

First, the chances of matching decoy signals increase when the tolerance value increases, reducing 343 

the number of annotations. The second factor concern the signal in the MSI data. When the 344 

tolerance value increases, the chance of matching isobaric or quasi-isobaric species instead of the 345 

expected signal also increases. If the isotopic pattern of those species is close to the suspected 346 

annotations, then it will falsely increase the number of annotations.  347 

It results that the variation in the number of annotations according to the mass tolerance depends 348 

on the predominance of these two factors which is unpredictable for unknown signal (Figure 4). 349 

However, the value of tolerance in ppm should be low enough to optimize the number of 350 

annotations as it decreases the number of false positives. Therefore, the most interesting tolerance 351 

is the minimum value of tolerance giving the highest number of annotations. 352 

 353 

FDR at 5% or 10% are commonly used for the interpretation of the sample composition. FDR 354 

below 10% are indicative of the quality of the sample’s signals, keeping only the most relevant 355 

identifications. Higher FDR such 20% and 50% can, however, be useful for considering 356 

annotations with low intensities of signals. Indeed, as annotation scoring also depends on spatial 357 

structures and isotope distribution, low intensity signals impacts the scores and appears at higher 358 

FDR values. Since the recalibration shows an important increase in annotations at lower FDR 359 

(Figure 4), the majority of the signal is probably low in the initial data. In the following part of this 360 

paper, only highest quality annotations (5% FDR and tolerance of 1 ppm) will be considered. Even 361 
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if all compared MSI’s analyzer cannot all reach 1 ppm precision, comparing the number of obtained 362 

annotations at this value is still interesting as the recalibration should also have an impact, even if 363 

not all the pixels of the MSI data are used for annotations.  364 

 365 

 366 

 367 

 368 

Figure 4 Number of METASPACE annotations of the unprocessed (blue dots) and recalibrated 369 

(orange dots) zebrafish MSI, for different mass tolerances (ppm). The number of annotations is 370 

shown for FDR ≤ 5%, ≤ 10%, ≤ 20% and ≤ 50%. The recalibration shows an increase in the 371 

number of annotations at low mass tolerance.  372 

 373 

 374 
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Multiple MSI Testing 375 

The algorithm is evaluated with 31 different MSI datasets, to assess its robustness against various 376 

experimental conditions. The recalibration of these datasets is made thanks to the parameters 377 

detailed in the Material and Methods section. Each of the original and recalibrated MSI are 378 

annotated by METASPACE. For MSI data in negative mode, only [M-H]- and [M+Cl]- ions are 379 

considered, whereas for MSI data in positive mode, [M+H]+, [M+Na]+ and [M+K]+ ions were taken 380 

into account. The mass tolerances set for the identification are 0.5 and every unit from 1.0 to 8.0 381 

ppm. The performance of the recalibration is assessed by comparing the number of annotations of 382 

the original and recalibrated MSI as discussed above. Every possible database available on 383 

METASPACE platform is involved as a target database. Among them, the database leading to the 384 

most annotation on the unprocessed MSI data at 3 ppm and FDR of 10% has been chosen. 385 

Therefore, the annotations may come from different databases in function of the dataset.  386 

 387 

 388 
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 389 

Figure 5: Number of annotations between the recalibrated and original MSI for 31 dataset group 390 

by mass analyzer (1) Orbitrap, (2) FT-ICR and (3) TOF including qTOF, SYNAPT-XS, 391 

SYNAPT. The annotations were performed on METASPACE for 1 ppm tolerance and an FDR 392 

of 5%. 393 
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As an illustration, Figure 5 compares the number of annotations at 5% FDR and 1 ppm tolerance 394 

for the 31 MSI datasets in function of the MS analyzers. The algorithm is able to enhance the 395 

number of annotations for 75% of the datasets, by keeping the recalibration parameters identical 396 

for each of the MSI data and having no previous knowledge on the samples. Twelve of the 397 

recalibrated MSI have more than 20 additional annotations at 1 ppm tolerance and 5% FDR which 398 

is not negligible as they are among the most relevant signals of the images. Consequently, our 399 

methodology appears robust and independent of the experimental condition of MSI data 400 

acquisition. Thus, the same results can be expected on other HRMS MSI data.  401 

 402 

Recalibration of Orbitrap MSI Data shows the most impressive results, gaining from 20 to 400 403 

additional annotations. The other analyzers display variable increases. One aspect that could 404 

explain this difference between Orbitraps and other mass analyzers is that the MSI data acquire 405 

with Orbitraps have more signals compared to the other analyzers (data not shown). Therefore, 406 

better recalibrations are observed as well as a higher number of annotations.  407 

 408 

The analysis of the 31 recalibration plots (see SI_1) shows that 23 images get a higher number of 409 

annotations after recalibration (1 ppm, 5% FDR). However, 6 images (depicted as IM005, IM010, 410 

IM015, IM019, IM021, IM024, and IM031 in Figure 5 and SI_1) show a more significant number 411 

of annotations only for higher FDR (20% and 50%), which could be related to a low intensity 412 

signal. No annotation can be obtained from 3 images (IM011, IM012, and IM013 in Figure 5 and 413 

SI_1), as the number of hits is under the applied threshold of 10 hits (see methods). For some cases, 414 

the limitation of 10 hits seems to be insufficient to reach a correct recalibration (IM014 and IM026, 415 

Figure 5 and SI_1). The low number of hits for the images IM011, IM012, IM013, IM014 and 416 

IM026 might be a combination of low sample signals and unidentified METASPACE signals. 417 
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However, this limitation of the number of hits will lessen in the future as the number of submitted 418 

datasets will increase, covering different sample types and origins. The sample signals will also 419 

much probably be enhanced in the next months and years, by increasing the ionization efficiency 420 

with new ionization method such as laser-induced post-ionization (MALDI-2) [32] or improving 421 

the transmission between the ion source and the MS analyzer. Finally, fewer annotations are 422 

observed after recalibration without clear apparent reasons for the IM028 data (see SI_1). These 423 

results show that the use of those data and plots can be considered as a quality control to assess the 424 

reliability of the recalibration.  425 

 426 

In a more general context, the quality of the recalibration is related to the error trend (i.e., mass 427 

error vs m/z) and the number of hits in each pixel. As discussed in the method, the amplitude of the 428 

slope of the linear model and non-linear mass errors will impact the selection of hits and mass 429 

errors model regression. However, taking care of this effect is challenging since the error trend may 430 

change from pixel-to-pixel due to the heterogeneous signals in MSI data. A sufficient number of 431 

true hits must also be reached to properly determine the error trend over the mass range. The other 432 

essential parameter for robust recalibration is the ratio of true hits over false hits, which is 433 

dependent on the applied mass tolerance (i.e., mass selection window) for the generation of hits, 434 

the sample signals and the list of potential calibrating ions involved for the recalibration.  Other 435 

mass tolerances were tested on the previous MSI data but didn’t show better results (data not 436 

shown). The list of internal calibrating ions generated to recalibrate each MSI depends only on a 437 

subpart of the metadata (see M&M section) where the ionization source, the nature of the MALDI 438 

matrix and the tissue preparation method are, for example, not taken into account. The 439 

consideration of these metadata could be considered to enhance the generation of calibrating ions 440 

list. 441 
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Application to Other MS Datasets 442 

HRMS is not the only type of MS instrument suffering from mass shift as a lower-resolution mass 443 

spectrometer can also be impacted by it [33]. In this case, the mass tolerance for selection of hits 444 

(see M&M section) should be increased which is not a problem as our method is robust to large 445 

mass tolerance for the generation of hits. However, limitations concerning the error trend and the 446 

range of mass shifts for these instruments should be investigated.  447 

More generally, mass spectrometers are commonly used in direct infusion or hyphenated with 448 

separation techniques. Imaging can be considered as a particular case of separative technique, 449 

where the spatial distribution of the molecules is used for signal characterization, instead of 450 

retention or migration time. Although, the developed method for recalibration is essential for MSI 451 

as demonstrated by this work, this is also true for other MS-based approaches involving separative 452 

method where the MS signal is expected to change during the acquisition (HPLC-MS, CE-MS…). 453 

As for MSI acquisition, the fluctuation of ions during the acquisition requires internal calibration 454 

to effectively reduce the mass shift effect. The reported recalibration strategy can be applied to 455 

every MS data type, provided each acquisition scan contains enough peaks to properly estimate the 456 

true mass error.  457 

Moreover, more and more instruments integrate ion-mobility facility with mass spectrometry, as 458 

mobility can also be used as an additional molecular descriptor (related to the tridimensional 459 

structure) for improving the annotations. Mobility shifts have, however, also been identified but 460 

the recalibration of mobility can be performed, especially as collision cross section (CCS) or 461 

mobility value databases (collision cross section) for different biological metabolites and lipids are 462 

available in open-source [34,35]. Similarly, to the proposed MS recalibration strategy, those 463 

databases can be used as internal references to calibrate the ion mobility values (CCS or mobility). 464 

Therefore, the application of this method to mobility has yet to be investigated.  465 
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 466 

 467 

Conclusion 468 

 469 

Pixel dependent mass shift is decreasing the interpretability of MSI by affecting the image 470 

reconstruction of identified ions and by decreasing the quality and the number of annotations in 471 

HRMS. Those have thus a crucial impact on biological interpretation, reducing the capacity to 472 

locate and annotate biomarkers on biological samples.  473 

Here, we report a new algorithm to recalibrate MSI data, pixel by pixel without preconceptions of 474 

the ion composition in the sample. The method is based on the use of publicly available MS 475 

databases and annotated MSI data on METASPACE for internal calibrating ions generation. Data 476 

recalibration is performed by proper matches between theoretical masses (of the calibrating 477 

compounds list) and uncalibrated signals with a robust algorithm requiring very poor human input. 478 

Moreover, the calibrating compounds list is adapted from pixel to pixel allowing reaching the better 479 

calibration in function of the regions of the MSI data. The automation of the procedure is a 480 

prerequisite since ones cannot adjust the mass list for every spectrum of an MSI where an MSI 481 

contains thousands of spectra.  482 

The comparison of the number of annotations obtained on the METASPACE platform for original 483 

and recalibrated MSI data platform are considered as an indicator of the recalibration performances. 484 

Moreover, the plots of the number of annotations according to the FDR and the mass tolerance was 485 

used as quality control for the image signal quality.  486 

The performance and robustness of our recalibration algorithm has been evaluated on 31 different 487 

MSI data, acquired from various samples and different MS analyzers, representing the different 488 

MSI on the METASPACE repository. An increase of the number of annotations is observed after 489 
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data recalibration for most of the investigated data (75%). The different levels of performance of 490 

the method according to the different MSI was discussed and mainly attribute to the initial low 491 

sample signals and in the METASPACE annotations coverage. In the future, we can expect that the 492 

importance of those limitations will be overcome as the quality of the detected signal will increase 493 

due to different advancement in the ionization efficiency, MS instrumentation, and in 494 

METASPACE annotations coverage.  495 

Another limitation was hypothetically cited such as the error trend and the influence of the mass 496 

on the error variation. Even if those parameters are not predominant in this analysis further 497 

investigation must be led to understand in which cases those can influence the recalibration 498 

performances and how the algorithm could be improved for these particular cases. 499 

The integration of this data post-processing in METASPACE is currently considered since it is 500 

using numerous features already available in METASPACE. Moreover, it will enable the further 501 

testing of the method on more samples, which will highlight the best parameters to use with this 502 

algorithm.  503 

The effectiveness of our recalibration strategy has been shown on tissues MSI data but this 504 

approach can be considered for all MS data whereas MS signals are heterogeneous during the 505 

acquisition scans (e.g., HPLC, CE, IMS, TLC). The only condition is that enough peak is detected 506 

to ensure a good estimation of the mass shift. Moreover, the reported method can be considered for 507 

internal calibration of other ion descriptor than m/z ratios such as mobility or collision cross section 508 

values using adequate databases.  509 

 510 

 511 

 512 

 513 
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