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ABSTRACT  

DNA carries the genetic code of life. Different conformations of DNA are associated with various 

biological functions. Predicting the conformation of DNA from its primary sequence, although desirable, 

is a challenging problem owing to the polymorphic nature of DNA. Although a few efforts were made in 
this regard, currently there exists no method that can accurately predict the conformation of right-

handed DNA solely from the sequence. In this study, we present a novel approach based on machine 

learning that predicts A-DNA and B-DNA conformational propensities of a sequence with high accuracy 

(~95%). In addition, we show that the impact of the dinucleotide steps in determining the conformation 

agrees qualitatively with the free energy cost for A-DNA formation in water. This method enables us to 

examine the genomic sequence to understand the prospective biological roles played by the A-form of 

DNA. 

INTRODUCTION 

The prediction of a DNA conformation from the mere knowledge of its sequence presents an opportunity 

to presume its role in specific biological processes. The biological processes, such as direct and indirect 

readout mechanisms in protein-DNA interactions, exploit the conformational flexibility exhibited by DNA. 

The reduction in relative humidity around DNA due to the presence of other solvents like ethanol(1) or 
the presence of protein molecules(2) causes B-DNA to A-DNA transition. The A-DNA conformation is 

shorter and more compact compared to B-DNA. During B ® A transition, the phosphate groups protrude 

out, and minor groove becomes broad and shallow forming more water bridges in accordance with the 

theory of economy of hydration proposed by Saenger et al. (3). 

The protein molecules such as transposase, endonuclease, and polymerase interact with B-DNA 
locally and convert a few dinucleotide steps to A-form in a whole DNA. (2) A-philic DNA segments 

exhibit low energy cost for deformation, and thus proteins bind to such hotspots during indirect 

recognition mechanism to commence the transcription process. (2)  This mechanism is different from 

the direct recognition mechanism where protein interacts with a specific nucleotide sequence binding 

site. The A-form also participates in the protection of bacterial cells under extreme UV exposure. (4) 



Whelan and co-workers have shown fully reversible B®A-DNA transition in living bacterial cells on 

desiccation and rehydration using FTIR spectroscopy. (5) Extremophiles like SIRV2 virus (Sulfolobus 

islandicus rod-shaped virus 2) survives at extreme temperatures of 80°C and acidity of pH 3 by adopting 

complete DNA in A-form, and aids protein to encapsidate DNA.(6) The motors that drive double-

stranded DNA (dsDNA) genomes into viral capsids are among the strongest of all biological motors for 

which forces have been measured. DNA plays an active role in force generation. 

The "scrunchworm hypothesis" holds that the motor proteins repeatedly dehydrate and rehydrate 

the DNA, which then undergoes cyclic shortening and lengthening motions. The protein components of 

the motor dehydrate a section of the DNA, converting it from the B- to A-form and shortening it by about 

23%. The proteins then rehydrate the DNA, which converts back to the B form. (7) 

Thus, it has become clear of late that A-DNA is merely not a non-functional conformation of DNA; it 

is an essential adaptation of DNA to survive harsh conditions. It is, therefore, intriguing to predict the 

sequence-structure relationship in DNA. Moreover, an understanding of sequence specificity of B-form 

® A-form transition and an apriori detection of the A-philic segment in the genome will unveil the 

possible hotspots of certain biological processes in specific genes of organisms. We have developed a 
method based on machine learning to realize this apriori prediction of conformational preference of a 

given DNA sequence towards A-form or B-form with high accuracy. We also relate this conformational 

preference to the free energy cost of a dinucleotide step to be converted to A-form. We can employ this 

approach for designing primers that are conformationally biased towards either A or B form and use 

them for studying their impact in different biological processes. 

The polymorphic nature of DNA makes the DNA conformation’s prediction a challenging task. The 

local or partial B-form to A-form transition of a small segment of DNA sequence always possesses the 

penalty of B-form/A-form junction formation on both 5’ and 3’ ends of a newly formed A-DNA segment 

in a whole sequence(8). Considering this aspect, we had previously performed rigorous umbrella 

sampling simulations to calculate this junction free energy values and characteristic local B-form to A-

form free energy values for all ten unique dinucleotide steps. (9) The free energy values obtained therein 

are termed as “absolute free energy” values (∆𝐺!) as they are devoid of any effects from flanking base 

pairs. We have used these absolute free energy values in our inference model for explaining the effect 
and relative contribution of each dinucleotide step towards the conformational preference of a DNA 

sequence.  

There are only a few studies that attempted prediction of DNA conformation from its sequence. 

Basham and co-workers derived A-DNA propensity energy (APE)(10) based on the solvation free 

energy of trinucleotide steps to determine DNA structural preferences. However, APEs are unavailable 
for specific trinucleotide steps, thereby making this method inapplicable in general across a genomic 

DNA sequence. In a different approach, Tolstorukov and co-workers(11) formulated free energy models 

for all ten unique dinucleotide steps (D-12 model) and 32 individual trinucleotide steps (T-32 model ) 

from experimental data of midpoints in B®A-DNA transition studied earlier by others.(12, 13) The T-32 

model was found to be more accurate than the D-12 model. It inherently considers stereochemical 



effects present along the B →	A transition as it is based on three consecutive DNA base steps. However, 

the absence of the TAA/TTA free energy values limits the application of this dataset for a DNA structure 

prediction. Moreover, the accuracy of the above models is limited when applied to our present dataset, 

as mentioned below. 

In our approach, we have focused on the development of a general and more accurate method 
based on machine learning (ML) approach that considers occurrences of 10 unique dinucleotide steps 

to predict the conformational preference of a given DNA sequence. We also have presented a method 

for predicting DNA conformation, albeit with less accuracy, based on the absolute free energy cost for 

𝐵 → 𝐴 form conversion for the ten dinucleotide steps previously developed(9). In an ML-based 

approach, the inference is drawn based on observation alone. Therefore, although ML methods are 

suitable for prediction, the molecular origin behind the prediction remains unknown. To address this 

issue, we have built an explanatory model based on SHAP values(14) for interpreting and explaining 

our model output.  The method based on free energy provides the molecular basis of the prediction 

based on A-philicity and B-philicity of the dinucleotide steps. Finally, we compare both the approaches 

to rationalize the prediction of DNA conformational preference. 

MATERIAL AND METHODS 

We have used both machine learning and free energy (FE)-based methods for the prediction of DNA 

conformation from the primary nucleotide sequence. We are going to discuss each method separately. 
 

I. Machine learning Approach. First, we describe the steps that were followed in devising the 

machine learning approach for conformation prediction. Fig. 1 shows the schematic diagram of our 

approach. 

 
Figure 1: Outline of our machine learning approach for DNA conformation prediction. 

 

(a) Data Collection for designing feature vectors. The first step in an ML approach is data collection. 

Since we use a supervised learning approach, we collected A- and B-DNA structures from the Nucleic 

Acid Database (NDB repository) (15, 16). The corresponding sequences were retrieved from RCSB 
PDB(17)  database by a parser we wrote. We filtered out all redundant sequences along with all those 

sequences which had anything in addition to A, C, G, and T. Further, we have considered only the 

unbound double-stranded DNA structures. We removed all DNA sequences less than five base pair 

long from our analysis as they are too short to be deciding a particular conformation. Our curated 

dataset contained 187 samples, out of which 60 are A DNA sequences and 127 are B DNA sequences. 

(b) Pre-processing and adjusting the class imbalance. Data pre-processing involves the 

transformations being applied to the data before feeding it to our algorithm. Particularly, for DNA 



sequences and their respective conformations reported in the database, there was a significant class 

imbalance (32% A-DNA vs 68% B-DNA curated, non-redundant sequences ) that became apparent 

during the preliminary analysis. To address class imbalance issue, in which training data belonging to 

one class outnumber the examples in the other, we used SMOTE + TOMEK method(18). We developed 
a framework that takes a sequence as an object and returns an “ordered dictionary” containing a count 

of different dinucleotide steps in it. Normalisation and SMOTE+TOMEK were applied in the pre-

processing pipeline. 

(c) Feature Selection. Feature selection is an important step in any ML approach. The characteristics 

of any object are called features. Incorrect and irrelevant feature selection may lead to undesirable and 

even wrong predictions. In a DNA sequence, the relevant features could be the length of the DNA, the 

number and types of dinucleotide steps, the number and types of tetranucleotide steps, etc. In this 

study, we have considered the count of all ten unique dinucleotide steps as our feature vectors (see 
Supporting Information (SI) section A, Supplementary data for detailed description). There are two main 

reasons: (i) first, the dinucleotide step is the smallest building block of DNA, and (ii) second, the absolute 

free energy values are to be used for an alternative prediction method is also based on the dinucleotide 

step.  
(d) Splitting the train and test data. Here we split data into train and test sets for further analysis. 80% 

of the data was used for training, and the remaining 20% was left for testing. The StratifiedShuffleSplit 

(n_splits=1, test_size=0.2) function in Scikit-learn(19) was used for data splitting. The stratified splitting 

was employed to handle class imbalance between A and B DNA samples. It maintains the ratio of 
positive (A-DNA) and negative (B-DNA) cases of the total sample in train and test sets. 

(e) Model Building. In this stage, machine learning models were selected for training. All classifiers in 

scikit-learn(19)  use a fit (X, y) method to fit the model for a given train data X and train label y. We 

tested LightGBM(20)(Figure 3), XGBoost(21), SVM with “RBF’ kernel(22), and Logistic Regression(22) 

(Figure S1-S4, Supplementary data).  For tuning hyperparameters of our models we used Optuna 

framework(23) for LightGBM and XGBoost and  Randomized search with cross validation for other 

models. After testing a host of machine learning algorithms, we decided to use LightGBM as it gave the 
best compromise between accuracy and interpretability. A benefit of using gradient boosting is that after 

the boosted trees are constructed, it is relatively straightforward to retrieve importance scores for each 

attribute.  

 We have used Intel Distribution for Python and Python API for Intel Data Analytics Acceleration Library 

(Intel DAAL) - named PyDAAL(24)—to boost machine-learning and data analytics performance. Using 

the advantage of optimized scikit-learn (Scikit-learn with Intel DAAL) that comes with it, we were able 

to achieve faster training time and accurate results for the prediction problem.  

(f) Prediction. During this stage, we use our trained model for predicting the output for a given input 
sequence based on its learning. That is, given an unlabelled observation X (here: DNA sequence), it 

returns the predicted label y (A-DNA or B-DNA). 

(g)  Evaluation. For assessment of the performance of our classification model, we have chosen 

accuracy and AUC (Area Under the Curve) and ROC (Receiver Operating Characteristics) as our 

primary evaluation metrics. AUC-ROC tells how much a particular model is capable of distinguishing 



between different classes (A vs B). ROC represents a probability curve, and AUC represents the 

measure of separability between the two classes. Higher the AUC score, better the model is at 

distinguishing between A and B DNA samples. When there is a class imbalance, the accuracy alone 

cannot give an accurate assessment of the performance of a classification model. A classifier may 
proclaim all data points as belonging to the majority class and obtain a high accuracy score while 

performing poorly on the prediction of minority class samples. Owing to class imbalance, we have used 

additional metrics – precision, recall, f1-score and Matthews correlation coefficient (MCC) score to 

measure our model’s performance on the test set (Table 2 a,b). Precision is defined as the ratio of true 

positives and true positives plus false positives. False positives are outcomes the model incorrectly 

labels as positive that are actually negative. In our example, false positives are B-DNA that the model 

classifies as A-DNA. While recall expresses the number of true positives divided by the number of true 

positives and the number of false negatives.  In most problems pertaining to classification, one could 
give a higher priority to maximizing precision, or recall, depending upon the problem one is trying to 

solve. However, in general, there exists a more straightforward metric that takes into consideration both 

precision and recall. This metric is known as F1-score. It is the harmonic mean of precision and recall. 

Notably, MCC considers true and false positives and negatives and is generally regarded as a balanced 

measure that can be used when there is a class imbalance.(25) The formulae of these metrics are 

mentioned in Supplementary data, Section C.  

II. Free Energy Based Approach. In this section, we describe the concept of absolute free energy 

values briefly  (see ref. (9) for further details). Thermodynamically, the conformation of a particular 
structure depends on the free energetic stability. Therefore, the propensity of a sequence to adopt a 

particular conformation should depend on the overall free energy of the sequence in that conformation. 

Keeping that in mind, we had earlier calculated the free energy cost (Table 1) for the formation of A-

form of each of the ten dinucleotide steps, as discussed below. (9) 

Table 1. List of absolute energy values (Δ𝐺!) for all 10 possible dinucleotide steps.  

 

Dinucleotide 

Steps 
∆𝐺!(kcal/mol) 

AA/TT 2.34 

GG/CC 0.86 

AC/GT 1.91 

CA/TG 2.40 

AT/AT 2.29 

TA/TA 1.59 



AG/CT 0.67 

GA/TC 0.84 

CG/CG 3.06 

GC/GC 1.33 

* Please note,	∆𝐺" values were calculated only for homonucleotide steps and not heteronucleotide 

steps. ∆𝑮𝑱 is 1.59 kcal/mol for AA/TT and 0.52 kcal/mol for GG/CC. 

 

We used umbrella sampling simulations along a new reaction coordinate 𝑍"#  and average 𝑍"#  (𝑍"#$$$) for 10 

unique dinucleotide steps and a few trinucleotide steps embedded in the 13-mer DNA sequence.(8) 

These sequences, in general, can be presented as d(CGCGXXYYYCGCG)2, where X/Y can be either 

A, T, C, or G. The presence of CG sequences on both termini reduces the possibility of base pairs 
fraying at the ends.(15) We showed earlier that creating an A-form in a B-DNA creates two B/A 

junctions. Therefore, the free energy obtained for the dinucleotide step XY (underlined in 13-mer 

sequence) from simulation can be written as,  
Δ𝐺$%&(𝑋𝑌) = Δ𝐺'(𝑋𝑋) + Δ𝐺!(𝑋𝑌) + Δ𝐺'(𝑌𝑌).								𝐄𝐪. 𝟏 

 At this stage, we are only aware of Δ𝐺$%&(𝑋𝑌) value. We then performed simulations on di- and tri- 
homonucleotide sequences d(CGCGXXXXXCGCG)2 to find the junction and absolute free energy 

values for homo-dinucleotide steps. The free energy cost to convert XX step along 𝑍"#  in sequence 

d(CGCGXXXXXCGCG)2 can be decomposed as, 

 
Δ𝐺$%&(𝑋𝑋) = Δ𝐺'(𝑋𝑋) + Δ𝐺!(𝑋𝑋) + Δ𝐺'(𝑋𝑋).									𝐄𝐪. 𝟐 

 

Also, the free energy cost to convert XXX step in the same sequence d(CGCGXXXXXCGCG)2 using 

an average		𝑍"#  (𝑍"#$$$) can be decomposed as, 

Δ𝐺$%&(𝑋𝑋𝑋) = Δ𝐺'(𝑋𝑋) + 2Δ𝐺!(𝑋𝑋) + Δ𝐺'(𝑋𝑋)						𝐄𝐪. 𝟑 

Subtracting Eq. 2 from Eq. 3, one can obtain absolute free energy value Δ𝐺!(𝑋𝑋) (which is devoid of 

any junction effect) for creating an A-form dinucleotide step within a B-DNA and eventually junction free 

energy values for homo dinucleotide steps AA, TT, GG, and CC. Table 1 lists these absolute and 

junction free energies. Using this junction free energy values (Δ𝐺'(𝑋𝑋)	𝑜𝑟	Δ𝐺'(𝑌𝑌)) one can calculate 

these absolute free energy values (Δ𝐺!(𝑋𝑌)) for the rest of the hetero-dinucleotide steps. These values 
are also listed in Table 1. Note that, the junction effect comes only when a part of the DNA is converted 

from B-form to A-form. The full conversion of a B-DNA to A-DNA will depend only on the absolute free 

energy cost. That is the primary reason to calculate absolute free energy.  

With these absolute free energy values, we constructed a model to predict the B- and A-DNA 

conformations from the sequence. This is similar to the earlier approach of Basham, who used the 

solvation free energy-based approach for trinucleotide step.(10) However, in Basham’s results, all the 

trinucleotide steps were not considered. In our approach, we use the dinucleotide step and thereby can 



take into account all possible sequence variations. Moreover, we believe that this is a direct approach 

where the free energetic stability dictates the propensity for a particular conformation. However, 

translating this free energy cost from a dinucleotide step to a full DNA can be accomplished in multiple 

ways. We adopted a simple approach where we calculated the average free energy cost (∆𝐺!()* 	) for 
the conformational transition of a DNA sequence between B- and A-form defined as, 

∆𝐺!()* =
1
𝑁8∆𝐺!(𝑋𝑌)

+

%,-

, 

where 𝑁 is the number of dinucleotide steps in a given sequence. This number is equal to one less than 

the length of DNA sequence and  ∆𝐺!(𝑋𝑌) is absolute free energy value for a particular dinucleotide 
step, where 𝑋, 𝑌 = 𝐴, 𝐶, 𝐺, 𝑜𝑟	𝑇.   

  To create a classifier that can distinguish between A- and B-form of DNA, we calculated ∆𝐺!()* for 

those sequences in our training set for which both solvation free energy (∆𝐺$!%&!'(kcal/mol))(10)  and 

absolute free energy values are calculatable.(Table S2, Supplementary data). Using these two features, 

we created a maximum margin classifier to best separate the A and B DNA samples. We found that the 

margin corresponding to ∆𝐺!()* 	~	1.71 separates A and B classes (Figure 2). This corresponds to the 

following classifier that if ∆𝐺!()* is less than 1.71, it will be classified as A-DNA, else as B-DNA. This 

classification based on the absolute free energy will be referred hereafter as gAvg model.  

 

 

Figure 2: ∆𝐺!()* 	for sequences in the training set (Table S2). The point corresponding to ∆𝐺!()* =
1.71 was chosen as the margin for classifying A and B DNA sequences. The dotted margins 
correspond to samples within ±0.5 of the optimal margin value (1.71). 

 

RESULTS 

I. Prediction using absolute free energy cost  



We have used the classifier mentioned above to predict whether a particular sequence will be B-DNA 

or A-DNA. The results of gAvg model are presented in Table 2a. We obtain an accuracy (see Sec C in 

SI) score of 53% on the test set (Table 2). We also report other parameters for evaluating the prediction 

such as recall, f1-score, and support as mentioned above (see SI for definition). The gAvg model 
achieves a moderate score in regard to precision, recall and F1. From the results obtained, it becomes 

evident that simplistic gAvg model cannot classify B-DNA samples correctly. The low precision score of 

0.38 for A-DNA class tells us that this model wrongly classifies B-DNA samples as A-DNA (false 

positives). Perhaps it could be attributed to use of a rigid margin of 1.71 kcal/mol as Δ𝐺!for 

classification. Similarly, we get a low recall score of 0.38 for B-DNA, which indicates that this model 

wrongly classifies many A-DNA samples as B-DNA, which again, could be attributed to the use of a 

rigid margin for classification. This gives us an insight that accurate classification of A and B DNA 

samples would require a more sophisticated model with a greater degree of freedom. 

Table 2(a): Classification report for (a) gAvg model. The accuracy score for gAvg model is 0.53 and 
MCC score is 0.17 

conformation precision recall f1-score support 

(A DNA) 0.38 0.75 0.50 12 

 (B DNA) 0.79 0.42 0.55 26 

average/total 0.66 0.53 0.53 38 

 

Table 2(b): Classification report for ML model. The accuracy score for this model is 0.95 with MCC 
score of 0.89 

 

conformation precision recall f1-score support 

 (A DNA) 0.86 1.00 0.92 12 

(B DNA) 1.00 0.92 0.96 26 

average/total 0.95 0.95 0.95 38 

 

II Machine Learning Approach 

 We tested the performance of the machine learning approach, referred to as ML model hereafter, by 

performing 5-fold (𝑘 = 5) stratified cross-validation test. This approach involves randomly dividing the 

set of observations into 𝑘 groups or folds of roughly equal size. Notably, stratification was used to 

maintain the distribution of A and B DNA samples in each fold, similar to those present in the training 

set. The first fold was treated as the validation set, and our classifier was fitted to the remaining 𝑘 − 1 

folds. The error was then calculated on the observations in the held-out set. We repeated this procedure 

𝑘 times; each time a different group of observations is treated as a validation set. We obtained a mean 



ROC AUC score of 0.90 ± 0.02 (Figure 3), MCC score of 0.89 and an accuracy score of 94.7% on the 

test set (Table 2, Table S1(supplementary data)). In comparison, the gAvg model achieves MCC score 

of 0.17, which is significantly less than the ML model. We have shown the confusion matrix(25) (Figure 

4(a)) that shows the classification results of our model. It contains the number of true positives, false 

positives, true negatives, and false negatives(see section C, figure S5 in supplementary data). True 

positives correspond to the number of accurate A-DNA samples predicted, true negatives correspond 

to the number of accurate B-DNA samples predicted, false positives correspond to the number of B-
DNA samples that were misclassified as A-DNA, and false negatives correspond to the number of A-

DNA samples that were misclassified as B-DNA. The model outputs the respective class probabilities 

for A-DNA and B-DNA samples. To convert them into class labels we chose the threshold given by the 

point that corresponds to minimum of False positive rate and False negative rate (Figure 4(b)).  

 

Figure 3: ROC curves for stratified 5-fold cross-validation scores. The mean ROC AUC (Area Under 
Curve) score for our model is 0.90±0.02. 



(a) 

 

(b) 

 

 

 

Figure 4: (a) The Confusion Matrix shows the classification results of our model. The overall accuracy 
of our model is 94.7 %, with MCC score as 0.89. (b): For choosing threshold for classification we 
have used the minimum point of False Positives Rate curve and False Negatives Rate curves at 
different thresholds. 

To understand how individual dinucleotide steps affect the propensity of a sequence to assume a given 

conformation, we have used SHAP(14) (SHapley Additive exPlanations). SHAP is a unified approach 

for explaining the output of any machine learning model. It connects game theory with local 

explanations, uniting several previous methods, and representing the only possible consistent and 
locally accurate additive feature attribution method based on expectations(14). This explanation model 

uses simplified inputs, which are toggling features on and off rather than raw inputs to the original model. 

Figure 5 shows the schematic models of SHAP, where data is processed using the original model and 

using the SHAP criteria as mentioned above. 𝑔(𝑧#)	is a linear function of binary variables (ON or OFF), 

which determines the role of individual inputs of features in the prediction. SHAP builds model 

explanations by asking the same question for every prediction and feature: “How does 

prediction i change when feature j is removed from the model?”, as mentioned above.  

 
 

Figure 5: Schematics of SHAP model 



 

To get an idea about which features are most important for our model, we have plotted the SHAP values 
of every feature for every sample. Figure 6 shows the SHAP summary plot, which sorts features by the 

sum of SHAP value magnitudes over all samples and uses SHAP values to show the distribution of the 

impacts each feature has on the model output. The color represents the feature value (red means high 

impact, blue means low impact). We see that (AA/TT), a B-promoting dinucleotide step, and CG/CG, a 

B-promoting dinucleotide step, have the highest impact on our model prediction. The AA/TT step has 

the highest negative SHAP value, which corresponds to its highest contribution in predicting B-

promoting DNA sequence. It is closely followed by CG/CG step. Similarly, the GG/CC and GC/GC have 
the highest positive SHAP value, which corresponds to their highest contribution in predicting A-

promoting DNA sequences. It is interesting to note that there is a strong concordance between these 

inferences drawn from our ML model with the absolute free energy values (Table 1).   We can also take 

the mean absolute value of the SHAP values for each feature to get a standard bar plot (Figure 7) which 

shows how each dinucleotide step(feature) contributes in the prediction of the propensity of A/B 

promoting DNA sequence. 

 

Figure 6: SHAP Summary Plot The plot above sorts features by the sum of SHAP value magnitudes 
over all samples and uses SHAP values to show the distribution of the impacts each feature has on 
the model output. The color represents the feature value (red high, blue low). The crosses indicate 
disagreement between absolute free energy values and model interpretations.  



 

Figure 7: Mean of Absolute SHAP values show the average impact of each dinucleotide step in 
predicting whether a given sequence will attain A or B conformation. 

 

 

DISCUSSION 

In summary, we have developed two approaches to predict A-DNA or B-DNA conformation of a DNA 

sequence. The first approach, based on the B-to-A free energy scale of all ten unique dinucleotide 
steps, predicts conformation with 53 %.  In the second approach, we have trained a machine-learning 

(ML) algorithm using a set of known A-DNA / B-DNA sequences. The ML approach provides better 

prediction with the correctness of ~ 95 %. 

 

AA steps are highly B-philic due to the steric hindrance of their antisense counterpart TT step. A 

severe steric hindrance between protruding methyl groups of thymine base exists if it undergoes BàA 

transition and, thus, enhances the free energetic cost of the process. It is surprising to see that ML 

models can predict AA step as most B-philic step without the knowledge of the structure and interactions 
between the stacking base steps. In gAvg model, the most B-philic step is CG step and thus, 

underestimates B-philicty of AA step. 

GG step is well-known to adopt or induce A-form in DNA sequences. The gAvg model predicts AG 

and GA steps as most A-philic steps, whereas GG as the third most A-philic step. This misplaced A-

philicty in gAvg model might be related to the wrong prediction in some instances. Again, it is 
encouraging to note that the ML model can predict GG and GC as most A-philic steps without any 

structural information.  

We have applied our method to 38 DNA sequences listed in NDB dataset (12 A-DNA and 26 B-DNA 

sequences) to predict A-DNA or B-DNA conformational preference and observed ~95% accuracy. 

Understanding why a model makes a specific prediction can be as crucial as the prediction’s accuracy 
in many applications. It is crucial when we want to understand how each fundamental dinucleotide step 

contributes towards the conformation attained by a sequence. The highest accuracy for large modern 

datasets is often achieved by complex models that are difficult to interpret, such as ensemble or deep 



learning models, creating a conflict between accuracy and interpretability. We have used LightGBM(20), 

an implementation of gradient boosting decision tree technique, which offers a balanced tradeoff 

between accuracy and interpretability, to address this problem. For gaining further insight into the 

interpretability of our model, SHAP analysis was employed with which we could come up with a 
consistent and locally accurate additive feature attribution method based on expectations. This study 

thus indicates that the conformational preference of a DNA lies in the fundamental free energetic driving 

force at a local dinucleotide level. Most of the DNA sequences used here, however, are short. Therefore, 

the cooperative effect may play a role in the case of longer DNA sequences, and an effort is underway 

to understand this.  

At the moment, we are restricted by the paucity of a sufficient number of labelled DNA sequences. 

Out of 187 curated DNA sequences in the NDB dataset, 60 are A DNA sequences and 127 are B DNA 

sequences (dataset S1, S2, Supplementary data). Lack of enough data is one of the major challenges 

in any machine learning model. Furthermore, the severe class imbalance between A and B DNA is 

another limitation.  

We believe that the proposed model can be implemented on other genomes to find unknown A-DNA 

promoter elements a priori and further study is underway to understand its application to eukaryotic 

genome analysis as well as to the genome of organisms that survive under stringent conditions using 

A-form of DNA. 

DATA AVAILABILITY 

DNA structure prediction from its sequence code available in the BitBucket repository 

(https://bitbucket.org/abhijit038/dna_structure_prediction_ml/). We intend to build a webserver for our 

program soon, where the user can provide raw sequences as the input and get the probabilities for 

them to attain A/B form conformation.    

 

SUPPLEMENTARY DATA 

Supplementary Data is available online as NAR_SI pdf file. 
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TABLE AND FIGURES LEGENDS 
Figure 4(b): FPR: False Positives Rate, FNR: False Negatives Rate 

Figure 6, 7: SHAP: Shapely Additive explanations 

 

 


