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Abstract

Efficient implementations of the orbital-optimized coupled-cluster doubles [or sim-

ply “optimized CCD”, OCCD, for short] method and its analytic energy gradients with

the density-fitting (DF) approach, denoted by DF-OCCD, are presented. In addition to

the DF approach, the Cholesky-decomposed variant (CD-OCCD) is also implemented

for energy computations. The computational cost of the DF-OCCD method is com-

pared with that of the conventional OCCD. In the conventional OCCD, one needs

to perform four-index integrals transformations at each CCD iterations, which limits

its applications to large chemical systems. Our results demonstrate that DF-OCCD

provides significantly lower computational costs compared to OCCD, there are almost

7-fold reductions in the computational time for the C5H12 molecule with the cc-pVTZ

basis set. For open-shell geometries, interaction energies, and hydrogen transfer reac-

tions, DF-OCCD provides significant improvements upon DF-CCD. Further, several

factors make DF-OCCD more attractive compared to CCSD: (1) for DF-OCCD there

is no need for orbital relaxation contributions in analytic gradient computations (2)

active spaces can readily be incorporated into DF-OCCD (3) DF-OCCD provides ac-

curate vibrational frequencies when symmetry-breaking problems are observed (4) in

its response function, DF-OCCD avoids artificial poles; hence, excited-state molecular

properties can be computed via linear response theory (5) Symmetric and asymmet-

ric triples corrections based on DF-OCCD [DF-OCCD(T)] has a significantly better

performance in near degeneracy regions.
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1 Introduction

Orbital-optimized (OO) electron correlation methods have been of significant interest in

contemporary quantum chemistry.1–27 OO methods have been reported for various coupled-

cluster (CC) and perturbation theory methods, such as coupled-cluster doubles (CCD),1–3,5,13

coupled pair functionals,28,29 the linearized coupled-cluster doubles (LCCD),18,30 the density-

cumulant functional theory (DCFT),21 the second- and third-order perturbation theory

(MP2 and MP3),13,14,17,19,22,23,31,32 and the MP2.5 model.24 Triples excitation corrections

for the OO-CC methods have also been considered.6,15,20,33,34 These studies showed that

the OO methods are very helpful for computations of molecular properties of challenging

molecular systems, free radicals,10,17,18,23,35–37 such as symmetry-breaking problems,2,13,14,17

transition states,10,35–37 bond-breaking problems,15,20,38 weak interactions in open-shell sys-

tems,22,24,30,31,39 straightforward computation of ionization potentials40 and electron affini-

ties,41 and evaluations of the chemical reactivity.42

One of the most common approximation for the tensor factorization of the electron re-

pulsion integrals (ERIs) is the density fitting (DF) technique.22,23,30–32,43–56 With the help of

the DF technique, one can express the four-dimensional ERIs in terms of three-dimensional

tensors. In addition to to DF, the partial Cholesky decomposition (CD) of the ERI tensor

is also commonly employed as a tensor decomposition approach.22,31,51,57–60 The DF and CD

approximations are quite beneficial to reduce he computational time due to the reduced

I/O time. In context of the OO methods, the DF and CD approaches were utilized for the

OO-MP2 (OMP2 for short) energy10,22 and analytic gradients.23 Further, the DF and CD

techniques were applied to the orbital-optimized MP3, MP2.5, and LCCD methods.30,31

Analytic energy gradients for electronic structure methods, which employ the DF ap-

proach, have been reported for MP2 (DF-MP2),52,61–64 the second-order coupled cluster

(CC2) model,65,66 second-order multireference perturbation theory (DF-CASPT2),67 the DF-

OMP2, DF-OMP2.5, and DF-OMP3 methods,23,32 time-dependent local CC response theory

(DF-TD-LCC2),68 the CCD and coupled-cluster singles and doubles methods (DF-CCD and
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DF-CCSD),54 and for the CCSD with perturbative triples, DF-CCSD(T).55 However, ana-

lytic gradients with the CD approximation cannot be computed unless one employs a similar

approach to that of Aquilante et al.69

In this research, energy and analytic gradients for the OCCD method2,13,15 with the DF

approach is presented, which is denoted by DF-OCCD. In addition to DF, the CD approx-

imation is also considered for the energy computations, the resulting method is denoted by

CD-OCCD. The equations reported have been implemented in a new computer code, written

by present authors (U.B. and A.U.), and added to the Dfocc22,23,30–32,52–55 module of the

Psi4 package.70 Our new implementation has both restricted and unrestricted Hartree-Fock

(RHF and UHF) versions. The DF-OCCD method is applied to bond lengths, hydrogen

transfer reactions, and weak interactions.

2 Theoretical Approach

2.1 Integral Tensor Decomposition Approaches

With the help of DF and CD approximations, the atomic-orbital (AO) basis ERIs can be

expressed as follows:

(µν|λσ)DF =
Naux∑
Q

bQµνb
Q
λσ, (1)

In the CD approach, the CD vectors bQµν are obtained from the primary basis set integrals

in the CD procedure, and Q is a Cholesky factor. In the DF approximation, the DF factors

bQµν may be defined as follows:

bQµν =
Naux∑
P

(µν|P )[J−1/2]PQ, (2)
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where

(µν|P ) =

∫ ∫
χµ(r1)χν(r1)

1

r12
ϕP (r2) dr1dr2, (3)

and

JPQ =

∫ ∫
ϕP (r1)

1

r12
ϕQ(r2) dr1dr2, (4)

where χµ(r) and ϕP (r) are the primary and auxiliary functions, respectively. Similar to the

AO basis, the molecular-orbital (MO) basis ERIs can be written as follows:

(pq|rs)DF =
Naux∑
Q

bQpqb
Q
rs. (5)

where bQpq is a MO basis CD/DF tensor.

2.2 DF-CCD Energy and Amplitude Equations

For the orbital indexing a common notation is used: i, j, k, l,m, n for occupied orbitals;

a, b, c, d, e, f for virtual orbitals; and p, q, r, s, t, u, v, w for general spin orbitals. The correla-

tion energy for the CCD method can be expressed as follows

∆E = 〈0|e−T̂2ĤNe
T̂2 |0〉, (6)

where ĤN is the normal-ordered Hamiltonian operator,71,72 |0〉 is the reference determinant,

and T̂2 is the cluster double excitation operator:

T̂2 =
1

4

occ∑
i,j

vir∑
a,b

tabij â
†b̂†ĵ î, (7)
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where â† and î are the creation and annihilation operators and tabij is a double excitation

amplitude.

The DF-CCD correlation energy can be written explicitly as follows:

∆E =
1

4

occ∑
i,j

vir∑
a,b

tabij

Naux∑
Q

(
bQiab

Q
jb − b

Q
ibb

Q
ja

)
, (8)

The DF-CCD amplitude equation can be written as

〈Φab
ij |e−T̂2ĤNe

T̂2|0〉 = 0, (9)

where 〈Φab
ij | is a doubly-excited Slater determinant. The explicit form of DF-CCD amplitude

equation can be obtained from our equations for the density-fitted coupled-cluster singles

and doubles (DF-CCSD) method. Hence, for details of our DF-CCD implementations, one

may refer to our previous studies.53–55

2.3 DF-CCD-Λ Energy Functional (Lagrangian)

It is convenient73,74 to define a Lagrangian (L) for the DF-CCD method (DF-CCD-Λ func-

tional) as follows:

L = 〈0|(1 + Λ̂2)e
−T̂2ĤeT̂2|0〉, (10)

where Ĥ is the Hamiltonian operator and Λ̂2 is the CC double de-excitation operator,

Λ̂2 =
1

4

occ∑
i,j

vir∑
a,b

λijab î
†ĵ†b̂â, (11)

where λijab is a double de-excitation amplitude.

The CCD T2-amplitude equations are obtained by differentiating that L with respect

to Λ2-amplitudes, whereas the differentiating with respect to T2-amplitudes yields to the
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Λ2-amplitude equations75–79

〈0|(1 + Λ̂2)
[
e−T̂2ĤeT̂2 − E

]
|Φab

ij 〉 = 0, (12)

where E is the CCD total energy. The explicit form of DF-CCD Λ2 amplitude equations can

be obtained from our equations for the DF-CCSD method in previous studies.53–55

2.4 The Parametrization of the DF-OCCD Wave Function

We follow our previous formulations13–15,17–19,24,30,31,39,40 for the DF-OCCD wave function.

The MO transformations may be achieved with the help of a unitary operator80–83

˜̂p† = eK̂ p̂†e−K̂ , (13)

˜̂p = eK̂ p̂e−K̂ , (14)

|p̃〉 = eK̂ |p〉, (15)

where eK̂ is the MO rotation operator, ˜̂p†, ˜̂p, and |p̃〉 are the transformed creation, annihila-

tion operators and a transformed spin-orbital, respectively, and K̂ is:

K̂ =
∑
p,q

Kpqp̂
†q̂ =

∑
p>q

κpq(p̂
†q̂ − q̂†p̂), (16)

hence,

K = Skew(κ), (17)

where {κpq} are the MO rotation parameters. The transformed MO coefficients matrix can

be written as

C(κ) = C(0)eK, (18)
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where C(0) and C(κ) are the old and new MO coefficient matrices, respectively.

For DF-OCCD, the following Lagrangian can be written,13

L(κ) = 〈0|(1 + Λ̂2)e
−T̂2ĤκeT̂2|0〉, (19)

where,

Ĥκ = e−K̂ĤeK̂ . (20)

Derivatives of L(κ) with respect to κ can be expressed as follows,

wpq =
∂L
∂κpq

∣∣∣∣∣
κ=0

, (21)

Apq,rs =
∂2L

∂κpq∂κrs

∣∣∣∣∣
κ=0

. (22)

Then, a second-order series expansion can be written for L(κ) as follows:

L(2)(κ) = L(0) + κ†w +
1

2
κ†Aκ, (23)

where κ is the MO rotation vector, w is the MO gradient vector, andA is the orbital Hessian

matrix. Hence, one can obtain the following equation by minimizing L with respect to κ,

κ = −A−1w. (24)
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2.5 Response Density Matrices

Particle density matrices (PDMs) are central for the evaluation of the energy derivatives.

The CCD one-particle density matrix (OPDM) can be defined as follows:13,15

γpq =
1

2
P+(pq)〈0|(1 + Λ̂2) e

−T̂2 p̂†q̂ eT̂2|0〉, (25)

The OPDM can be partitioned into the reference and correlation parts as follows:

γpq = γrefpq + γcorrpq , (26)

where γrefpq and γcorrpq are the reference and correlation parts of OPDM, respectively.

With the DF/CD approximation we can avoid the formation of four-index two-particle

density matrix (TPDM), we may form a three-index TPDM, instead. The three-index TPDM

is defined as follows:22,23,52,54

ΓQpq =
1

2
P̂+(pq)

∑
r,s

〈0|(1 + Λ̂2)e
−T̂2 p̂†r̂†ŝq̂ eT̂2|0〉 bQrs, (27)

where P̂+(pq) is the symmetrizer, which has the following effect on a tensor:

P̂+(pq) Apq = Apq + Aqp. (28)

The three-index TPDM can be decomposed as in the case of OPDM as follows:22

ΓQpq = ΓQ(ref)
pq + ΓQ(corr)

pq + ΓQ(sep)
pq , (29)

where Γ
Q(ref)
pq and Γ

Q(corr)
pq are the reference and correlation parts of TPDM, respectively, and

Γ
Q(sep)
pq is the separable part of TPDM. The explicit form of DF-CCD response PDMs can

be obtained from our equations for the DF-CCSD method in previous studies.54,55
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Then, the energy of the DF-CCD-Λ functional may be re-written in terms of PDMs as

follows

L =
∑
p,q

γpqhpq +
1

2

Naux∑
Q

∑
p,q

ΓQpqb
Q
pq (30)

2.6 Orbital Gradient

The MO gradient is defined as follows:13,14,18,24

wpq = 2(Fpq − Fqp), (31)

where Fpq is the generalized-Fock matrix (GFM). Similar to the TPDM, the GFM can be

partitioned into reference, correlation, and separable components as follows:22,23,52

Fpq = F ref
pq + F corr

pq + F sep
pq . (32)

For F ref
pq and F sep

pq the DF-REF basis integrals, while for F corr
pq the DF-CC basis integrals

are employed. The explicit form of the GFM is reported in our previous studies.22,23,52

2.7 The Orbital Optimization Procedure

The DF-OCCD wave function is described by the set of κ, t2, and λ2 parameters. Similar

to previous studies,2,13,14,17–19 the t2, λ2, and κ parameters are simultaneously optimized.

The parameters κ are obtained from Eq.(24) using the approximate Hessian introduced in

our 2014 study.22 The direct inversion in the iterative subspace (DIIS) method84 is utilized

to accelerate the convergence.18
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2.8 DF-OCCD Analytic Gradients

The DF-OCCD energy is minimized with respect to the MO parameters. Hence, there is no

need to consider orbital relaxation effects for analytic gradients. However, the DF-OCCD

energy is not stationary with respect to CC amplitudes; hence, one need to consider their

response in the gradient expression. Hence, we employ the Lagrangian of Eq.(10). The first

derivative of the energy may be written as follows73,74,83,85–90

dE

dx

∣∣∣∣∣
x=x0

=
∂L
∂x

∣∣∣∣∣
x=x0

. (33)

The first derivative equation can be cast into the following form:23

dE

dx
=

∑
p,q

γpqh
x
pq −

∑
p,q

FpqS
x
pq +

Naux∑
Q

∑
pq

Γ̃Qpq(Q|pq)x −
Naux∑
P,Q

ΓPQJ
x
PQ, (34)

Two- and three-index TPDMs are defined by23,52

Γ̃Qpq =
Naux∑
P

ΓPpq [J−1/2]PQ, (35)

ΓPQ =
1

2

∑
p,q

cPpqΓ̃
Q
pq =

1

2

∑
p,q

Γ̃Ppqc
Q
pq, (36)

cQpq =
Naux∑
P

bPpq [J−1/2]PQ. (37)

Then, the PDMs and GFM are back-transformed into the AO basis.91–93

Fµν =
∑
pq

CµpCνqFpq, (38)

γµν =
∑
pq

CµpCνqγpq, (39)

ΓQµν =
∑
pq

CµpCνqΓ̃
Q
pq, (40)

where Fµν , γµν , and ΓQµν are the AO basis GFM, OPDM, and three-index TPDM, respectively.

11



The two-index TPDM may be expressed as follows:

ΓPQ =
1

2

∑
p,q

cPpqΓ̃
Q
pq =

1

2

∑
µν

cPµνΓ
Q
µν , (41)

cQµν =
Naux∑
P

bPµν [J−1/2]PQ, (42)

Hence, the final analytic gradient expression in the AO basis can be written as follows52

dE

dx
=

∑
µν

γµνh
x
µν −

∑
µν

FµνS
x
µν +

Naux∑
Q

∑
µν

ΓQµν(Q|µν)x −
Naux∑
P,Q

ΓPQJ
x
PQ. (43)

3 Results and Discussion

The efficiency of the OCCD2,13 and DF-OLCCD methods were compared using a set of

alkanes. For the alkanes set, Dunning’s correlation-consistent polarized valence triple-ζ basis

set (cc-pVTZ) was employed.94,95 The cc-pVTZ-JKFIT48 and cc-pVTZ-RI96 auxiliary basis

sets were employed for the reference and correlation energies, respectively, as the fitting basis

sets for cc-pVTZ. Further, the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods

were applied to a set of molecules18 for comparison of equilibrium geometries. For geometries,

Dunning’s correlation-consistent polarized core and valence quadruple-ζ (cc-pCVQZ) basis

set was used.94,95 The cc-pVQZ-JKFIT48 and cc-pVQZ-RI96 auxiliary basis sets were used for

reference and correlation energies, respectively, as fitting basis sets for cc-pCVQZ. Geometry

optimizations were performed with analytic gradients for each method. Moreover, hydrogen

transfer reaction energies (HTRE)17,24,97 were regarded to investigate the performance of DF-

OCCD. For the HTRE set, the cc-pVTZ primary basis set, and its canonical auxiliary basis

sets (cc-pVTZ-JKFIT and cc-pVTZ-RI96) were employed. In the CD-OCCD computations,

a CD threshold of 10−4 was employed.

Further, noncovalent interaction complexes (the A24 and O20 sets)39,98 were considered to

investigate the performance of DF-OCCD for open-shell noncovalent interactions. For weak
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interactions, single-point energies were obtained at optimized geometries, and the total ener-

gies were extrapolated to complete basis set (CBS) limits.99,100 The two-point extrapolation

approach of Halkier et al.101 was used for this purpose.102 In the two-point extrapolation pro-

cedure, for the A24 set the aug-cc-pVDZ and aug-cc-pVTZ basis sets were employed, while for

the O20 set the aug-cc-pVTZ and aug-cc-pVQZ basis sets were used. For the noncovalent

interaction complexes, the corresponding auxiliary basis sets, aug-cc-pVXZ-JKFIT48 and

aug-cc-pVXZ-RI,96 were employed as fitting basis sets. For the He atom, the aug-cc-pVXZ-

JKFIT basis set is not available; hence, we employed the def2-QZVPP-JKFIT auxiliary basis

set. Similarly, for the Li atom, the def2-QZVPP-JKFIT and def2-QZVPP-RI basis sets were

used. Counterpoise corrections are considered for all intermolecular interaction energies.103

3.1 The Efficiency of DF-OCCD

A set of alkanes is considered to investigate the efficiency of the OCCD and DF-OLCCD

methods. The computational time for the OCCD and DF-OCCD methods are presented

graphically in Figure 1. The DF-OCCD method dramatically reduces the computational

cost compared to the conventional OCCD, there are 6.8-fold reductions in the computational

time compared to OCCD for the largest member (C5H12) of the alkanes set. The dramatic

difference between the computational cost of DF-OLCCD and OLCCD is mainly arising

from the efficiency of DF integral transformation procedure due to reduced I/O time. The

accuracy of the DF approximation is well assessed in previous studies,22,30–32,54,55 it introduces

quite negligible errors compared to the conventional methods: noncovalent energies exhibit

mean absolute errors (MAEs) of 0.01–0.09 kcal mol-1, equilibrium bond lengths has a MAE

value of 10−4 Å, and vibrational frequencies yield a MAE of 0.5 cm−1.22,30–32,54,55

3.2 Geometries

We start with a set of closed-shell as the first step of our investigation.24 Table S1 of the

supporting information reports bond lengths of molecules considered. Errors in bond lengths
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for the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experi-

ment are presented in Figure 2, while the MAE values are illustrated in Figure 3. The MAE

values are 0.006 (MP2), 0.009 (DF-CCD), 0.007 (DF-OCCD), 0.007 (CCSD), and 0.002

[CCSD(T)] Å. The DF-CCD method yields the largest error compared to the experiment,

while CCSD(T) yields the lowest error as expected. The DF-OCCD, OCCD, and CCSD

methods yield the same MAE value. The DF-OCCD method remarkably enhances the MP2

and DF-CCD results, by 25% and 31%, respectively.

Next, we study a set of open-shell molecules.104 Table S2 of the supporting information

reports bond lengths of open-shell molecules considered. Errors in bond lengths for the

MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment are

presented in Figure 4, while the MAE values are illustrated in Figure 5. The MAE values

are 0.014 (MP2), 0.015 (DF-CCD), 0.013 (DF-OCCD), 0.012 (CCSD), and 0.007 [CCSD(T)]

Å. The DF-CCD method again yields the largest error compared with the experiment, while

CCSD(T) yields the lowest error as expected. Further, the performances of DF-OCCD and

CCSD are almost identical.

3.3 Hydrogen Transfer Reactions

It was demonstrated that the canonical methods, such as MP2, MP3, and LCCD, dramat-

ically fail for the HTREs, which include free radicals.17,18,24,97 It was reported that the OO

methods, such as OMP2 and OLCCD, provide remarkably better performance than their

canonical versions (MP2 and LCCD), providing 5- and 6-fold lower MAEs compared with

MP2 and OO linearized CCD (OLCCD).17,18,24 Hence, we consider the same test set17 to

assess the performance of DF-OCCD.

Table 1 reports the HTRE values (in kcal mol-1) from the MP2, DF-CCD, DF-OCCD,

CD-OCCD, CCSD, and CCSD(T) methods at the CBS limit. Errors with respect to

CCSD(T) are presented in Figure 6, whereas the MAE values (Figure 7) are 14.6 (MP2),

8.2 (DF-CCD), 0.5 (DF-OCCD), 0.5 (CD-OCCD), and 0.5 (CCSD) kcal mol-1. Hence, the
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results of DF-OCCD, CD-OCCD, and CCSD are identical and significantly better than those

of MP2 and DF-CCD. Furthermore, our results indicate that there is a reduction in DF-CCD

errors by more than a factor of 16 when optimized orbitals are used, and comparing to MP2

there is a more than 29-fold decrease in errors.

3.4 Noncovalent Interactions

In this section we consider weak interactions to investigate the performance of DF-OCCD,

and we start with the A24 set.98 For the A24 set, interaction energies from the MP2, DF-

CCD, DF-OCCD, CD-OCCD, and CCSD methods at the CBS limit are reported in Table

2. Errors and the mae values with respect to reference energies (Table 2) are depicted in

Figure 8 and Figure 9, respectively. The MAE values are 0.11 (MP2), 0.25 (DF-CCD),

0.25 (DF-OCCD), 0.26 (CD-OCCD), and 0.26 (CCSD)kcal mol-1. Hence, the performance

of DF-CCD, DF-OCCD, CD-OCCD, and CCSD are identical. It is well-known that the

HF orbitals are reliably used in most of the closed-shell systems. It is unexpected that the

DF-OCCD and CCSD methods yield a larger MAE value compared with MP2. But, it is

consistent with a previous study.105

Finally, we consider the O20 set22,39 to investigate the performance of DF-OCCD. Table

3 reports noncovalent interaction energies (in kcal mol-1) for the O20 set from the MP2,

DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods at the CBS limit. Errors with respect

to CCSD(T) are presented in Figure 10, whereas the MAE values are illustrated in Figure

11. The MAE values are 0.60 (MP2), 0.50 (DF-CCD), 0.36 (DF-OCCD), 0.38 (CD-OCCD),

and 0.34 (CCSD) kcal mol-1. Hence, there is a noticeable improvement upon DF-CCD when

optimized orbitals are used. Further, the performance of DF-OCCD, CD-OCCD, and CCSD

are virtually the same.
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4 Conclusions

The density-fitted orbital-optimized CCD (DF-OCCD) and its analytic energy gradients have

been presented. In addition to DF-OCCD, the Cholesky decomposed variant (CD-OCCD)

is also presented for energy computations. Results from the DF-OCCD method have been

obtained for closed- and open-shell molecular geometries, HTREs, and interaction energies

of noncovalent complexes for comparison with those from the MP2, DF-CCD, CCSD, and

CCSD(T) methods.

For the minimization of the MOs of the DF-OCCD wave function, a Lagrangian-based

technique has been utilized as in the case of previous OO methods.13,14,18,22,24,30,31 Both

the OCCD and CCSD methods scale formally as O(N6), where N is the number of basis

functions. However, the main drawback of the conventional OCCD is that one needs to

perform four-index integral transformations at each CC iteration.2,13 Even though, the MO

transformation scales as O(N5), it can not be performed in the core memory, except for the

very small molecular systems; hence, it is the most expensive part of CC iterations due to

the slow I/O procedure. However, with the DF approach, the cost of MO transformations

is reduced to O(N4), and memory requirements are significantly reduced, by a factor of N .

Therefore, with the DF approach, it is possible to perform MO transformations in the core

memory in many cases. Even if there is no enough memory for the DF algorithm, it is

still significantly faster in out-of-core algorithm. Hence, the DF approximation dramatically

reduce the cost of the conventional OCCD method.

For molecular geometries, HTREs, and interaction energies the DF-OCCD significantly

improves upon MP2 and DF-CCD. For example, for hydrogen transfer reactions there are

16- and 29-fold reductions in errors when DF-OCCD is employed compared with DF-CCD

and MP2, respectively. Furthermore, for these test systems, the performance of DF-OCCD

and CCSD are virtually the same. However, several factors make DF-OCCD more attractive

compared to CCSD: (1) for DF-OCCD there is no need for orbital relaxation contributions in

analytic gradient computations (2) active spaces5 can readily be incorporated into OCCD (3)
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DF-OCCD provides accurate vibrational frequencies when symmetry-breaking problems2,13

are observed (4) in its response function, DF-OCCD avoids artificial poles; hence, excited-

state molecular properties can be computed via linear response theory4,7,106 (5) Symmetric

and asymmetric triples corrections based on DF-OCCD [OCCD(T)] has a significantly better

performance in near degeneracy regions.15
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Figure 1: Wall-time (in min) for computations of single-point energies for the CnH2n+2 (n=1–
5) set from the OCCD and DF-OCCDmethods with the cc-pVTZ basis set. All computations
were performed with a 10−7 energy convergence tolerance on a single node (1 cores) Intel(R)
Xeon(R) Gold 5218 CPU @ 2.30 GHz computer (memory ∼ 500 GB).
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Figure 2: Errors in bond lengths of closed-shell molecules for the MP2, DF-CCD, DF-
OCCD, CCSD, and CCSD(T) methods with respect to experiment (the cc-pCVQZ basis set
was employed).
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Figure 3: Mean absolute errors in bond lengths of closed-shell molecules for the MP2, DF-
CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment (the cc-pCVQZ
basis set was employed).
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Figure 4: Errors in bond lengths of open-shell molecules from Byrd et al.104 for the MP2,
DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment (the cc-
pCVQZ basis set was employed).
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Figure 5: Mean absolute errors in bond lengths of open-shell molecules from Byrd et al.104 for
the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment
(the cc-pCVQZ basis set was employed).
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Figure 6: Errors in hydrogen transfer reaction energies (Table 1) for the MP2, DF-CCD,
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Figure 7: Mean absolute errors in hydrogen transfer reaction energies (Table 1) for the MP2,
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Figure 9: Mean absolute errors in closed-shell noncovalent interaction energies (Table 2) for
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Table 3: Open-shell noncovalent interaction energies (in kcal mol-1) from MP2, DF-CCD,
DF-OCCD, CD-OCCD, CCSD, and CCSD(T) at the CBS limit, and the mean absolute
errors (MAE) with respect to CCSD(T).

Complex MP2a DF-CCD DF-OCCD CD-OCCD CCSDa CCSD(T)a

1 H2O···NH3
+ -17.40 -16.94 -17.55 -17.55 -17.68 -18.40

2 HOH···CH3 -1.67 -1.43 -1.48 -1.48 -1.49 -1.75
3 NH···NHb -1.04 -1.02 -1.01 -1.01 -1.01 -1.02
4 Li···Lic 0.04 -0.87 -0.93 -0.94 -0.94 -0.97
5 H2O···HNH2

+ -25.58 -25.16 -25.11 -25.10 -25.09 -25.41
6 H2···Li -0.02 -0.02 -0.02 0.04 -0.02 -0.02
7 FH···BH2 -4.11 -3.88 -3.94 -3.94 -3.95 -4.22
8 He···Li 0.00 0.00 0.00 0.00 0.00 0.00
9 H2O···Al -7.12 -6.37 -6.89 -6.96 -6.84 -7.75
10 Ar···OH -0.16 -0.14 -0.14 -0.14 -0.14 -0.16
11 FH···OH -6.02 -5.80 -5.83 -5.90 -5.84 -6.10
12 He···OH -0.02 -0.09 -0.11 0.46 -0.03 -0.05
13 H2O···Be+ -63.95 -65.42 -65.45 -65.45 -65.42 -65.22
14 HF···CO+ -35.82 -32.40 -28.90 -28.89 -28.82 -30.37
15 H2O···Cl -2.95 -2.10 -2.57 -2.57 -2.66 -3.58
16 H2O···Br -3.11 -2.24 -2.57 -2.49 -2.64 -3.48
17 H2O···Li -11.64 -12.10 -12.45 -12.46 -12.46 -12.63
18 FH···NH2 -10.43 -9.98 -10.00 -10.00 -10.00 -10.33
19 NC···Ne -0.06 -0.04 -0.06 -0.06 -0.06 -0.07
20 He···NHc -0.02 -0.03 -0.03 -0.03 -0.03 -0.04

MAE 0.60 0.50 0.36 0.38 0.34
∆max 5.45 2.03 1.48 1.48 1.55

a From Soydaş and Bozkaya.39 All systems are in doublet states unless otherwise noted.
b The lowest quintet state of the dimer is considered, the lowest singlet and triplet states require
multireference wave functions.107
c The lowest triplet state of the dimer is considered.
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