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Abstract

Since 2009, animal testing for cosmetic products has been prohibited in Europe, and in 2016, US

EPA announced their intent to modernize the so-called "6-pack" of acute toxicity tests (acute oral

toxicity, acute dermal toxicity, acute inhalation toxicity, skin irritation and corrosion, eye 

irritation and corrosion, and skin sensitization) and expand acceptance of alternative methods to 

reduce animal testing of pesticides. We have compiled, curated, and integrated the largest 

publicly available dataset and developed an ensemble of QSAR models for all six endpoints. All 

models were validated according to the OECD QSAR principles and tested using newly 

identified data on compounds not included in the training sets. We have established a publicly 

accessible Systemic and Topical chemical Toxicity (STopTox) web portal 

(https://stoptox.mml.unc.edu/) integrating all developed models for “6-pack” assays.  This portal 

can be used by scientists and regulators to identify putative toxicants or non-toxicants in 

chemical libraries of interest.
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Introduction

Historically, animal testing has been required by regulatory agencies for hazard 

categorization, labeling, and packaging.1 However, there have been multiple calls, especially, in 

the last two decades for reducing, refining, and replacing animal tests for hazard identification.2  

Still, the potential for chemicals, especially those used in cosmetic products to cause several 

types of acute toxicity in humans is still evaluated by the animal in vivo assays historically 

termed the “6-pack”.3 This battery of tests includes three topical (skin sensitization, skin 

irritation and corrosion, and eye irritation and corrosion) and three systemic (acute oral toxicity, 

acute inhalation toxicity, and acute dermal toxicity) endpoints.3

The European Union (EU) has maintained an animal testing ban on finished cosmetic 

products since 2004, and since 2009, the EU has maintained an animal testing ban on cosmetic 

ingredients. Since 2013, this ban has been applied irrespective of the availability of alternative 

non-animal tests.4 In the United States, although animal testing is not prohibited, Interagency 

Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and its supporting

center, the National Toxicology Program Interagency Center for the Evaluation of Alternative 

Toxicological Methods (NICEATM), have been coordinating the development, validation, 

acceptance, and harmonization of alternative toxicological test methods throughout the U.S. 

Federal Government. Still, traditionally, all compounds registered under the Federal Insecticide, 

Fungicide, and Rodenticide Act (FIFRA), are required to be tested in the 6-pack assays. In 2015, 

6-pack guidelines were revised to include in vitro and ex vivo test methods for classification and 

labeling for eye irritation – these new guidelines applied both to household antimicrobial 

cleaning products and to conventional pesticide products.4 In 2018, the EPA’s Draft Interim 

Science Policy allowed in vitro tests for skin sensitization as well; however, only pure substances
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may be used as test materials for submission purposes, and an Integrated Testing Strategy (either 

the “2 out of 3 Defined Approach” or the “Key Event 3/1 Sequential Testing Strategy”) must be 

followed.5 However, the European Commission reported 9.58 million uses of animals in research

and testing at UE, and 23% of those animal uses were for regulatory purposes in 2017.6 

Along with ethical concerns, the validity of animal testing has also come under question 

in recent years. Several studies have shown that animal-based assay outcomes do not always 

equate with human response7,8 and that animal models are less reproducible than some alternative

methods.9 However, despite the international adoption of a variety of in vitro alternatives, their 

widespread implementation has been hampered by concerns over concordance with the 

traditional animal tests, and practical considerations as compared to the traditional animal tests.10 

Computational approaches, such as structural alerts, read-across, and Quantitative 

Structure-Activity Relationship (QSAR) modeling, have earned broad acceptance as weight of 

evidence for assessing chemical toxicity.11,12 Structural alerts are molecular substructures that are 

associated with a particular adverse outcome.13 Read-across is a technique that proposes to 

identify potential hazards of untested compounds by associating them with structurally similar 

compounds that have been tested.14 QSAR modeling is a computational approach that employs 

statistical or machine learning techniques to establish correlations between intrinsic chemical 

properties (chemical descriptors) and measured properties or toxicological effects.15 QSAR 

modeling has been used extensively to model and predict chemical toxicity, and best practices 

for model development and validation have been developed to ensure their reliability.16 Both 

structural alerts and read across approaches have been preferred by regulators due to ease of use, 

transparency, and mechanistic interpretability. However, there have been concerns that these 

tools often do not help with reliable assessment of whether the underlying compounds present 
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true hazard to humans and the environments. For instance, we have previously demonstrated that

alerts have a tendency to flag compounds as toxic even when the experimental evidence shows 

otherwise.17 

In the last several years, both our18–20 and other21,22 groups have developed reliable 

computational models for predicting skin sensitization potential of chemicals. These and other 

models developed for one or more of the 6-pack endpoints are summarized in Table 1, which 

indicate that the development of reliable computational models for predicting the outcomes of all

6-pack tests is still a significant challenge. Herein, we have compiled, integrated, and curated the

most comprehensive collection of experimental in vivo data on 6-pack endpoints. We especially 

emphasize, with vivid examples, the importance and impact of data curation on the rigor of the 

study design and reliability of its outcomes. We have developed and rigorously validated QSAR 

models for all 6-pack assays and demonstrated their utility in identifying potentially safe or 

unsafe chemicals in industrial products (Figure 1). We integrated these models into a software 

package called STopTox (Systemic and Topical chemical Toxicity (STopTox) and made it 

publicly available to the research community via a dedicated web portal 

(https://stoptox.mml.unc.edu/). 

Results and Discussion

Data Curation and Cross-endpoint concordance analysis

Although predictive models have been developed and reported previously for subsets of 

the 6-pack endpoints (Table 1), many of these models did not fully comply with the model 

validation guidelines specified by the Organization for Economic Cooperation and Development 

(OECD)23 and, most notably, lacked proper data curation. As can be seen in Figure 2, applying 

data curation protocols decreased the size of the available data by more than 50%. Our final 
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database represented a sparse matrix containing 11,941 compounds with activity measurements 

for at least one of the 6-pack endpoints. Only 12 compounds were tested in all six endpoints. 

This low number can be due to waivers granted by regulators in an effort to decrease animal use 

in toxicity assessment.24 

Figure 3 shows a heat map of the pairwise concordance and overlap (in parenthesis) 

between compounds tested in different endpoints. We have identified 328 compounds 

overlapping between acute oral toxicity and acute inhalation toxicity. These two endpoints 

showed the highest (80%) pairwise concordance among all six endpoints. A previous study25 

analyzed the binary concordance between the acute systemic toxicity tests in “pesticide” and 

“chemical” sets. The oral-inhalation overlap for “pesticides” was 328 compounds with 

concordance as low as 24%, while for “chemicals” (71 compounds) the concordance was 72%. 

The oral-dermal overlap for pesticides (307 compounds) demonstrated a concordance of 71%. 

The oral-dermal overlap for “chemicals” (1569 compounds) resulted in high concordance of 

93%. Our concordance analysis also showed an oral-dermal concordance of 71% estimated on 

the overlap of 1308 compounds. Among compounds that were “Not Classified” in acute oral 

tests, 98% were also “Not Classified” in acute dermal tests. While the oral route is mandatory for

acute toxicity testing under most regulatory frameworks for food-use pesticides, selection of a 

second route of exposure (dermal or inhalation) is based on the amount of a chemical being 

commercialized, taking into account the inherent acute toxicity of the chemical and the primary 

route of exposure when handling the material. 26 Computational models built on curated datasets 

and following the best practices for development and validation of QSAR models can support the

decision of waiving dermal tests in case the substance has acute oral toxicity profile, since there 

is still a small possibility for the chemical to be toxic upon skin contact.27
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Skin irritation and eye irritation showed the same binary outcomes in 60% of 380 

overlapping compounds. A concordance of 67% has been previously observed for 205 

formulations tested for both skin irritation and eye irritation.28 This concordance was higher for 

“Not Classified” compounds, whereas 89% of formulations classified as non-irritant for eye 

irritation were also non-irritants for skin irritation. Chemicals that were considered corrosive or 

severely irritant to the skin or highly toxic (category 1 or 2) in the dermal test, do not need to be 

tested for eye irritation and corrosion, according to the OECD guidance on considerations for 

waiving mammalian acute toxicity tests.24 Also, skin sensitization and skin irritation datasets 

showed the same binary outcomes in 72% of 237 overlapping compounds. 

QSAR modeling

Previously, we have built models to predict skin sensitization endpoints using a 

combination of animal,29 OECD validated in vitro assays,18 and human data.18,20,30 In this study, 

we have developed consensus models for predicting outcomes of skin sensitization testing in 

animals as STopTox is intended as a reliable alternative to animal testing in the 6-pack assays. 

Therefore, all the models reported here were built using only data collected from animal tests 

that followed the OECD protocols. Statistical characteristics of QSAR models developed in this 

study are summarized in Table 2. All cross-validated models showed high predictive accuracy on

independent external evaluation sets based on several metrics including correct classification rate

(CCR), sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive

value (NPV). The acute toxicity models showed CCRs ranging from 70% to 78%; SEs ranging 

from 67% to 79%; SPs ranging from 68% to 81%; PPVs ranging from 71% to 79%; and NPVs 

ranging from 70% to 78%.
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Comparative assessment of new “6-pack” models versus alternative tools

Over the decades, many computational tools have been built to evaluate adverse health 

effects of chemical compounds from their chemical structure.31,32 Predictive models, such as 

quantitative structure-activity relationship (QSAR), facilitate replacement and reduction of 

animal testing in toxicology and risk assessment; however, many subject-matter experts 

acknowledge that “these methods are not always reliable and must be assessed on their 

individual merit for the compound and context in question”.33 For this and other reasons 

catalogued by Dearden et al.34, results derived from QSAR and other in silico models are usually 

met with caution. Model predictions are almost always used in combination with other evidence, 

or only for the purpose of the initial screening/ranking of compounds for further testing.35

The curation of the ECHA database proved to be an extremely laborious task and the 

most time-consuming part of this work. It is important to emphasize that much of 6 pack 

endpoint data included in the ECHA database should not be used for model development.  As 

seen from the summary of data curation (Figure 2), the major reduction in the size of individual 

datasets used eventually for QSAR model development was due to a large fraction of 

inconsistent data in the original ECHA database which, upon careful inspection, were found to be

reported as predictions made by QSAR models, or read across, or expert systems, or labeled as 

“not reliable”.  

Comparison to models developed for the same endpoints without rigorous data curation36 

suggests that our extensive data curation procedures resulted in the net decrease in both the 

dataset sizes and model performance. Indeed, we compared the models produced in this study to 

those reported by Luechtefeld et al.36 who described the development of a suite of in silico 
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models, termed read-across structure activity relationships (RASAR) for the 6-pack endpoints. 

Since the model predictions based by RASAR can only be accessed through a fee-based 

commercial platform (https://www.ulreachacross.com), we have performed an indirect 

comparison of statistics (see Table S1 in the supplementary materials). Our models showed on 

average, a 10% lower CCR. Furthermore, the amount of data reported in the study mentioned 

above36 was, on average, five times larger than the size of the carefully curated dataset used in 

this study. Previously, we already expressed concerns that high accuracy of models as reported36 

could be the consequence of inadequate data curation leaving many duplicate compounds in the 

modeling datasets.37 We posit that our results more accurately reflect the actual model 

performance for these endpoints since we have eliminated such confounders as duplicate entries 

or the use of predicted or “not reliable” values and conducted more rigorous validation 

procedures according to the established guidelines. We strongly suggest that this exercise 

reemphasizes the importance of proper data curation and cautions against overinterpreting results

from models built on non-curated datasets.

STopTox usability and interpretation

The limitations of the experimental assay results used in model development define the 

usability and interpretation of STopTox. It is important to note that the binary compound 

annotations in all 6-pack assays as toxic or non-toxic are derived from dose-dependent testing 

conditions. For instance, the skin sensitization potencies for substances are based on a function 

of lymph node cell proliferation induced by the test chemical and expressed as a stimulation 

index (SI) relative to values obtained with concurrent controls. If SI ≥ 3, the substance is 

considered a sensitizer in the tested concentration. The skin irritation criteria are based on a 
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single dose of a chemical applied to the skin of an experimental animal. The degree of 

irritation/corrosion is based on an erythema/edema scale system that is subjectively scored at 

specified observation intervals. Similarly, eye irritation is based on subjectively scoring lesions 

of conjunctiva, cornea, and iris, at specific intervals after application of a single dose of the test 

substance. If the effects are reversible after 21 days, the chemical is considered an irritant, but if 

it does not reverse (or if a severe score is noted at any timepoint), the chemical is labeled as 

corrosive. The tests for systemic endpoints in STopTox (Acute Dermal Toxicity, Acute Inhalation

Toxicity, and Acute Oral Toxicity) rely on LD50 data, meaning the dose of a substance required to

kill half of the experimental animals. The Globally Harmonized System of classification and 

labelling of chemicals (GHS)38 threshold for Acute Oral and Dermal toxicity for chemicals is 

LD50 < 2000 mg/kg bodyweight. As for Acute Inhalation toxicity, the threshold varies with the 

form of tested substance (gases – LC50 ≤ 2500 ppm, vapors – LC50 ≤ 10 mg/L, and dusts/mists – 

LC50 ≤ 20 mg/L).

It is essential to note that, if the model predicts a compound as toxic or non-toxic, such 

prediction should be considered only in the context of specific dose-dependent observation for 

each assay; obviously, increasing the dose of any compound in any assay could often lead to 

toxic effects. These considerations are often overlooked when making predictions or assertions 

concerning the expected chemical toxicity. The ultimate goal of any method for evaluating acute 

toxicity is to provide an accurate assessment of the potential risk of a chemical concerning 

human safety.39 Therefore, we reinforce that the limitation of assays should influence the 

interpretation of the predictions made by the models and how these models can be used by 

toxicologists to help in decision making.  Prediction with QSAR models implemented in 

STopTox (and, actually, with any models) do not take the dose into account; they merely state 
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whether a chemical is predicted toxic or non-toxic in each assay. Thus, users interpreting these 

predictions should always be familiar with and keep in mind the underlying experimental 

conditions briefly discussed above under which compounds in the training sets have been 

annotated as toxic or non-toxic. Further, these models are limited to binary hazard-based 

predictions, rather than providing information on potency and GHS or EPA subcategorization. 

Thus, they are not directly applicable for many regulatory classifications and labeling 

requirements requiring higher level of granularity. However, these models are well suited to 

assist in hazard assessment and chemical screening/prioritization, and, because of high accuracy 

in terms of both sensitivity and specificity, they are especially useful in identifying non-toxic 

compounds (tested in the same conditions as those identified as toxic where additional 

subcategorization is indeed important).  

Predictions of known toxicants

For additional external validation of our models, we have conducted a literature search 

for toxicants described in clinical studies or known toxicants for each endpoint that was absent in

our database. A list of 45 potential skin sensitizers in cosmetic ingredients was compiled by the 

Norwegian Scientific Committee for Food Safety.40 Eleven out of 45 compounds were absent in 

our skin sensitization dataset and eight of the eleven chemicals were correctly predicted as 

sensitizers by our skin sensitization model (SE = 72%).

MS-222, a fish anesthetic commonly used in aquaculture,41 and sodium lauryl sulfate,42 a 

product commonly used in personal care products, are both known skin irritants that were not 

present in our skin irritation training data. Our models predicted sodium lauryl sulfate as a skin 
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irritant and MS-222 as not classified (according to OECD protocols, chemicals not classified as 

skin irritants are considered “not classified”). There were three compounds that were not present 

in our eye irritation model: glutaraldehyde, glyphosate, and Paraquat (1,1'-Dimethyl-4,4'-

bipyridinium dichloride). Our model predicted glutaraldehyde and glyphosate as eye irritants. 

Exposure of glutaraldehyde during cataract surgery led to the development of toxic eye anterior 

segment syndrome in six patients.43 Ocular glyphosate exposure was reported to lead to the 

development of chemosis, heart palpitations, raised blood pressure, headache, and nausea.44 In 

two cases of accidental eye exposure to Paraquat, eye damage was reported.45 

Dichloromethane46 and methanol47 have been reported as systemic toxicants after dermal 

exposure and were not in the modeling set. Our acute dermal toxicity model correctly predicted 

both compounds as toxic after dermal exposure. Twenty chemicals commonly present in 

occupational inhalation accidents were compiled in a study.48 There were five organic chemicals 

in this list that were absent in our acute inhalation dataset. All five compounds were correctly 

predicted by acute inhalation models. One clinical case of accidental oral exposure to the 

pyrethroid deltamethrin led to the poisoning of a 4-year old girl that consumed insecticidal chalk 

and was found unconscious 20 minutes after going outside to play.49 Mephedrone, a psychoactive

drug, has been proven toxic in a study reporting cases of acute toxicity related to self-reported 

use of mephedrone.50 Our acute oral toxicity model predicted both compounds as toxic if 

swallowed. Together, our models correctly predicted 80% of the known toxicants compiled 

(Figure 4).

Figure 5 shows the predictions generated for N-phenyl-p-phenylenediamine, a known 

skin sensitizer that is usually added to temporary black henna tattoos leading to many cases of 

contact allergy.51 We also generated maps showing the relative significance of fragment 
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contributions, providing a graphical interpretation of developed models (Figure 5), where atoms 

and structural fragments enhancing toxicity are highlighted in pink and those decreasing toxicity 

are shown in green. These maps are generated for each six-pack endpoints independently.

Virtual screening of CosIng, REACH and all STopTox compounds

As a case study illustrating STopTox usability, we have applied our QSAR models to the 

European Commission Cosmetic ingredient database (CosIng), REACH, and to all STopTox 

compounds. The majority of compounds in each of these datasets were predicted as Not 

Classified by each individual model. In the CosIng dataset (n = 3,930 compounds), 1655 

compounds were predicted as skin sensitizers, 1400 compounds were predicted as skin irritants, 

2177 compounds were predicted as eye irritants, 551 compounds were predicted as toxic if 

swallowed, 407 compounds were predicted as toxic if inhaled, and 372 compounds were 

predicted as toxic after dermal exposure. Out of N=XX total compounds, there were 3398 

compounds predicted as toxic in at least one endpoint and 1381 compounds predicted as Not 

Classified in all six endpoints. All compounds and corresponding predictions are listed in 

Supplementary Table S2.

In the REACH dataset (n = 10,465 compounds), 4,018 compounds were predicted as skin

sensitizers, 2,445 compounds were predicted as skin irritants, 4,605 compounds were predicted 

as eye irritants, 2,679 compounds were predicted as toxic if swallowed, 2,139 compounds were 

predicted as toxic if inhaled, and 1,899 compounds were predicted as toxic after dermal 

exposure. There were 7,641 compounds predicted as toxic in at least one endpoint and 2,824 
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compounds predicted as Not Classified in all six endpoints. All compounds and corresponding 

predictions are listed in Supplementary Table S3.

In the STopTox dataset (n = 11,941 compounds), 4,792 compounds were predicted as 

skin sensitizers, 2,491 compounds were predicted as skin irritants, 4,766 compounds were 

predicted as eye irritants, 5,232 compounds were predicted as toxic if swallowed, 2,394 

compounds were predicted as toxic if inhaled, and 2,902 compounds were predicted as toxic 

after dermal exposure. There were 7,641 compounds predicted as toxic in at least one endpoint 

and 2,824 compounds predicted as Not Classified in all six endpoints. All compounds and 

corresponding predictions are listed in Supplementary Table S4.

Model implementation

The STopTox web-based application (Figure 6) runs machine learning routines written in 

Python by using Flask v. 0.12.2, a small framework for creating web microframeworks at the 

backend. Models were developed using Scikit-Learn. Angular 4 and Typescript were used for the

development of the frontend, and Docker and Docker-Compose for the orchestration of 

containers. The developed models and all datasets are publicly available at 

https://stoptox.mml.unc.edu/. 

Conclusions

We have developed STopTox, a comprehensive collection of computational models that 

can be used as an alternative to in vivo 6-pack tests for predicting chemical toxicity hazard. 

Models were established following the best practices for the development and validation of 

QSAR models16,23 using the largest publicly available and carefully curated datasets that we 
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compiled for all 6-pack assays. To the best of our knowledge, STopTox is the first publicly 

available portal that enables accurate predictions of chemical hazards in all the 6-pack endpoints 

at once. Despite the limitations of these models with respect to potency classes, they are reliable 

for predicting chemicals that do not require classification, i.e., those expected to be nontoxic if 

tested following the same protocols used for compounds in the modeling set.  We suggest that 

these models are valuable for both regulatory agencies and respective industries in helping them 

identify safer alternatives to chemicals of interest. We reinforce that, in order to build predictive 

models, it is not enough just to utilize adequate chemical descriptors and powerful statistical 

techniques;52 we shall stress that, STopTox is the only 6-pack endpoint predictor in the public 

domain developed with extensively curated data. The STopTox web app provides users with the 

access to statistically significant and externally predictive QSAR models of acute toxicity tests. 

The web app can be used for rapid evaluation of acute toxicity hazards in chemical inventories. 

STopTox is freely available at https://stoptox.mml.unc.edu/. To the best of our knowledge, 

STopTox does not have analogs in terms of the level of data curation, validated statistical 

accuracy of constituting models, transparency of the data, modeling methods and software tools, 

and public accessibility. 

Materials and Methods

Data collection

We compiled data from multiple publicly available databases, such as the REACH data, 

available at the ECHA (European Chemical Agency) dissemination portal, eChemPortal 

(https://www.echemportal.org/echemportal/), the Toxicology Data Network (TOXNET - 

https://toxnet.nlm.nih.gov/), the National Toxicology Program´s Integrated Chemical 
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Environmental (ICE) resource (https://ice.ntp.niehs.nih.gov/), the Environmental Protection 

Agency (EPA)´s database ToxValDB (https://comptox.epa.gov/), and from the scientific 

literature.27,53–61 These data encompass animal sources of the experimental tests for the 6-pack 

endpoints: (i) skin sensitization; (ii) skin irritation and corrosion; (iii) eye irritation and 

corrosion; and acute systemic toxicity via (iv) dermal, (v) inhalation, and (vi) oral routes. 

Unfortunately, there were numerous problems with the collected raw data. For instance, many 

numerical data were represented as string variables, the units of measurements were not 

standardized through the datasets, and there were many “free text” data. Therefore, we 

extensively cleaned and standardized all the data and converted measurements to the same units 

in each dataset. We also used regex expressions to find important features for the database that 

were described in text format; this was key to endpoint classification into GHS hazard classes. 

Following this laborious data preparation and standardization, we performed both chemical and 

biological data curation. This attention to detailed data curation at different levels of the data 

preparation protocol is, unfortunately, uncommon in computational chemical toxicology, as we 

noted previously.37

Data curation

Datasets were thoroughly curated following the workflows developed by us earlier.52 

First, we excluded inconsistent data, which significantly decreased the size (number of data 

points) of our datasets (Figure 2). Data were categorized as inconsistent if they were generated 

not following the OECD protocols, if compounds were tested in few or only one concentration 

and could not be classified into GHS classes, labeled as non-experimental (e.g., labeled as 

obtained using QSAR and/or read across predictions and/or weight of evidence decisions), data 
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with measurements different from the standard protocols for the 6-pack endpoints (e.g., NOAEL,

NOEL, LC10, LC0, etc.), data without identification number (CAS number, EC number), 

formulations, and complex mixtures. Then, we performed chemical structure curation and 

removed mixtures, inorganics, and organometallic compounds, cleaned and neutralized salts, 

normalized the specific chemotypes, and applied special treatment to chemicals with multiple 

replicated records as follows: (i) when replicated records presented the same binary outcome, 

only one record was kept; (ii) when majority of replicated records presented the same binary 

outcome and one had different binary outcome, only one record with the agreeing binary 

outcome was kept, (iii) when replicated records had different binary outcomes, all of them were 

removed. All the curated data will be available in Supplementary Table S5.

Datasets

Skin sensitization (dataset A)

Skin sensitization data were compiled from two sources: (i) National Toxicology Program

Interagency Center for the Evaluation of Alternative Toxicological Methods on behalf of 

ICCVAM (http://ntp.niehs.nih.gov/go/40500) and (ii) the REACH study results database publicly

available at https://iuclid6.echa.europa.eu/reach-study-results. The original ICCVAM database 

included 1,060 chemical records with local lymph node assay (LLNA) data. After curation, 516 

unique compounds (332 sensitizers and 184 non-sensitizers) were retained. The REACH 

database initially comprised 10,588 records for 9,801 chemicals. The REACH dataset is 

composed of many types of assays and study categories. In vitro and “weight of evidence” 

categories were discarded. Data from different OECD (Organization for Economic Co-operation 

and Development) skin sensitization assays (OECD guidelines 406, 411, 429 and 442B)62–65 were

available; only the data corresponding to LLNA assays (429 and 442B) were selected, resulting 
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in 1,275 data points with LLNA records. After curation, 566 compounds (197 sensitizers and 369

non-sensitizers) were retained. Eventually, we merged the curated data from ICCVAM and 

REACH and examined the content of this combined data. There were 58 pairs of duplicate 

chemicals between these two datasets, and the sensitization potential of five of these pairs was 

different. These discordant records were removed, and only one record for each concordant pair 

of duplicates was kept. The merged dataset had 1,000 unique compounds (481 sensitizers and 

519 non-sensitizers).

Skin irritation and corrosion (dataset B)

Experimental animal data on skin irritation and corrosion were retrieved from the 

REACH study results database (https://iuclid6.echa.europa.eu/reach-study-results). After 

removing inconsistent data, 1,631 out of original 5,274 data points were left. After removal of 

mixtures, inorganics, and neutralization and removal of Not Classified counter-ions, 1,326 

records remained. Among 124 duplicate chemicals in the dataset, 95 were concordant and 29 

were discordant. All the discordant replicates and one of each concordant replicate were 

removed. The final dataset has 1,012 unique chemical compounds including 40 corrosives, 277 

irritants, and 695 non-irritants. As there were only few corrosive compounds in our dataset, we 

decided to merge the corrosive and irritant classes and model only irritant versus non-irritant 

compounds. We note that these models have limited regulatory value at the moment given the 

data available with respect to compounds predicted as toxic as regulators typically would like to 

see more granular measurement or prediction at the level of specific subcategories of toxicity.  

However, we shall highlight and emphasize that our models make accurate predictions of non-

toxic compounds thereby helping both regulators and respective regulated industries to develop 

safer chemicals. Our resulting dataset contains 317 irritants versus 695 non-irritants. Because the

18

https://iuclid6.echa.europa.eu/reach-study-results


dataset is imbalanced, we applied an undersampling technique where the majority class was 

sampled in a way to match the number of records of the minority class. This was done by 

searching for the compounds in the majority class that had higher similarity (Tanimoto 

coefficient) with compounds in the minority class. The balanced dataset consisted of 554 

compounds (277 irritants and 277 non-irritants).

Eye irritation and corrosion (dataset C)

The eye irritation and corrosion dataset was retrieved from the REACH study results 

database (https://iuclid6.echa.europa.eu/reach-study-results) and the literature53–61. We first 

curated data from each source separately, then we merged the curated datasets and checked for 

overlapping compounds. After removing inconsistent data, 7,196 out of original 7,332 

experimental animal data points for eye irritation and corrosion were left. After removal of 

mixtures, inorganics, and neutralization and removal of Not Classified counter-ions, 5,985 

records remained. All the discordant chemical replicates and one of each concordant replicate 

were removed. The final dataset has 3,547 unique chemical compounds including 1,146 irritants, 

and 2,401 non-irritants. Because the dataset is imbalanced, we applied an undersampling 

technique where the majority class was sampled in a way to match the number of records of the 

minority class. This was done by searching for the compounds in the majority class that had 

higher similarity (Tanimoto coefficient) with compounds in the minority class. The balanced 

dataset consisted of 2,292 compounds (1,146 skin irritants and 1,146 skin non-irritants).

Acute dermal toxicity (dataset D) 

The acute dermal toxicity dataset was retrieved from the REACH study results database 

(https://iuclid6.echa.europa.eu/reach-study-results), the publicly available database ToxValDB, 

19

https://iuclid6.echa.europa.eu/reach-study-results
https://iuclid6.echa.europa.eu/reach-study-results


and from a literature dataset.27 After removing inconsistent data, 5,259 out of original 29,824 

data points were left; the major reasons for compound removal were the presence of many 

compounds without a defined LD50.  After removal of mixtures, inorganics, organometallic 

compounds, 4,601 records remained. Among 1,979 chemical replicates in the dataset, 1,836 were

concordant and 143 were discordant. All the discordant replicates and one of each concordant 

replicate were removed. The final dataset has 2,622 unique chemical compounds including 382 

dermally toxic compounds and 2,234 Not Classified compounds. Because the dataset is 

imbalanced, we applied an undersampling technique where the majority class was sampled in a 

way to match the number of records of the minority class. This was done by searching for the 

compounds in the majority class that had higher similarity (Tanimoto coefficient) with 

compounds in the minority class. The balanced dataset consisted of 764 compounds including 

382 toxic compounds and 382 Not Classified compounds.

Acute inhalation toxicity (dataset E) 

The acute inhalation toxicity dataset was retrieved from the REACH study results 

database (https://iuclid6.echa.europa.eu/reach-study-results) and from the publicly available 

database ToxValDB. After removing inconsistent data, 2,061 out of original 8,176 data points 

were left only. This dramatic reduction of the dataset was mainly due to the presence of many 

compounds without a defined LD50 and because of the absence of information regarding the 

exposure method used (gas, dust or mist), which is essential for GHS classification.   After 

removal of mixtures, inorganics, and neutralization and removal of Not Classified counter-ions, 

1,637 records remained. Among 527 chemical replicates in the dataset, 501 were concordant and 

26 were discordant. All the discordant replicates and one of each concordant replicate were 
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removed. The final dataset has 681 unique chemical compounds including 345 toxic compounds 

and 336 Not Classified compounds.

Acute oral toxicity (dataset F)

The acute oral toxicity dataset was retrieved from NICEATM (The National Toxicology 

Program Interagency Center for the Evaluation of Alternative Toxicological Methods) workshop 

for the Collaborative Acute Toxicity Modeling Suite (CATMoS)66 project that our team was part 

of. After removing inconsistent data, 8,981 out of original 8,994 data points were left. After 

removal of mixtures, inorganics, and neutralization and removal of counter-ions, 8,979 records 

remained. A total of 406 chemical replicates were found in the dataset. All replicates with 

different toxicity calls were removed and one of the duplicative compounds with concordant 

toxicity calls was kept. The final dataset has 8,442 unique chemical compounds including 4,803 

toxic compounds and 3,639 Not Classified compounds.

CosIng (Dataset g)

CosIng is the European Commission database for information on cosmetics substances and 

ingredients (https://ec.europa.eu/growth/sectors/cosmetics/cosing_en). This dataset contained 

5166 chemical records with a defined chemical structure. After curation, 3,930 unique chemical 

substances were kept for prediction purposes.

REACH (Dataset e)

The REACH data come from registration dossiers submitted to ECHA by May 2019 

(https://echa.europa.eu/information-on-chemicals/registered-substances). The database originally

contains 20,000 substances, of which 15,438 are chemical records with a defined chemical 

structure. After curation, 10,465 unique chemical substances were kept for prediction purposes.

Cheminformatics approaches
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Binary QSAR models were developed and rigorously validated according to the best 

practices of QSAR modeling16. For each dataset corresponding to each 6-pack endpoint, the three

types of descriptors (Morgan67, MACCS68, and MORDRED69) in combination with random 

forest70 algorithm were used. A consensus model for each endpoint was built by averaging the 

predicted values from each different descriptor model. The consensus model for each 6-pack 

endpoint considered majority rule (at least two out of three) for the final classification. The 

consensus AD (Consensus with Applicability Domain) model was developed in a similar way; 

however, only predictions from individual models when the queried compound was inside the 

applicability domain (z-cutoff method15) were considered. In every case, only the modeling set 

was used to develop the models, while the external sets were used for evaluation of their 

predictive power. Here we followed a true 5-fold external cross-validation procedure: the full set 

of compounds with known experimental activity is randomly divided into five subsets of equal 

size; then one of these subsets (20% of all compounds) is set aside as test set and the remaining 

four sets together form the modeling set (80% of the full set). This procedure is repeated five 

times allowing each of the five subsets to be used as a test set. Models are built using the 

modeling set only, and it is important to emphasize that the test set compounds are never 

employed either to build and/or select the models. Each modeling set is divided into many 

internal training and validation sets; then models are built using compounds of each training set 

and applied to test set compounds to assess their properties.71 In addition, 10 rounds of Y-

randomization were performed for each dataset to assure that the model performance were not 

due to chance correlations.
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Figure Legends:

Figure 1. General workflow of STopTox.

Figure 2. Summary of data curation.

Figure 3. Cross-endpoint pairwise concordance of binary outcomes and number of overlapping

compounds (in parentheses).

Figure 4.  Toxicants identified in the literature that were absent in our modeling data.  StopTox

predictions for a given endpoint are listed below each structure. “Not classified” compounds

were predicted as non-toxic.

Figure  5.  Predicted  probability  maps  and  predictions  of  each  model  for  N-phenyl-p-

phenylenediamine. The predicted probability of a toxic effect is accompanied by the colored map

of the atomic contributions to toxicity.  Red: predicted to increase toxicity; Green: predicted to

decrease toxicity.
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Figure 1.

Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Table 1. Computational software covering 6-pack endpoints.

Software

name
Endpoints

Computational

Approach
License Access

Danish QSAR

database

Acute oral, skin

irritation and

skin

sensitization

Consensus model from

ACDLabs, Leadscope,

CASE Ultra, and

SciQSAR

Free http://qsar.food.dtu.dk/

T.E.S.T. Acute oral QSAR Free

https://www.epa.gov/chemical-

research/users-guide-test-version-

42-toxicity-estimation-software-

tool-program-estimate

TOPKAT

Acute oral,

Acute

inhalation, eye

irritation, skin

irritation, and

skin

sensitization

QSAR Commercial

https://www.epa.gov/chemical-

research/users-guide-test-version-

42-toxicity-estimation-software-

tool-program-estimate

ACD/

Percepta

Acute oral, eye

irritation, and

skin irritation

QSAR Commercial
https://www.acdlabs.com/products/

percepta/index.php

CASE Ultra

Acute oral,

acute

inhalation, eye

irritation, skin

irritation, and

skin

sensitization

Structural Alerts Commercial
http://www.multicase.com/case-

ultra

ToxTree

Eye irritation,

skin irritation,

and skin

sensitization

Structural Alerts Free http://toxtree.sourceforge.net/

DEREK

NEXUS

Irritation, skin

sensitization
Structural Alerts Commercial

https://www.lhasalimited.org/prod

ucts/derek-nexus.htm#

OECD QSAR

Toolbox

Eye irritation,

skin irritation,

and skin

sensitization

QSAR and Read-

Across
Free

https://www.oecd.org/chemicalsafe

ty/risk-assessment/oecd-qsar-

toolbox.htm#Guidance_Document

s_and_Training_Materials_for_Usi

ng_the_Toolbox
VEGA Skin Read-Across Free https://www.vegahub.eu/
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sensitization
CATMoS

(OPERA)
Acute Oral Consensus model Free https://github.com/NIEHS/OPERA

PredSkin
Skin

sensitization
QSAR Free http://predskin.labmol.com.br/

REACHAcros

s (RASAR)
All 6-pack

Read-Across and

QSAR
Commercial https://www.ulreachacross.com/

Table 2. Statistical characteristics of QSAR models for 6-pack animal tests.

Endpoint
C

CR

S

ensitivit

y

S

pecificit

y

P

PV

N

PV

#

compoun

ds
Skin

Sensitization

0

.70

0.

66

0.

75

0

.71

0

.75

1,00

0
Skin

irritation/corrosion

0

.72

0.

77

0.

66

0

.69

0

.74

1,01

2
Eye

irritation/corrosion

0

.72

0.

72

0.

71

0

.71

0

.71

3,54

7

Acute dermal
0

.76

0.

74

0.

78

0

.77

0

.75

2,62

2

Acute inhalation
0

.74

0.

69

0.

8

0

.77

0

.72

681

Acute oral
0

.77

0.

85

0.

70

0

.79

0

.78

8,46

5
CCR = Correct Classification Rate; PPV = Positive Predictive Value; NPV = Negative Predictive Value
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