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Abstract

Dispersion has long been acknowledged as a complicating factor in the analysis of both so-

lution and surface-confined voltammetry experiments. In this tutorial paper, we show how

varying levels of dispersion can affect the appearance of the experimental current. We fo-

cus on three voltammetric techniques, ramped Fourier Transform AC Voltammetry, Purely

Sinusoidal Voltammetry and Direct Current Voltammetry. As modelling dispersion signifi-

cantly increases the computational burden of simulating voltammetry experiments, making

well-informed choices about when to include this effect is essential. To facilitate this, we

discuss the intuition for when to include dispersion when fitting experimental voltammetry

data, again with reference to the three techniques described above.
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Introduction

Simulations of voltammetry experiments conducted on surface-confined (“film”) redox species

are generated by solving an ordinary differential equation (ODE)1 that describes the current

response of a redox system to a time-varying potential input with given chemical and exper-

imental parameters; we refer to this as solving the forward problem. In parameter inference

for experimental data, the goal is to determine the simulation parameters which best describe

this data; we refer to this process as solving the “inverse problem”.2 There is a small galaxy

of work on solving the inverse problem in electrochemistry, using a battery of computational

and mathematical techniques. The approach of fitting computational predictions to exper-

imental data is reviewed in work by Gavaghan2 and Bieniasz.3 Other approaches include

using quantitative relationships between features of the experimental current and reaction

parameters, for example in work by Zouraris,4 Bell5 and Laviron.6

When solving the inverse problem, in our previous work we have used both optimisation

and Markov Chain Monte Carlo (MCMC) methods. In optimisation, we attempt to find

the vector of parameters that minimises the distance between the resultant simulation and

experimental data. When using MCMC methods we repeatedly sample from regions of pa-

rameter space, and by assessing the history of the sampling we obtain an estimate for the

likely distribution of parameters. Consequently, depending on the choice of algorithm, the

inferred result can be a single vector of np parameters,7 or a set of M samples from an

np-dimensional posterior distribution. Our reasoning for using MCMC sampling over opti-

misation methods is laid out in the review cited above.2

In order to obtain good agreement between experimental data and simulation, we have

found that it is necessary to assume that there will be dispersion of the behaviour of the

reaction occurring on the surface of the electrode. Dispersion corresponds to an underlying

distribution of certain parameter values; this is distinct from an inferred distribution as re-
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covered by MCMC methods, which represent uncertainty about point values of parameters.

Dispersion has been acknowledged as a complicating factor in the analysis of surface-confined

voltammetry experiments since at least the 1990s,8–10 and has been demonstrated and quan-

tified for a range of systems with multiple different methods. These studies have focussed

on dispersion in two key parameters, the rate constant for electron transfer (k0) and the

reversible potential (E0), which is a measure of the thermodynamic driving force required

for an electrochemical reaction.11–13 We refer to these two forms as kinetic and thermody-

namic dispersion, respectively. It should be noted that, for solution phase voltammetry,

which we do not analyse here, it is not possible to have a distribution in the E0 parameter.14

For a two electron catalytic oxidation reaction, Léger et al.15 showed that the presence of

dispersion in k0 could be detected by a change in the relationship between overpotential and

observed current, in a study of the H2-oxidising ability of a [NiFe]-hydrogenase, which has

been replicated in additional studies of the protein.16 Patil et al.13 detected dispersion in the

reversible, non-catalytic single electron-transfer chemistry of the protein azurin through the

addition of a Forster resonance donor that fluoresces when reduced, allowing for quantifica-

tion of the distribution of reversible potentials (as defined by the Nernst equation).13 This

technique was extended by recording fluorescence movies, such that the reversible potentials

and rate constants of distinct parts of the electrode could be determined.12 When these val-

ues were binned and plotted as a histogram, the resulting appearance was used by Morris11

to suggest the true distribution of kinetic and thermodynamic parameters that generated

the observations12 were lognormal and normal respectively. 1

The assumption that the redox-reactivity of all the subject molecules in the experiment

can be described by the same reaction parameter values (i.e. no dispersion) is just one of a

1A lognormal distribution of kinetic values can also be observed when attempting to solve the inverse prob-
lem and a logarithmic transform has been applied when non-dimensionalising the kinetic parameter. Nor-
mally distributed uncertainty about the dimensionless kinetic value would result in lognormally-distributed
uncertainty about the dimensional kinetic value. It should be noted that this effect is distinct from an
underlying spread of kinetic values, and could be observed even if the true distribution was a delta function.
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series of assumptions introduced to simplify the simulation of surface-confined voltammet-

ric experiments. Additional assumptions include the choice of isotherm17 and the theory

used to describe electron transfer.18 In terms of isotherm, the Langmuir isotherm is the sim-

plest, assuming non-interaction between individual chemical moieties, while other isotherms,

such as the Freundlich, Temkin and Frumkin isotherms include terms for the interaction of

these species, along with different descriptions for their adsorption behaviours. The rate of

electron transfer can be described by Butler-Volmer theory,19 Marcus theory20 or other quan-

tum approaches.21 While we only address the presence of dispersion in this piece of work, it

should be noted that all three assumptions have areas of conceptual overlap; for example,

the Temkin isotherm assumes a distribution of adsorption states, along with molecule self-

interaction, which could lead to dispersion-like behaviours. Consequently, the experimental

artefacts we ascribe to dispersion are likely the result of a highly complex surface chemistry.

We have focussed on dispersion in this case as it has recieved more extensive attention in the

theoretical literature,11 with most models of voltammetry experiments assuming a Langmuir

isotherm and Butler-Volmer kinetics, although there are exceptions.21

When analysing surface-confined voltammetry data, obtaining the solution to the forward

problem when dispersion is incorporated is significantly more computationally taxing. In

addition, modelling the dispersion effects adds more degrees of freedom to the inverse prob-

lem due to the need to parameterise a probability distribution for each dispersed parameter,

resulting in a greater frequency of spurious results (e.g. due to becoming trapped in local

minima). Consequently, determining which form of dispersion is present (if at all), and the

likely order of magnitude for the required parameters, is an essential step in the process of

solving the inverse problem in reasonable time. The purpose of this paper is to communi-

cate the effect that dispersion of key parameters has on the current response in a range of

surface-confined voltammetry experiments, and to act as a reference for when the nature of

the dispersion is ambiguous, such that appropriate choices about where to include dispersion
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can be made.

In this work, we focus on the effect of including dispersion on three experimental tech-

niques; ramped Fourier transform alternating current voltammetry (FTACV), purely sinu-

soidal voltammetry (PSV) and direct current voltammetry (DCV). Assuming the chemical

reaction parameters for an electrode film are independent of input potential, the current out-

put from different voltammetric protocols should be well described by one parameter vector,

allowing for variation introduced by temporal separation and artefacts peculiar to the spe-

cific protocol. Consequently, if an inferred parameter vector describes one experiment well

but not the others, this suggests that the inferred parameters represent a local rather than

the global minimum in parameter space. We have specifically chosen these protocols as they

have contrasting areas of strength and weakness. The potential inputs of ramped FTACV

and PSV both include large-amplitude sinusoids, which means that the Faradaic current

response to these inputs is non-linear, resulting in harmonics of the frequency of the input

sinusoid. These harmonics can be individually selected by use of the Fourier Transform, and

the higher harmonics are largely free of the “background” non-Faradaic current from double-

layer capacitance.19,22 The harmonics of ramped FTACV in particular are information rich,

and highly sensitive to dispersion. PSV by contrast, is a simpler technique that contains

less information and is less sensitive to dispersion, but is much faster to simulate than the

ramped FTACV experiment, by at least an order of magnitude.23 DCV takes approximately

the same time to simulate as PSV, and is included because of its widespread use amongst

the electrochemistry community. This paper builds on the basic theoretical work described

in,11 extending the analysis to PSV and DCV, and including sensitivity information about

the various dispersion parameters.
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Mathematical model

Throughout this paper we will consider the simplest possible experimental system, that of

a surface-confined 1-electron redox reaction, with the surface processes assumed to be con-

trolled by Butler Volmer kinetics and a Langmuir isotherm. In our previous work we have

described how this system can be modelled by a system of ordinary differential equations,

with the three different experimental protocols of FTACV, PSV and DCV being modelled

through changes in the terms describing the applied potential. The equations used through-

out this paper can be found in.1,19 To model the dispersion of a subset of np of the parameters,

we follow the procedure described below.

We assume that any parameter which is affected by dispersion no longer has a single fixed

value but instead is drawn from a probability distribution which captures the degree of the

dispersion. If we have np dispersed parameters in the model, then we assume that in any par-

ticular experiment, those np parameters are drawn from a joint probability φ(p1, p2, ..., pn).

The total current recorded given the distribution is the expectation E[I(t, (p1, ..., pn))], which

we refer to as Idisp
11

Idisp =

∫
An

...

∫
A1

I(t, (p1, ..., pn))φ(p1, p2, ..., pn)dp1...dpn, (1)

where I(t, (p1, ..., pn)) is the simulated current I as a function of time and the np dispersed

parameters p1, p2, ..., pn. The range of the ith integral is represented as Ai. This integral

cannot be calculated analytically, and so we approximate it with numerical quadrature.

Numerical quadrature

We describe two numerical quadrature approaches here for a single parameter (i.e. the

calculation of E[I(t, p)]), but they can be easily combined for multiple integrals, as in the

expression in equation 1. The same principle can be applied to both methods; the function to
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be integrated is evaluated at points over the range of the integral, and these evaluations are

weighted appropriately and summed. This is represented in figure 1, where, the distribution

has been partitioned in equally-spaced “bins”. The sum of the area of all bins (such as the

one filled in blue) is an approximation to the value of the integral.

Figure 1: A representation of numerical integration of a Gaussian distribution

Midpoint rule

The midpoint rule for the integral of a function f(x) is

∫ a

b

f(x)dx ≈ (b− a)f

(
b+ a

2

)
. (2)

In order to approximate the value of the expectation E[I(t, p)] using this rule, for a chosen

number of bins Nb, we use the expression

E[I(t, p)] ≈
Nb∑
i=1

wiI

((
bi + bi−1

2

)
, t

)
, (3)
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where the set of parameter values is b0, ..., bNb
and the weight wi is calculated using the

midpoint rule such that

wi = (bi − bi−1)f
(
bi + bi−1

2

)
, (4)

or alternatively

wi = F (pi)− F (pi−1), (5)

where f and F are the probability density and cumulative density functions for the parameter

distribution φ(p) respectively. As the support for many distributions is infinite, for numerical

purposes we define the parameter range to integrate over (i.e. p0, ..., pn) using the inverse

cumulative density function F−1, such that p0 = F−1(x) and pn = F−1(1− x). The area of

an integral over f defined by this range of values will be ∼ 1− 2x, and so we choose a value

for x that is small enough such that
∑n

i=1wi ≈ 1.

Gauss-Hermite quadrature

When approximating E[I(t, p)] when the distribution φ(p) is Gaussian, we can use Gauss-

Hermite quadrature, which achieves better accuracy than the midpoint rule, and is valid

for integrals over the range [−∞,∞]. By choosing the positions at which to evaluate the

function (the nodes), and weighting it appropriately, Gauss-Hermite quadrature can exactly

calculate the integrals of polynomial functions of degree 2n-1 in the form e−x
2
f(x) using Nb

nodes, such that ∫ ∞
−∞

e−x
2

f(x)dx =

Nb∑
i=0

wif(xi). (6)

To make this appropriate for the calculation of the expectation of a Gaussian distribution,

we write the calculation for E[I(t, p)] in the form

E[I(t, p)] =

∫ ∞
−∞

1

σ
√

2π
exp

(
−(p− µ)2

2σ2

)
I(p, t)dp, (7)
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where µ and σ are mean and standard deviation of the normal distribution. If we transform

p such that p = σ
√

2x+ µ, then

E[I(t, p)] =

∫ ∞
−∞

1√
π

exp

(
− x2

)
I(σ
√

2x+ µ, t)dx, (8)

consequently, for a Hermite polynomial of degree Nb

E[I(t, p)] ≈
Nb∑
i=1

1√
π
wiI(σ

√
2xi + µ, t)dx, (9)

where xi and wi are the zeros and appropriate weights of the Hermite polynomial of degree

Nb respectively, and the weights are calculated using the Golub-Welsch algorithm.

Results and Discussion

In order to show the effect each dispersion parameter has, we perform parameter scans where

all parameters are held constant except the one of interest. Although the effect observed from

this process may not be exclusive to the parameter in question (as other parameters have the

same effect), and there may be parameter regimes where the observed effect is less apparent,

this process is the easiest way to gain intuition about the effects of the various parameters.

Intuition about the approximate order of magnitude for the dispersion parameters allows

the experimentalist to constrain parameter space (for either heuristic or automatic inference

approaches). The more parameter space is constrained, the easier it is to find the global op-

timum, as long as the constraint process has not, in fact, excluded this optimum. In figures

2-4, we show the results of holding all parameters constant (as reported in table 1) except the

parameter named in the upper left hand corner of each plot, the value of which is indicated.

We have chosen this range of parameters as a compromise between clear visual separation be-

tween different parameter values, and chemical realism. For this reason, the parameters that

contribute to the background current (the capacitance and uncompensated resistance) are
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in the lower range of what would be observed in a typical voltammetry experiment, and the

surface coverage is in the higher range. The experimental parameters are taken from a PSV

experiment, performed on a glassy carbon electrode modified with Cytochrome C oxidase.

The reversible potential parameters are from the parameterisation of this same experiment.

The kinetic parameters were chosen as a compromise between providing the “ideal” ramped

harmonic appearance, and sensitivity to these parameters (all kinetic distributions where the

majority of the range is approaching or exceeding the reversible limit will look identical). In

the SI, we have included equivalent plots for the irreversible to quasi-reversible regime, (i.e.

k0 = 1) for all three experiments, see figures S1-S3. With regards to the choice of distribu-

tion, for the reversible potential E0, we use a skewed Gaussian distribution (where a skew

of zero is a regular Gaussian), and for the rate constant k0 we use a lognormal distribution.

The choice of a Gaussian and lognormal distributions are informed by previous work.11,12

The skew parameter was included as observations of ramped FTACV data in our previous

work implied the presence of an asymmetric distribution of E0 values,23 which for normally

distributed values indicates the presence of skew. Although other parameters are suspected

of being dispersed, such as the symmetry factor α23 and the uncompensated resistance, we

neglect them here due to space constraints. For each subgroup of plots, the input parameter

distribution is shown on the top, and the resultant current-potential output is shown below.

For the the ramped experiment, we show harmonics 3, 5 and 7 plotted against time

instead of a current-potential plot, as the harmonics are more sensitive to dispersive effects,

and are easily interpretable. In terms of the thermodynamic distribution parameters, the

value of the mean of the distribution E0µ affects the position of the harmonic relative to the

potential, and the magnitude of the harmonic increases the closer the value of the E0µ is to

the reverse potential. The standard deviation of the distribution E0σ affects the both the

width and magnitude of the harmonic, with higher harmonics being affected more strongly.

The skewness of the distribution E0κ has a slightly more complex effect — the skewed dis-
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Table 1: Simulation parameters used to generate plots in the main body of this paper. For
some experimental parameters, the simulation value is different for each technique, and is
written in the following order: ramped FTACV/PSV/DCV, with a * indicating that the
parameter is not used in the simulation

Parameter Symbol Value

Start potential Estart (V) -0.5
Reverse potential Ereverse (V) 0.1

Reversible potential E0 (V) -0.25
Rate constant k0(s

−1) 100
Uncompensated resistance Ru (Ω) 0.0
Double-layer capacitance Cdl (F) 1.0E-5

Surface coverage Γ (mol cm−2) 1.0E-10
Symmetry factor α 0.5

Scan rate v (V s−1) 0.022/*/1
Potential frequency ω (Hz) 8.881/8.94/*

Phase Phase (rads) 0.0/3π
2

/*
Potential amplitude ∆E (V) 0.15/0.3/*

Sampling rate (s−1) 400.0
Electrode Area Area (cm2) 0.07

Reversible potential mean E0µ (V) -0.25
Reversible potential standard deviation E0σ (V) 0.05

Reversible potential skew E0κ 0.0
Rate constant shape log(k0(s−1))σ 0.5
Rate constant scale log(k0(s−1))µ 100

tributions are less broad than the unskewed distribution (i.e. E0κ = 0), which accounts for

why the magnitude of each skewed harmonic is larger than for the unskewed harmonic. In

addition, the presence of skew means that the position of the harmonic within the timeseries

is a function of the order of the harmonic.

The effect of the parameters for the lognormal k0 distribution on the simulation output

are less immediately obvious. Increasing the scale parameter (which is the mean of the nat-

ural logarithm of k0, i.e. log(k0)µ) largely effects the resolution of the individual harmonics,

with the higher harmonics being more sensitive to this effect; this is especially apparent in

the 7th harmonic, where the peaks of the green plot are less well-resolved than the blue and
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orange plots, which have a higher log(k0)µ value. As expected, this is similar to the effect

of altering the value of k0 as a point value. The log(k0)σ parameter, which also affects the

width of distribution has the effect of reducing the magnitude of the harmonics, where the

higher harmonics are also more strongly affected. This is distinct from the E0σ parameter,

which reduces and broadens the harmonics.
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Figure 2: Plots of simulated ramped FTACV harmonics vs time , with dispersion parameters
for E0 — mean, standard deviation and skew (E0µ,E0σ,E0κ) and k0 — shape and scale
(log(k0)µ, log(k0)σ) where the parameter being varied is in the top left hand corner. The
resulting distribution, where f(parameter) is the probability density, is shown at the top of
the plot, and the 3rd, 5th and 7th harmonics shown. The colour of the harmonic corresponds
to the colour of the distribution. Simulation parameters are found in table 1. For all cases,
the kinetics of the reaction are in the reversible regime.
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For the PSV case (figure 3), we assess the effect of each parameter on the current-potential

plots, instead of the harmonics. This is because the harmonics of the PSV timeseries are not

as amenable to immediate visual interpretation as the harmonics of the ramped experiment.

The effects of the various thermodynamic and kinetic dispersion parameters are similar for

PSV and DCV (figure 4), which is not unexpected. The reason for this similarity is that

the PSV potential input is highly similar to multiple cycles of the DCV potential input,

except without a discontinuity at the switching potential, and the fact that the PSV input

elicits a non-linear current response. With this similarity in mind, we note that the effect

of each parameter controlling the shape of the E0 distribution on both the PSV and DCV

current-potential outputs is as described for the ramped FTACV harmonics, namely E0µ

alters the position of the reductive and oxidative peaks, E0σ broadens and reduces the mag-

nitude of these peaks, and E0κ affecting the position and amplitude of the peak. The effect

of the k0 distribution parameters however, are different for ramped-FTACV harmonics and

PSV/DCV current-potential plots. For the PSV plots, the log(k0)µ parameter also exerts a

similar effect to the one described for the ramped harmonics, i.e. similar to the effect of k0

as a point value. The exact nature of this effect depends upon which regime (irreversible,

quasi-reversible or reversible) the dimensionless k0 value is in. In more detail, for current-

potential PSV plot of a completely reversible system, the oxidative and reductive peaks will

be stacked on top of one another. As the kinetics becomes progressively slower, the relative

peak position will start to diverge, along with peak broadening and a reduction in maximum

amplitude. The parameter log(k0)σ affects the gradient of the current returning from a

Faradaic peak to background current. As the effects of the kinetic parameters are similar for

both the DCV and PSV timeseries, for the DCV case (figure 4) we also show trumpet plots

— this method, as introduced by Laviron6 plots the potential value at which the oxidative

and reductive peaks are observed, plotted against the logarithm of the scan rate, and is used

for inferring the kinetic value in DCV experiments. The log(k0)σ parameter slightly reduces

the gradient of the oxidative and reductive curves. The log(k0)µ parameter alters the scan
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rate at which the locations for the oxidative and reductive peaks start to diverge.

The descriptions of all of the effects of these parameters are caveated with the fact that

varying other parameters used in the simulation of the current response can have similar

effects. Obtaining an understanding of the effects and interactions of the various parameters

requires iteratively comparing multiple simulations. As this is not feasible in the static for-

mat of a journal article, we have developed an online interactive application for the 1-electron

redox case. This can be found here, and allows the user to simulate the three experiments

described in this paper, with or without dispersion, and compare multiple different simula-

tions. The app can also be run locally using the source code hosted in the associated Github

repository.
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Figure 3: Parameter scans for a PSV current-potential plot, where the parameter distribu-
tions under investigation are plotted in the top panel of each plot subgroup. The remaining
simulation parameters can be found in table 1
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Figure 4: Parameter scans for a DCV current-potential plot (left), and trumpet plots (right)
which plot the potential-values of the maximum and minimum current peaks against the
logarithm of the scan rate. The inset plot in the right hand column is a current(µA)-
potential(V) plot of a DCV simulation using a scan rate from the middle of the range
defined in the x-axis of the containing plot. The remaining simulation parameters can be
found in table 1 17



Distinguishing different forms of dispersion

In figure 5, we show the effects of dispersion for three cases, E0, k0 and a combination

of the two, as shown in the legend, relative to the non-dispersed case, which is marked

as “None”. Distinguishing between purely thermodynamic and purely kinetic dispersion is

relatively simple, at least in the ramped case, as, while both result in a reduction in the

expected magnitude of the harmonic (with the higher harmonics being more sensitive to

this effect), only E0 broadens it. The difficulty lies in resolving a combination of E0 and

k0 dispersion from pure E0 dispersion, as the latter dominates. This is also complicated

by the fact that the reduction in harmonic magnitude is also an effect of other parameters,

such as the uncompensated resistance. As before, both the PSV and DCV cases are less

sensitive to the presence of dispersion and more challenging to interpret. For DCV, instead

of showing current-potential plots for cases involving kinetic dispersion, we have used trum-

pet plots. Here, there is a slight difference in gradient between the kinetically-dispersed,

thermodynamically dispersed and non-dispersed cases. In figure S4, we show that when k0

is highly reversible, the presence of k0 dispersion is identical to the non-dispersed case, and

in figure S5 we show that the effect of k0 is greatest relative to the non-dispersed case in the

irreversible and quasi-reversible regimes. This is because the timeseries is more sensitive to

changes in k0 in these regimes, and consequently a distribution of values has a greater effect.

Consequently increasing either the scan rate (for DCV) or the input frequency (for ramped

FTACV and PSV) will therefore make the results of the experiment more sensitive to kinetic

dispersion. It is possible to quantify this by assessing the distance between the dispersed and

non-dispersed cases, and selecting the input frequency that delivers the greatest amount of

distance, an example of which we show in figure S6. It should also be noted that a separa-

tion between thermodynamic and kinetic dispersion is somewhat arbitrary. Marcus theory

predicts that the thermodynamics of an electron transfer reaction will impact the rate con-

stant, and consequently we should expect that presence of dispersion in one parameter will

then imply dispersion in the other parameter. The separation is only a valid approximation
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when one of the dispersed parameters can be assumed to be a point value with reasonable

accuracy, as is the case with low values of the E0σ parameter, or a distribution of k0 values

which are largely reversible.

Our proposal for using these results to distinguish different forms of dispersion is to compare

experimental data against non-dispersed simulations, and select which dispersion parameter

it is necessary to include in the model based on the observed discrepancy. Furthermore, it

is our experience that the best medium for this comparison is the ramped harmonics. If it

is possible to obtain a good fit between the lower-order ramped harmonics, but the simu-

lated magnitude for the higher harmonics is too large, and the experimental harmonics are

broader than predicted by the simulation, then it is likely that E0 dispersion is present. If

it is the case that the discrepancy is only in the magnitude, then the dispersion is likely

kinetic, as long as the experimentalist is confident that the uncompensated resistance is not

causing this effect. This method requires non-dispersed simulations that are a reasonably

good fit to existing experimental data. These simulations could be generated using our

existing workflows for automatic fitting processes, as briefly described in the introduction

and laid out in more detail in previous work.2 The inspiration for this paper came from

this automated fitting process; when fitting PSV data,23 we found that we could fit PSV

data without dispersion, but when comparing the resultant ramped-FTACV simulation to

the data, we discovered a discrepancy between experimental data and simulation that could

only be explained by the presence of thermodynamic dispersion. Because the simulation of a

non-dispersed current is N
np

b times faster than simulating dispersed current (i.e. the number

of bins or nodes to the power of the number of dispersed parameters), the time impact of the

additional non-dispersed fitting attempts is relatively light. These non-dispersed simulations

could be generated heuristically, but this comes with all the attendant issues with heuristic

fitting, as discussed in.14
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Figure 5: Comparison of different forms of dispersion for ramped FTACV, PSV and DCV.
Each column represents a different form of dispersion, compared against the non-dispersed
case (labelled as “None”). From left to right, the dispersed parameters are E0, k0 and a
combination of the two, as listed in the legend of the middle row. All parameters are as in
table 1.
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Supporting Information Available

Figures 2-4 are repeated with lower values of the kinetic parameter. Figures 5 is repeated

with the kinetic parameter in both totally reversible and irreversibly regimes. We also in-

clude a figure on maximising the discrepancy between dispersed and non-dispersed systems

by changing the frequency
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