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Abstract

A priori knowledge of melting and boiling could expedite the discovery of phar-

maceutical, energetic, and energy harvesting materials. The tools of data science are

becoming increasingly important for exploring chemical datasets and predicting mate-

rial properties. A fundamental part of data-driven modeling is molecular featurization.

Herein, we propose a molecular representation with group-constitutive and geometrical

descriptors that map to enthalpy and entropy–two thermodynamic quantities that drive

thermal phase transitions. The descriptors are inspired by the linear regression-based

quantitative structure-property relationship of Yalkowsky and coworkers known as the

Unified Physicochemical Property Estimation Relationships (UPPER). Combined with

nonlinear machine learning (specifically, eXtreme Gradient Boosting or XGBoost), these

concise and easy-to-compute descriptors provide an appealing framework for predict-

ing transition enthalpies, entropies, and temperatures in a diverse chemical space. An

application to energetic materials shows that UPPER plus XGBoost is predictive, de-

spite a relatively modest energetics reference dataset. We also report results on public

datasets of melting points (i.e., OCHEM, Enamine, Bradley, and Bergström). The
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newly proposed representation is determined purely from SMILES string, thus showing

promise toward fast and accurate screening of thermodynamic properties.

Introduction

Transition temperatures such as melting and boiling point are fundamental thermo-

dynamic properties that influence applications including the design of pharmaceuticals, [1]

melt-casted explosives, [2–4] and energy harvesting materials. [5,6] Discovering materials with

acceptable transition temperatures is difficult, in part because they are not known prior

to synthesis and measurement. Theoretical prediction of such properties may reduce the

chemical space of candidate compounds and expedite discovery.

Atomistic simulations of phase transitions are computationally demanding. Furthermore,

in the case of melting, such simulations often require knowledge of crystal structure, [7–10]

thus limiting their use during materials discovery. An alternative approach is to utilize sur-

rogate models that map descriptors to reference data. Linear regression-based quantitative

structure-property relationships (QSPRs) have had success, [11–16] but are inadequate for find-

ing nonlinear mappings between descriptors and melting point. Nonlinear machine learning

(ML) algorithms overcome this shortcoming [17–20] and possess other advantages such as trans-

ferability to species outside of the reference dataset and computational efficiency. [21–23] An

accurate ML model may help identify target compounds and circumvent expensive atomistic

simulations.

ML is becoming an indispensable and versatile tool in the chemical sciences [24] with

application to molecular properties, [25–31] spectroscopy, [32–36] and chemical synthesis. [37–40]

Model performance depends concomitantly on the learning algorithm, the quality of the

reference training set, and the input representation of the chemical system. [41–47] The focus

of this paper is on the design of a molecular representation from a microscopic basis in order

to predict macroscopic properties such as melting and boiling point.
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The molecular representation reflects the level of chemical resolution needed for predicting

the target property. [48,49] For quantum molecular properties, geometry (and atom type) are

typically chosen as input because even the slightest changes in geometry can affect the

wavefunction and its observables. [50–53] On the other hand, macroscopic properties are more

robust to higher-level or coarse-gained descriptors. [54–58] In the case of melting, for example,

a molecular crystal may be identified by descriptors or a molecular fingerprint [59–62] derived

from its repeating structural unit. [20] The mapping of a multi-molecule process from a single

molecule is ambiguous however, thus emphasizing the importance of suitable descriptors.

In this paper, we propose descriptors based on the UPPER method of Yalkowsky and

coworkers. [63] UPPER, which stands for Unified Physicochemical Property Estimation Re-

lationships, is a comprehensive QSPR based on intuitive and thermodynamic relationships

relating phase transition properties to one another including transition enthalpies, entropies,

and temperatures. The method’s elegance is that properties are related to group-constitutive

and geometrical descriptors, determined purely from 2D structure (i.e., Simplified Molecular-

Input Line-Entry System or SMILES [64]). While it is generally a challenge to train models

to limited experimental data, we find that a concise set of domain-specific descriptors, com-

bined with nonlinear ML algorithms (specifically, gradient boosting [65]), provides an appeal-

ing framework for predicting transition enthalpies, entropies, and temperatures in a diverse

chemical space. Our software is freely available at https://github.com/USArmyResearchLab/ARL-

UPPER.

Methods

We overview the UPPER method for transition properties and the underlying descriptors

that will be supplied as input for ML. The addition of heat to a thermodynamic system

increases its temperature. When a first-order phase transition occurs, the temperature levels

off, remaining constant even as the system continues absorbing heat. Intermolecular binding
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forces are overcome as heat converts the state of the system from solid to liquid or liquid to

gas. When the two phases of matter are in equilibrium with one another, the Gibbs energy

is ∆Gtr = 0. The first-order transition temperature can therefore be written as

Ttr =
∆Htr

∆Str

, (1)

where ∆Htr and ∆Str are enthalpy and entropy of transition, respectively. Here, ∆Htr is

the amount of heat absorbed per mole for the transition to take place, while ∆Str is the

change in the system’s entropy. UPPER defines analytical forms for ∆Htr and ∆Str with

parameters determined using separate linear regression analysis of composition for ∆Htr and

geometry for ∆Str

Group-Constitutive Descriptors

Within UPPER, enthalpy is computed as a group-constitutive property,

∆Htr =
∑
i

pini, (2)

where pi is the contribution of the i-th fragment and ni is the number of i fragments in the

molecule. Fragmentation is based on the scheme proposed in Ref. [66], where each fragment

consists of the least number of atoms (including all carbons, hydrogens, heteroatoms, and

nonbonded electrons) that are not separated by an isolating carbon. An isolating carbon is a

carbon that is not doubly or triply bonded to a heteroatom. Such carbons and their attached

hydrogens are considered hydrophobic fragments with the remaining groups of atoms being

polar fragments. Fragments are represented by their SMARTS (SMiles ARbitrary Target

Specification) strings and subsequently assigned to an environmental group (Fig. 1). Envi-

ronmental groups (Table 1) reflect interactions such as the connectivity and hybridization

that each fragment has with its neighboring fragments.
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Table 1: Environmental groups.

Group Description
X Group bonded to only sp3 atoms
Y Group singly bonded to 1 sp2 atom
YY Group bonded to 2 sp2 atoms
YYY Group bonded to 3 sp2 atoms
YYYY Group bonded to 4 sp2 atoms

Z Group bonded to 1 sp atom
YZ Y and Z group
YYZ YY and Z group
YYYZ YYY and Z group
RG Group within an aliphatic ring
FU Aliphatic bridge-head group
AR Group within an aromatic ring
BR2 Aromatic carbon shared by 2 rings
BR3 Aromatic carbon shared by 3 rings
BIP Central carbon in biphenyl substructure

Geometrical Descriptors

Entropy depends on molecular geometry and encodes translational, conformational, and

rotational changes of a molecule that affect properties such as packing efficiency and the

likeliness for initial and final states of a phase transition to exist. Entropy is given by

∆Str = ∆Strans
tr + ∆Sconf

tr + ∆Srot
tr . (3)

Components of ∆Str are computed from geometrical descriptors (descriptions below): ec-

centricity (ε), flexibility (φ), and symmetry (σ).

Eccentricity is computed as the sum of atoms in and directly attached to aromatic rings.

It is a measure of the packing efficiency of a molecular crystal. Crystals with flat molecules

tend to have less than average free volume due to their efficient packing, requiring more

energy and a higher temperature to melt. Conversely, crystals made up of spherical molecules

pack less efficiently and are more prone to attaining their free rotation.

Flexibility is a measure of the internal conformational freedom of a molecule. Flexible

molecules tend to have a greater entropy change during melting than rigid molecules. In
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Fragment

Assign fragments 
to environmental 

groups

Figure 1: 2D structure of almotriptan molecule fragmented according to the isolating carbon
method. Dashed lines represent broken bonds. Fragments (actually labeled by SMARTS strings in
software to avoid ambiguity) are then assigned to environmental groups.

UPPER, flexibility is calculated by an ad hoc expression uniting flexible segments,

φ = 0.3ROT + LINSP3 + 0.5 (BRSP3 + SP2 + RING)− 1 (4)

where LINSP3 is the number of nonring, nonterminal, nonbranched sp3 atoms, ROT is the

extra entropy produced by freely rotating sp3 atoms and is calculated as ROT = LINSP3−4,

BRSP3 is the total number of nonring, nonterminal, branched sp3 atoms, SP2 is the number

of nonring, nonterminal sp2 atoms, RING is the number of single, fused, or conjugated ring

systems. Compounds with negative φ computed using Eq. 4 are assigned φ equal to zero.

Symmetry affects entropy and in particular the melting point. Symmetric molecules have

a higher probability of being in the right orientation for crystallization than nonsymmetrical

molecules (of roughly the same weight). As a result, they tend to have a lower entropy of

melting and higher melting point. Here, the method to compute σ (see Ref. [67]) operates

by locating the center or centers of graphical symmetry and the equivalence classes of atoms

connected to those centers.1 σ is estimated based on a few simple rules determined by the
1The centers of graphical symmetry are atoms that are most symmetrical with respect to connections to
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hybridization of the graphical center as well as the number of connected atoms and their

equivalence classes.

UPPER-Inspired Fingerprint

A combination of the group-constitutive and geometrical descriptors make up the UPPER-

inspired fingerprint. The overall size of the fingerprint depends on the molecules in the

dataset, as this affects the types of fragments and environmental groups. Figure 2 shows

example fingerprints for two molecules.

XNH2- XCH2 YCON
HNH2-

YCH2 YOH- ARC ARCH ARN 𝝓 𝝈 𝜺

0 0 1 0 0 1 4 1 0.5 1 7
1 1 0 1 2 3 3 0 1.5 1 9

Figure 2: Isoniazid and dopamine molecules fragmented and their UPPER-inspired fingerprints
consisting of group-constitutive and geometrical (φ, σ, and ε) descriptors.

Dataset and Learning Algorithms

Our dataset includes experimental transition enthalpies, entropies, and temperatures

for both melting and boiling. Compounds of the dataset include open-chain, aliphatic,

and aromatic compounds including polyhalogenated biphenyls, dibenzo-p-dioxins, diphenyl

ethers, anisoles, and alkanes. There are a wide variety of functional groups such as alcohol,

other atoms.
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aldehyde, ketone, carboxylic acid, carbonate, carbamate, amine, amide, nitrile, acetyl, and

nitro groups. See Supporting Information and Ref. [68] for more detail.

Tests are carried out with two different models. Original UPPER is the reference model,

where coefficients pi for enthalpy (Eq. 2) are determined using ridge regression. Ridge regres-

sion is a variant of linear regression with regularization to reduce overfitting.2 Entropies are

also parameterized using ridge regression. The second model is a variant of Gradient Boost-

ing (GB) called eXtreme GB or XGBoost. [65] A GB model is an ensemble of decision trees

where subsequent trees are trained to the residual error of the preceding tree. [69] XGBoost

controls overfitting better than GB, giving it strong performance. [70] An added advantage is

XGBoost’s computational speed. [71] Training details are provided in Supporting Information.

Results and Discussion

The original UPPER method is compared to the new UPPER-inspired fingerprint plus

GB approach (denoted UPPERfp+GB). Models for enthalpy (∆Htr) and entropy (∆Str) are

randomly split into 90% for training and 10% for testing. Following enthalpy and entropy,

we predict transition temperatures (Ttr). Finally, UPPERfp+GB is applied to predict the

melting points of energetic materials. Prediction errors are quantified by the Root-Mean-

Square-Error (RMSE) and the Mean-Absolute-Error (MAE).

Enthalpy

Fig. 3 shows parity plots of enthalpy of melting (∆Hm) and boiling (∆Hb). Only group-

constitutive descriptors (Table 1) were used in the models of Fig. 3. The results using

UPPER and UPPER+GB are comparable, showing that the nonlinear GB algorithm does

not provide any added improvement in predicting ∆Htr given group-constitutive descriptors.

The prediction accuracy of ∆Hm is not as strong as that of ∆Hb due to missed intermolecular
2Original UPPER was tested using linear and ridge regression. Ridge regression was significantly better

on the held-out test sets.
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interactions in the crystal and liquid phases, such as hydrogen bonding. These interactions

are not as significant during a liquid-to-gas transition since molecules are more spatially

separated. As a result, ∆Hb is predicted with greater accuracy (i.e., RMSEs of ∼2 compared

to ∼4 kJ/mol) using knowledge of only a single molecular unit.
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Figure 3: Parity plots of predicted versus experimental∆Hm (top panels) and∆Hb (bottom panels)
using UPPER (left panels) and UPPER+GB (right panels). Results are of the 10% held-out test
set consisting of 108 and 68 molecules for ∆Hm and ∆Hb, respectively. Prediction errors are shown
in subpanels. Intermolecular interactions in the crystal-liquid phases (e.g., hydrogen bonding) are
not completely accounted for with the group-constitutive descriptors. These missed interactions are
likely the cause for the difference in prediction accuracy between ∆Hm and ∆Hb.

Entropy

Parity plots of ∆Sm and ∆Sb are provided in Supporting Information. Similar to ∆Htr,

∆Str predictions are not significantly improved using the GB model. Trends in the entropy

data can be explained by considering physical differences between melting and boiling. For

the majority of the data, ∆Sm is smaller than ∆Sb; a consequence of the relative change
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of molar volume during a crystal-to-liquid transition versus a liquid-to-gas transition. In

particular, boiling produces a volumetric change of usually more than 20 liters per mol,

whereas melting produces a smaller change of a few cubic centimeters per mole. Further,

∆Sb data are clumped around 85− 90 J/mol.K (Trouton’s rule3), whereas ∆Sm shows more

variability with a few compounds in the 150−350 J/mol.K range. The high ∆Sm compounds

are long chain-like structures with single bonds that tend to orient themselves in parallel

fashion to achieve maximum dispersion in the crystal phase (see Supporting Information).

In the liquid phase, their flexible segments have a high degree of conformational freedom.

Cross validation results of ∆Htr and ∆Str are provided in Supporting Information.

Transition Temperatures

Given trained models of ∆Htr and ∆Str, the ratio of their predictions (Eq. 1) gives Ttr

(Fig. 4).4 UPPER+GB slightly outperforms original UPPER, but the overall prediction

error is still quite high (RMSEs of 45 − 55 K). This result raises the question whether

indirectly training to Ttr and enforcing Eq. 1 impedes the model’s predictive ability. Our

new approach (UPPERfp+GB) feeds the entire set of group-constitutive and geometrical

descriptors into the GB algorithm and trains the model directly to Ttr. In this way, Eq. 1

is not directly enforced, allowing the learning algorithm to choose respective weights over

its input features. The parity plots of Fig. 5 suggest that this flexibility is important as

RMSEs reduce by about 20 K for Tm and Tb. For reliable evaluation, averaged results over

a 10-fold cross validation are provided in Table 2. To identify the added benefit of using a

combination of group-constitutive and geometrical descriptors, models were trained solely to

group-constitutive descriptors, resulting in slightly increased RMSEs (Table 2).

The UPPERfp+GB approach provides a systematic way of assessing new descriptors.

Ref. [72] relates molecular mass (m) to Tm using an expression for atomic vibrations in a
3Trouton’s rule states that the ratio of the volume of an organic compound as a gas to its volume as a

liquid is constant at about 84 J/mol.K.
4Due to limited experimental data, ∆Htr and ∆Str models were trained to all available data. Therefore,

results of Fig. 4 are likely biased.
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Figure 4: Parity plots of predicted versus experimental Tm (top panels) and Tb (bottom panels)
using original UPPER (left panels) and UPPER+GB (right panels). Trained models of ∆Htr and
∆Str were used to supply predictions of ∆Htr and ∆Str to compute Ttr (Eq.1). Test results consist
of 202 and 168 molecules for Tm and Tb, respectively. Prediction errors are shown in subpanels.
Despite clear correlations, prediction errors are rather high and could use improvement.

monatomic solid in a thermal environment. The use of m as a descriptor has been shown

to improve Tm predictions. [17] Indeed, we find that the cross-validation RMSE of Tm reduces

slightly (Table 2). Significant improvement of ∼5 K is observed in the case of Tb. Lighter

molecules have greater thermal motion than heavier molecules with the same kinetic energy.

Thus, lighter molecules boil at lower temperatures, justifying the strong dependence of Tb

on m.

The results of UPPERfp+GB are encouraging (Table 2). Nevertheless, the method’s de-

scriptors inadequately represent certain compounds. In particular, an example in Supporting

Information shows structurally similar compounds with different Tm. Each molecule has an

anthracene substructure functionalized by a methyl group, differing only by the methyl’s

location. Their UPPER-inspired fingerprints are the same, yet Tm of 2-methylanthracene is
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Figure 5: Parity plots of predicted versus experimental Tm (top panel) and Tb (bottom panel) using
the new UPPER-inspired fingerprint plus GB approach (UPPERfp+GB). Results are of the 10%
held-out test sets consisting of 202 and 168 molecules for Tm and Tb, respectively. Prediction errors
are shown in subpanels. Compared to original UPPER and UPPER+GB of Fig. 4, UPPERfp+GB
shows significant improvement in predicting Ttr.

much larger than 1- and 9-methylanthracene. This significant difference is likely the result

of packing arrangement. Unfortunately, packing is difficult to predict from molecular shape,

especially 2D structure. We attempted replacing the current 2D eccentricity descriptor with

3D descriptors of eccentricity (ε3D) and asphericity (q3D). [73] Cross-validation predictions are

slightly improved (Table 2), but while these conformational descriptors help distinguish the

methylanthracene compounds, the added information is not sufficient enough for the model

to map to their correct Tm’s. Thus, new descriptors encoding the effect of molecular shape on

intermolecular interactions and subsequent expansion that occurs during melting are needed.

The Wiener index–famous for its ability to encode topological information and its strong

connection to boiling points of alkanes [74]–was also tested as a descriptor. Prediction errors

further improved (Table 2), but overcoming the indistinguishability of the methylanthracene
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Table 2: Prediction errors (RMSEs) of Tm, Tb averaged over the 10-fold cross-validation
test sets (including standard deviations). Models were trained to combinations of group-
constitutive (gc), geometrical (geo), and mass (m) descriptors. Significant improvement
in predictive ability is observed by directly training to Ttr (UPPERfp+GB) and adding
descriptors that map to Ttr.

Method Descriptors Tm, Tb
UPPER ∆Htr (gc), ∆Htr (geo) 62.9± 4.1, 59.2± 6.8

UPPER+GB ∆Htr (gc), ∆Htr (geo) 59.2± 5.9, 44.2± 5.5

UPPERfp+GB gc 37.9± 3.4, 22.3± 3.4
UPPERfp+GB gc, geo 36.0± 3.5, 21.8± 4.4
UPPERfp+GB gc, geo, m 34.7± 2.6, 19.5± 5.9
UPPERfp+GB gc, geo(ε3D, q3D), m 31.4± 2.5, 19.3± 4.6
UPPERfp+GB gc, geo(ε3D, q3D), m, w 30.6± 2.5, 17.2± 3.9

compounds remains a challenge (Supporting Information). Quantum-chemical prediction of

crystal density [75] relates to packing and may provide useful information. Besides packing,

the symmetry descriptor [67] also warrants improvement, as it does not distinguish stereoiso-

mers such as cis-trans.

Melting Points of Energetic Materials

Fig. 6 shows an application of the new UPPER-inspired fingerprint to predict Tm of

energetic materials containing many nitro groups. The reference data was augmented with

energetics, making up about 5% of the entire training set (∼130 compounds). The test set

is a diverse set of nitroaliphatic and nitroaromatic compounds including nitropyrimidines

and nitropyridines. Prediction accuracies are experimentally informative with overall test

set RMSE of 35 K. The model is particularly strong in the case of nitroaliphatic compounds

with a RMSE of 25 K. These results give promise toward predictive ML models of exotic

energetics given comprehensive datasets.

Melting Points of Public Datasets

Finally, we apply our new approach to train and test on public datasets of Tm (i.e.,

OCHEM, Enamine, Bradley, and Bergström). Separate models were trained and tested on
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Figure 6: Parity plots of predicted versus experimental Tm of energetic materials. Test set includes
nitroaliphatics (♦), nitroaromatics (©), nitropyridines (�), and nitropyrimidines (4).

each dataset. Due to their relatively small sizes, Bradley and Bergström were combined into

one, labeled BradBerg. Further details of the datasets can be found in Refs. [20] and [76].

The top panel of Fig. 7 shows error as a function of temperature for each of the datasets, while

the bottom panel shows the distribution of temperatures. Not surprisingly, smallest errors

coincide with temperatures that make up the majority of the data. Table 3 reports errors

over the middle 50% and 323.15–523.15 K; the latter being a popular range for medicinal

compounds. [76] While the 30–40 K RMSE performance is encouraging given the diversity of

these datasets, a more thorough curation process would likely benefit applications targeting

a specific chemical space. A model’s applicable chemical space and accuracy are largely

determined by its training dataset. [76] Building a robust model is supported using sufficient

and high-quality data. Future work may benefit from advanced sampling techniques such as

active learning; a semi-supervised procedure for data generation that interactively queries

from a large dataset. [77] As opposed to merely increasing the size of the dataset, active

learning finds the right data for the task. It is also important to be mindful of sources of
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Figure 7: Prediction errors (RMSEs) as a function of melting temperature for each dataset (top
panel). Models were trained and tested on each dataset separately. Distributions of melting points
for each dataset (bottom panel). Temperatures are binned every 30 K. Performance correlates to
the density of available data.

error such as experimental conditions, instrumentation, and human error, as trained models

cannot overcome this irreducible error.

Conclusion

Our main contribution is a new molecular representation that shows promise toward

predicting experimental melting and boiling points of molecular materials. The descrip-

tors originate from a linear regression-based QSPR developed by Yalkowsky and coworkers
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Table 3: Prediction errors (RMSEs) of Tm over the 10-fold cross-validation test sets for the
middle 50% and 323.15–523.15 K ranges.

Dataset Size Tm, middle 50% Tm, 323.15–523.15 K
Enamine 22381 29.7 34.1
OCHEM 21840 34.4 37.3
BradBerg 3161 34.2 41.8

known as UPPER (see Ref. [63]). UPPER’s group-constitutive and geometrical descriptors

are used to model enthalpy and entropy; two thermodynamic quantities that drive thermal

phase transitions. A notable advantage of UPPER’s descriptors is that they are derived

purely from SMILES strings. Besides simple structural characteristics such as connectivity

and hybridization, there are no numerically intensive calculations necessary. This attribute

of the method differs from other molecular representations that use relatively expensive

quantum mechanical calculations. [20,76] In this work, we merged an UPPER-inspired finger-

print consisting of group-constitutive and geometrical descriptors with eXtreme Gradient

Boosting (denoted UPPERfp+GB).

UPPERfp+GB showed strong predictive ability when tested against a diverse set of

compounds. Cross-validation RMSEs of melting and boiling point were found to be 36 and

20 K, respectively (Table 2). Meanwhile, the dataset ranged from about 90 − 700 K and

150− 850 K, comprising a diverse chemical space. The model improved (reducing to 31 and

17 K) with mass, 3D descriptors of eccentricity and asphericity, and topological information

using the Wiener index. UPPERfp+GB also provided experimentally informative prediction

of melting temperatures of energetic materials, highlighting its transferability to materials

containing a significant number of nitro groups compared to the majority of compounds used

for training. Our new approach also achieved errors within 30–40 K on melting points of

large diverse public datasets.

This work has inspired other projects such as how the new UPPER-inspired fingerprint

compares to common molecular fingerprints (see Supporting Information for preliminary

calculations). This task goes hand-in-hand with evaluating fingerprints across learning algo-
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rithms. Additionally, the intelligent sampling of a training set and more robust descriptors

of hydrogen bonding [78] and polymorphs [79] could further improve the model’s performance.

In its original form, UPPER is a comprehensive QSPR, combining structural information

to physicochemical properties including heat of sublimation, solubility, and vapor pressure.

Furthering this work could make the UPPER plus ML framework a user-friendly screening

tool for the design and discovery of materials in chemistry, physics, and materials science.

Supporting Information Available

Dataset information, training details, model predictions of phase transition properties

including transition enthalpies, entropies, and temperatures. An example challenge of the

UPPER-inspired fingerprint. Our software is freely available at

https://github.com/USArmyResearchLab/ARL-UPPER
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