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Abstract: 

  Alternating conjugated copolymers have been regarded as promising candidates for 

photocatalytic hydrogen evolution due to the adjustability of their molecular structures and 

electronic properties. In this work, we developed machine learning (ML) models with segment 

descriptors (SD) to promote the accurate and universal prediction of electronic properties 

without any experimental values and then constructed a high-performance prediction classifier 

model toward photocatalytic hydrogen production of alternating copolymers with high 

accuracy (real-test accuracy = 0.91). Moreover, photocatalytic dynamic study has been 

performed as well. Consequently, our work reveals accurate regression and classification 

models to disclose valuable influencing factors concerning hydrogen evolution rate (HER) of 

alternating copolymers. 
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Introduction: 

Alternating conjugated copolymers incorporating different electronic units have attracted 

considerable attention over a wide range of opto-electronic and energy transformation 

applications, such as polymer light-emitting diodes[1-4], organic solar cells[5-8], organic field-

effect transistors[9-11], photocatalytic hydrogen production[12-16]. Many efforts have been 

devoted to understanding fundamental electronic properties of alternating conjugated 

copolymers, such as ionization potential (IP), electron affinity (EA), optical bandgap[17-19]. 

In general, high hydrogen evolution rate not only relates with the optimized electronic structure 

but also correlates with the favored kinetic process of polymeric photocatalysts[20, 21]. From 

the view of the thermodynamically process, a huge body of research focus on the optimization 

of the electronic structure for hydrogen evolution in the last decades[22-24]. However, the study 

concerning the photocatalytic dynamics is scarce.   

To avoid the tedious and iterative synthesis-characterization to explore the suitable 

electronic properties, numerous theoretical calculation methods comprising the density 

functional theory (DFT) have been adopted to predict the basic polymer properties approaching 

the experimental parameters[25, 26]. However, it is very challenging to achieve desirable 

predictions rapidly and accurately. Statistical learning method, as a wonderful approach, has 

been explored to investigate the structure-property relationship of copolymer and then seek for 

the suitable material candidates in organic solar cells[27-30]. However, it should be noted that 

such data-driven method has not been addressed well for the prediction model of polymeric 

hydrogen photocatalysts. Very recently, Cooper et al. navigated the available structure-property 

space via the integration of robotic experimentation and electronic properties of high-

throughput computation[31]. Nonetheless, the experimentally measured light transmittance was 

needed to enhance the correlation with hydrogen evolution rate (HER). In a report by Nagasawa 

et al., a huge gap between the predicted PCE (5%) and experimental measurement (0.5%) was 

assigned to the introduction of experimental parameters and lack of description of non-order 

structure[32]. Towards high-throughput computation without any experimental data, advanced 

machine learning is deemed the desirable approach. In literature, it is still rare models 

combining thermodynamics with kinetics, mainly owing to the difficulty of analyzing the 

kinetic process by studying the stationary electronic properties. Therefore, it is of high demand 

to provide a method to demonstrate the relationship between ground-state electronic properties 
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with the excited dynamic process, obtaining timely insight to give the experimenters guidance 

of further designing high-performance candidates.  

 

Scheme 1. The motivation for Segment Descriptor. 

Herein, a new class of segment descriptor (SD) inspired by the divide and conquer 

algorithm is proposed to describe the smallest segment of A-B alternating copolymers, which 

can avoid the confusion of the repeating unit's directionality (Scheme 1). Our approach can be 

directly applied to A-B alternating polymers even if the disorder connection of repeated units 

(isomers) exists. Firstly, we put forward a ML model to rapidly predict electronic properties 

with structure-based SD, which possesses a fantastic generalization ability and can be a 

wonderful tool contributing to practical research due to the impressive accuracy. Moreover, our 

approach shows a higher correlation in the prediction of hydrogen evolution rate (HER) 

compared to the basic electronic-property strategy. Based on the ML model, we adopted five 

classification models of high accuracy to predict the performance of polymeric hydrogen 

photocatalysts (testing set accuracy = 0.8).  In addition, we used the testing set from different 

works to ensure the practicability of our model, which shows an excellent result (accuracy = 

0.91). Furthermore, the relationship between the structure-property and high HER was first time 

to predict the design of high-performance hydrogen photocatalytic materials. 10 most crucial 

features are proposed thanks to the machine-selecting feature. With the decision tree 
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classification models, relevant guidance has been demonstrated. Furthermore, an integrated 

insight into the mechanism in kinetic view has been supported. Delocalized excitons in excited 

states have been regarded as an important factor, which has been connected with electronic 

properties based on ML method, providing a new perspective to promote HER performance. A 

virtual library of the co-polymer has been generated and various building block has been ranked 

with our model, provided designing guidance and further demonstrated the usability of our 

model. Our approach provides a new strategy in facing co-polymers, proposes novel insights 

based on ML model, guides the scientists in further developing of high-performance HER 

materials. 
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Experiments and results: 

Prediction of Electronic Properties based on Structure-based Segment Descriptor.  

To resolve the disordered structure and gain more information form the copolymer, a 

fantastic strategy, segment descriptor (SD), is brought forward in this work. In the previous 

work about the ML, the alternating copolymer often adopted the A-B units as input. However, 

this method seems to gain limited information from the copolymer units, leading to the poor 

generality for further virtual screening. In contrast, SD have been regarded as a potential 

strategy to face the confusion and missing features. In order to prove the feasibility of segment 

descriptor, we first attempt to construct a rapid prediction model for the electronic properties of 

the alternation copolymers. To achieve quantum-mechanical-free electronic properties ML 

models of copolymers, molecular fingerprints, which can be inferred directly from structures 

of polymer units, is one of the best candidate description methods (Figure S1a) and have been 

widely applied in ML-based virtual screening[33]. The molecular fingerprint has proven 

feasible for homopolymers. Regretfully, alternating polymers cannot be simply represented in 

this way (only describe A-B units) due to the confusion of non-order structure, which also 

decreases the generality of ML models. Therefore, structure-based SD combined with the 

structure of each segment to describe alternating polymers can avoid this problem and give an 

opportunity to fulfill the handsome prediction of electronic properties. 

With a dataset containing more than 6,000 simulated copolymers (containing 9 A units and 

700 B units), 20% of the independent fragments B in the data set have been applied as the test 

set (detailed divided method can be found in Supporting Information)[31]. With the exploration 

of structure descriptor combination, MACCS, one type of substructure-based structure with 166 

bits length have been selected to describe segment A; while circular structure, Morgan (2048 

bits), have been applied as a descriptor for segment B. The success of this combination may 

attribute to its suitable length, while an over-long length will lead to overfitting.  

Algorithms have a large influence on the accuracy and generality of ML models. Several 

ML algorithms have been evaluated, including Support Vector Machine (SVM), Kernel Ridge 

Regression (KRR), Deep Neutral Network (DNN), k-Nearest Neighbors (k-NN), LightGBM 

and Gradient Boost Regression Tree (GBRT). Most of these models show acceptable results 

(Table S1 to S2), except for k-NN owing to the high dimension of molecular fingerprints. Due 

to the limitation of the database size, although DNN shows high accuracy in the validation set 
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(Table S1), its generalization ability is mediocre, which only shows the shockingly general 

results in the test set (Table S2). Note that kernel function-based models such as KRR and SVR 

show satisfactory results in both validation set and test set. Figure 1 shows that GBRT, a tree-

based ensemble model, gives the best prediction with a wonderful performance in the face of 

unseen segments (test set). Therefore, we can conclude that tree-based algorithms and kernel 

function-based algorithms can make full use of the information of the copolymer, we have 

constructed a ML model (GBRT/MACCS_Morgan) with generalization capabilities to predict 

the electronic properties of the copolymers. With the result observed above, we can confirm 

that SD is a feasible strategy for the representation of AB alternating copolymers. 

 

Figure 1. The linear correlation between the true (calculated) and predicted (a) IP, (b) EA and (c) gap in 

GBRT model with MACSS for segment A and Morgan for segment B. The red points and the blue points 

show the predicted result in the validation set and test set, respectively. The gray line indicates the perfect 

positive correlation. 

Electronic Properties-based Segment Descriptor in Prediction of HER.  

    Furthermore, we proposed that more characteristics of the segments can increase the 

prediction accuracy of ML model. One important thing to note about our desired methodology 

is that it does not employ inputs from experiment, which allows it to be extended to a large data 

set and partially applied into virtual screening. Here, a valuable library containing 157 

copolymers was selected because all their HER values have been reported in a previous 

work[31]. The dataset was randomly split into a training set (including 109 data) and test set 

(including 48 data). Two segments in the co-polymers (A and B) have been re-defined as 

Electronic Acceptor Segments (abbreviated as Acceptor) and Electronic Donor Segments 

(abbreviated as Donor) according to the LUMO level of the monomers (Figure S3a). Four 

classes of electronic properties (22 types in total) have been chosen to compose electronic 



7 

 

properties-based SD at this time (Figure S3b, detailed information can be found in Supporting 

Information). Three parameters (IP, EA, Bandgap) have been adopted to describe the basic 

electronic properties of the co-polymer. Twelve were used to describe about the electronic 

structure of each segment, while another four inputs came from the difference between the 

energy level of two segments. The last three parameters are responsible to the dipole of the D-

A unit in ground state and excited state, which can be reflected to the electronic transfer process. 

The Pearson correlation coefficients of the HER with these features have been displayed in 

Figure S4, indicating that all parameters have no significant linear correlation with HER. The 

main reason for such a result is due to the large influence of the experiment parameters on the 

performance of the copolymer and the complex mechanism, which cannot link to a single factor.  

Table 1. Prediction result with different descriptors. 

Descriptors PCCs a) R2 MAE b) RMSE b) 

Electronic Properties 0.47 0.18 0.52 0.68 

Segment descriptors 0.78 0.50 0.42 0.53 

a) PCCs is the abbreviation of Pearson’s correlation coefficient b) The unit is logarithm number. 

In order to validate the stunning effectiveness of our strategy, we attempted to compare 

our segment descriptor (SD) method with the previous studies, where Copper et al. adopted 

several electronic properties as well as the experimental parameter into the construction of ML 

model, used a sub-dataset among mentioned co-polymers (fixed A unit)[31]. Based on it 

without any experimental data was also developed and then applied to evaluate the HER values 

in the used library selected from the previous work (abbreviated as Electronic Properties). Here, 

a suitable ML algorithm, Gradient Boosting Regressor, have been adopted in this comparable 

section. We took the logarithm of the value to gain a more reasonable distribution of the data, 

this is because the magnitude is more important than a real value. Table 2 and Figure S4 

demonstrates the prediction result of the Electronic Properties and Segment Descriptors. We 

can see only employing the electronic properties (IP, EA, bandgap) as the inputs lead to a low 

accurate result (Pearson’s correlation coefficient is only 0.47), which cannot fulfil the needs of 

materials prediction. Delightedly, when the Segment Descriptors been applied, an impressive 

correlation coefficient can be achieved (PCCs = 0.77). Therefore, we can conclude that since 

the SD contains more information, higher accuracy can be achieved than regular input, which 
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makes it show greater potential in the application of virtual screening. 

Table 2. The performance of five machine-learning classifier algorithms. 

Machine-Learning techniques a) Testing accuracy Testing AUC b) 

Extra Trees Classifier 0.80(±0.02) 0.78(±0.02) 

AdaBoost Classifier 0.77 0.75 

Gradient Boosting Classifier 0.77(±0.03) 0.74(±0.03) 

Ridge Classifier 0.77 0.77 

K-Neighbors Classifier 0.75 0.73 

a) Classification accuracy was measured on the test set and training set, using the constant training dataset 

and the accuracy value with the standard deviation, was reported via using the average of 10 times. b) Area 

Under Curve of the testing set 

Moreover, to achieve higher reliable prediction result as well as greater explainable, 

classifier model toward high-performing photocatalytic polymer was further developed. In 

literature a copolymer with HER higher than 1000 μmol/hg was considered as high active 

material candidates, which is used as a suitable judgement threshold. Five machine-learning 

classifier algorithms are adopted to address this problem (Table 3). All the machine-learning 

classifiers achieved satisfying results in test set (accuracy from 0.75 to 0.80). Notably, the Extra 

Trees Classifier regarded, as the most efficient one among these algorithms, obtained the highest 

average test accuracy (0.80), which may meet the requirement of HER prediction.  

 

Figure 2. Prediction results versus experimental data on the external test set with the Segment Descriptor 

and Extra Tree algorithm. 

Although the ML models perform well in our dataset, we expect that the HER prediction 

model can make sense in the real test environment instead of a toy. Therefore, 22 molecules 
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with reasonable selecting approach (Figure S5) have been used as external test set to examine 

the universality of our ML model. The missing data of calculated electronic properties (IP, EA, 

gap) were filled with the prediction result of structure-based ML models mentioned above. To 

our surprise, an awesome result has been achieved (Figure 5 and Table S6), the accuracy can 

achieve 0.91. One of the failed examples was due to the lack of acetylene bond in our data set 

(8 in Figure S5), so the description of segment may be not suitable. Another failed example can 

be responsible to the lack of boron-embedded segment in our dataset. Although such a result 

may be caused by data bias probability, it can completely prove that Segment Descriptor-based 

ML model can be used in practical applications. 

Hence, a high correlation coefficient model after adopting the SD method is successfully 

set up. After choosing from the 5 decent models, we have established an impressive high-

performance HER model used in the real prediction environment with a high-accuracy result 

(0.91), from which we can sure our model reach a good achievement. This high-accuracy also 

reveals that the HER ML model has huge promising potential for application in pre-screening 

of hydrogen production materials and avoid the costly experiment attempt.  

 

Insight from Machine Learning Model.  

 

Figure 3. (a) Diagram representing the photocatalytic HER (D response to the sacrificial reagent). (b) 

Schematic of the energy level of the segments in A-B alternating co-polymers and selected energy level 

difference. (c) Sum of top 10 important descriptors selected by three DT-based classifier models. 

Figure 3a depicts a plausible mechanism for photoinduced HER process catalyzed by 

conjugated copolymers. The polymer P absorbs light to form exciton P* via electronic transition. 

The hole oxidizes a sacrificial reagent, leading to a stable anion P- that promotes HER and, 

simultaneously, returns to the initial state. Note that (1) a smaller optical gap will be more 



10 

 

suitable for molecules to be excited under blue or visible light; (2) lower VB is beneficial for 

the reduction by sacrificial reagent; (3) higher CB is advantageous for the HER step. Combined, 

as long as the polymer can be excited (i.e. the optical gap is not too big), a larger gap will be 

more advantageous for HER. The main side reactions are the excitons recombination process 

(rate is ker) and the reaction of P- and sacrificial positive ions (D+) (rate is kD). Therefore, the 

rate of hydrogen production can be written as follow (detailed information can be found in 

Supporting Information): 

𝑟 =  
𝑘𝑒𝑥𝑘𝑟𝑒𝑑𝑘𝐻[𝑃][𝐷][𝐻]

𝑘𝑒𝑥𝑘𝐷[𝐷+]+𝑘𝑒𝑥𝑘𝐻[𝐻+]+𝑘𝐷𝑘𝑟𝑒𝑑[𝐷][𝐷+]+𝑘𝐻𝑘𝑟𝑒𝑑[𝐷][𝐻+]
             -(1) 

    This rate formula can provide a lot of insights and explain the characteristics of high-

performance materials that were previously provided. For example, fast exciton recombination 

rate (ker) will reduce the efficiency of hydrogen production; larger surface area of the 

photocatalyst ([P]) is beneficial for hydrogen production. 

It has been proposed in earlier studies that strong charge transfer is conducive to high-

performance hydrogen production[34-36]. This, however, is not in line with the results of many 

more recent studies, where co-polymer with strong charge transfer (such as thiadiazol-

embedded materials) cannot achieve high-performance (HER > 1,000 μmol/hg).  Instead, 

many high-performance materials (such as fluorobenzene-containing copolymers) do not show 

strong CT features[37]. To resolve the contradictions, it is highly meaningful to develop new 

models and rationalize these phenomena in a more comprehensive manner. New venue opened 

by ML method, our approach has identified two critical descriptors, LUMO_D – LUMO_A and 

LUMO_A – HOMO_D, that affects the HER performance of co-polymers. Both quantities 

describe the FMO levels of donor/acceptor segments; the former reflects the relative population 

of the excited electron on D/A segments, while the latter characterizes the gap of the co-polymer.  

With the tree-based classifier models (GBRT, AdaBoost and Extra Trees), 10 most 

important features among a total of 22 ones were selected and showed in the Figure 3c. Optical 

band gap of the copolymer is considered as the most important feature, which is consistent to 

the previous works[38]. Difference between the LUMO of donor segment and acceptor segment 

(LUMO_D-LUMO_A) and the LUMO of acceptor segment (LUMO_A) are decided as the 

second and third most important features, respectively, implying the importance of orbital levels 

in photocatalysis (Figure 3b). It should not be ignored that the electron and hole reorganization 
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energy (λe and λh) also regarded as important features, indicating that structural changes in the 

electron transfer process have an effect on the performance of polymers. The EA, IP of 

copolymers and difference between LUMO (Acceptor) with HOMO (Donor) are also 

considerable elements.  

 

Figure 4. Best decision tree (DT) model trained with top 10 important descriptors to access different types 

of A-B alternating co-polymers. Categories of “High Performance” (HER>1000) and “Low Performance” 

(HER<1000) are colored green and red, respectively. Those that cannot be classified by a single decision tree 

are marked as “Moderate” in yellow color. 

As noted by Liu et al., the fundamentals of the photocatalytic process and structure-activity 

relationship are still in need of more explorations[19]. To establish a relationship between 

electronic properties and HER performance and guide the designing of high-performance 

hydrogen production photocatalysts, with the Machine learning approach, a decision tree (DT) 

model has been constructed with the top 10 above-presented descriptors. The logical flowchart 

diagram of the best DT model has been shown in Figure 4. The decision tree algorithm selects 

the calculated bandgap as the top node in the discrimination process with a threshold of 3.31 

eV. We note that the reported bandgap is calculated, and there exists a difference between 

experimental and calculated bandgaps; a computed 3.3 eV gap approximately corresponds to 

an experimental value of 2.6 eV according to the previous comparison[31]. Consistent with the 
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previous idea, it is concluded that since the materials in the dataset are excited by blue light, the 

smaller gap is essential for the excitation, thus a precise range is important for further designing 

visible-light-excited photocatalytic hydrogen production materials[39]. 

The importance of charge separation/delocalization in the excited state is shown by the 

occurrence of LUMO_D  LUMO_A in several nodes in the DT. From the left side of the DT, 

we can notice that a LUMO_D  LUMO_A between 0.09 eV to 0.77 eV is more likely to cause 

high performance in photocatalytic hydrogen production. The low LUMO_D  LUMO_A 

typically implies a more smeared-out distribution for the excited electron. Despite the benefits 

of slightly concentrated orbits when a larger band gap is involved, strong CT normally brings a 

narrower band gap for co-polymer, which also means that high-performance materials tend to 

need a properly delocalized excited electron.  

 

Figure 5. ESP, e-h distributions of fluorine substituted high performance co-polymer 1-F (left) 

and non-fluorine substituted copolymer 1 (right) with LC-ωPBE/6-31G* (ω-tuned), green and 

purple represent the hole and electron distribution, respectively. 

An in-depth analysis is necessary for further understanding the physical meaning of our 

model. A high-performance material 1-F with HER nearly 10,000 μmol/hg, which do not show 

traditional electronic transfer feature, has been selected here to make (TD-)DFT calculation 

(Figure 5). It should note that the introduction of fluorine is extremely important, which is 

hundreds of times higher than 1 (trace). From the electronic static potential (ESP) of the 1 and 

1-F, negative electrostatic potential can be detected around the fluorine atom, which suggests 

the electron-accepting property of fluorine substituted benzene in ground state (Figure 5). 
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Moreover, the e-h distribution suggests that the electron in 1-F is excited by light from a 

localized hole in difluorinephenyl to a more delocalized distribution over the polymer backbone, 

extending into dibenzothiophene.  

Greater Sr in 1 means larger hole-electron overlap, which tends to cause higher speed in 

exciton recombination (i.e. excitons to ground states in Figure 3a). As a result of fast exciton 

recombination rate (ker), the excitons will recombine before the oxidation of the sacrificial 

agents. Thus, this can explain the low efficiency of local excitation. However, in the traditional 

sense, traditional strong CT tends to cause longer exciton lifetime (smaller ker), but why doesn’t 

this lead to higher efficiency? As discussed in Figure 4, that a dispersed electron distribution in 

excited state is more favorable have been demonstrated by our model. This is because a 

dispersed electron distribution is believed conducive to HER. If the excited electron is localized, 

which is the feature or most common CT materials, reduction of H+ will be disfavored, result 

in extremely small kH. Combined, it is implied that a localized hole distribution plus a 

delocalized electron distribution, as exemplified by 1-F, maximize HER performance.  

 

Figure 6. Selected donor segment and acceptor segment in our virtual library. High ranking segment was 

highlight with frame.  

Based on the high accuracy of our model, we construct a virtual library with 10 

commercially available donor segments and 12 common acceptor segments (Figure 6) to obtain 

more insights. With the HER regressor model, the ability of photocatalytic hydrogen production 

of each segment has been evaluated and graded based on its ranking among same class segment 
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(Table S7). From the result, two donor segments (1,4-phenyl and 2,3-thienyl) and three acceptor 

segments (1,4-difluorothiadiazole, 2-fluoro-1,4-phenyl and 2,5-difluoro-1,4-phenyl) have been 

recognized as more suitable candidates for high-performance hydrogen production materials 

(Table S8). Except for difluorothiadiazole, all these segments do not show obvious electron-

poor/rich feature, which again supports the preferable lack of strong charge transfer process in 

most high-performance materials.  

It has not escaped our notice that fluorobenzene and difluorophenyl tend to act as donors 

according to our models, which contrast with conventional understanding[12]. This is because 

the definition of donor/acceptor in our model is based on the LUMO of each segment, which 

can better reflect the energetic nature of the excited electron (critical to HER). The segment of 

fluorine substituted benzene has a low HOMO and large bandgap, which result in its electronic-

poor character in ground states and potential donor part in excited states. Such a result gives a 

new viewpoint in supporting the high-performance of fluorine substituted photocatalyst.  

 

Figure 7. ESP, e-h distributions of p-polyphenyl 2 (left) and fluorine substituted p-polyphenyl 2-F (right) 

with LC-ωPBE/6-31G* (ω-tuned), green and purple represent the hole and electron distribution, respectively. 

Among the virtual co-polymers in our library, the optimal is fluorine p-polyphenyl 2-F. 

Both regressor and classifier gives a prediction result with HER larger than 1,000 μmol/hg, 

suggest its potential high performance. (TD-)DFT analysis has been applied here to further 

explore its potential performance. As shown in Figure 7, with the introduction of fluorine atom, 

stronger charge separation is observed in 2-F. Same as our previous viewpoint, fluorine atoms 
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exhibit characters of donor in excited state, which suggest the better electron transfer process 

in excited states of 2-F. Moreover, localized hole and delocalized electron (both in excited states) 

were also observed in 2-F, illustrates its potential high performance as well. 

With this model, we analyzed the 10 most important features and put forward possible 

mechanisms for this machine-selecting features. A logic process with details was exported to 

help the researchers have a better understanding of how to design high-performance materials. 

Insights from our model have given rise to a new viewpoint on analyzing and designing 

conjugated co-polymers for photocatalytic hydrogen evolution, that is, localized hole and 

delocalized electron are likely to promote HER performance. Further, materials optimization 

can be achieved by tuning the kinetic balance between decreased exciton recombination rate 

and increased H+ reduction rate. Moreover, fluorine-substituted benzene can be a potential high-

performance segment in designing photocatalytic hydrogen production materials co-polymers 

due to the exciton recombination rate can be tuned by the fluorine atom. A new fluorine 

substituted p-polyphenyl has been proposed here with predicted high-performance. 
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Conclusion 

In summary, we have built a stunning descriptor strategy, segment descriptor, to resolve 

the complicated description of alternating copolymers and several novel models, including the 

electronic prosperities prediction model, HER regressor model, and high-performance HER 

classifier model. Besides, we tried to use the other molecules for other works to have a 

measurement. Two descriptors based on this strategy, structure-based Segment Descriptor and 

electronic properties-based Segment Descriptor, have been demonstrated to be feasible 

solutions in facing real-world problems, which provide an effective tool. This is the first time 

to demonstrate HER prediction model in the absence of any experimental parameter, which 

makes virtual high-throughput screening possible. Novel insights on discussing the importance 

of the co-polymer properties have been proposed. Based on the machine learning model, the 

dynamic analysis gives the importance of delocalized excited electron, which has been 

demonstrated by the further analysis of reported high-performance materials. Furthermore, 

based on a virtual generator, a novel co-polymer material has been proposed and proved to be 

potential high-performance. With the continuous studies of novel hydrogen-producing 

materials, more and more data will make it possible to introduce light and sacrificial agents into 

ML models, higher accuracy and stronger generalization capabilities will also be achieved 

accordingly. 
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