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Abstract We describe the structure and optimization of the Open Force Field 1.0.0 small molecule force20

field, code-named Parsley. Parsley uses the SMIRKS-native Open Force Field (SMIRNOFF) parameter as-21

signment formalism in which parameter types are assigned directly by chemical perception, in contrast to22

traditional atom type-based approaches. This method provides a natural means to incorporate increasingly23

diverse chemistry without needlessly increasing force field complexity. In this work, we present essentially24

a full optimization of the valence parameters in the force field. The optimization was carried out with the25

ForceBalance tool and was informed by reference quantum chemical data that include torsion potential en-26

ergy profiles, optimized gas-phase structures, and vibrational frequencies. These data were computed and27

are maintained with QCArchive, an open-source and freely available distributed computing and database28

software ecosystem. Tests of the resulting force field against compounds and data types outside the train-29

ing set show improvements in optimized geometries and conformational energetics and demonstrate that30

Parsley’s accuracy for liquid properties is similar to that of other general force fields.31

32
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1 Introduction33

Molecular mechanics (MM) force fields are empirical models of molecular potential energy surfaces, which34

yield the potential energy and atomic forces as a function of the atomic positions. Force fields are a crucial35

component of molecular simulations in many domains of chemistry and biophysics. They are widely used36

to analyze biomolecular systems that may include biopolymers, aqueous solvent, and small molecules such37

as metabolites and therapeutics. They are also fundamental to technologies used in computer-aided drug38

design, such as molecular docking[1–7] and simulation-based calculations of protein-ligand binding free39

energies[8–15].40

Decades of work have led to relatively refined force fields for proteinsmade up of the 20 common amino41

acids[16–24]. However, it is more difficult to develop a high quality general force field, i.e., one that applies42

to the wide range of small, organic molecules of interest in biology and drug discovery, due to the high43

diversity of the chemical space that must be considered. For example, the nearly 100 million compounds in44

the PubChem database[25] embody many different combinations of varied functional groups and hetero-45

cycles. Moreover, some of the most important applications of force fields involve the simulation of as-yet46

undiscovered compounds, such as those under investigation for small molecule drug development, which47

may lie in new regions of chemical space. Small molecule force fields in wide use today include the general48

AMBER force field (GAFF),[26] the CHARMM general force field (CGenFF),[27] and the optimized potentials49

for liquid simulations force field (OPLS).[28] These important tools have undergone continuous develop-50

ment, and current generations are applicable to a wide range of small molecules. Nonetheless, recent51

calculations of hydration free energies, partition coefficients, and other properties show clear systematic52

errors for specific functional groups in current general force fields [29–32]. Therefore, there is a need to53

improve small molecule force fields. At the same time, our ability to advance force field accuracy continues54

to increase, as more data become available from experiments and high-level theoretical calculations, and55

greater computer power enables systematic and comprehensive approaches to parameterization.56

For many years, the standard use of atom-typing as a first step in parameter assignment has posed a57

barrier to the facile development of general force fields. In the first step of atom typing, chemical perception58

(i.e. substructure searching) is first used to assign an atom type to each atom in the molecule based on its59

local chemical environment, e.g. “sp2 carbon double bonded to oxygen”. The atom types are then combined60

into keys that are used to look up parameters in a table, e.g. Lennard-Jones parameters are indexed by a61

single atom type whereas angle parameters are indexed by three atom types. This atom typing formalism62

has been mostly unchanged since its inception, which attests to its simplicity and usefulness. However, as63

previously detailed,[33] it drives a needless level of complexity in the force field specification. For example, if64

newQMdata lead the developer to add a new dihedral type, specifying this may require addition of another65

atom type; but this in turn requires adding parameters for all the FF terms that involve this type, such as66

Lennard-Jones, bond-stretch, and angle-bend. These complexities have made it difficult to systematically67

modify force fields and extend them to new chemistries.68
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Figure 1. Parameter typing for a 2-body interaction using SMIRKS strings. The string matches a carbon with valence 4
#6X4 tagged "1", bonded to a nitrogen with valence 3 #7x3 tagged "2", bonded to a carbon with valence 3 #6X3, doublebonded to a neutral oxygen with valence 1 #8x1. The parameters attached to the SMIRKS string (for example, r0 =
1.5 Å, k = 400 kcal mol−1 Å

−2) are assigned to the interaction between atoms tagged "1" and "2".

Instead of using atom-typing, we use the SMIRKS Native Open Force Field (SMIRNOFF) formalism, which69

assigns parameters by what we call direct chemical pattern perception, via substructure searches [33]; see70

Fig 1. In SMIRNOFF, the parameter definitions for each separate force field term, such as van der Waals71

(vdW), bond stretching, angle bending, or torsion, are defined by a hierarchy of increasingly specific sub-72

structure rules, where each rule consists of a SMIRKS pattern attached to numerical parameters. When a73

SMIRKS pattern is matched to a chemical substructure in a molecule, the attached parameters are assigned74

to the tagged atoms within the substructure (Figure 1). The critical distinction from atom typing is that here,75

each force field termhas its own hierarchy, so its rules can be adjusted, and new rules can be added, without76

perturbing the rules used for the other terms. This formalism is implemented using the Open Force Field77

toolkit, an open-source software package that allows for the parameterization of general small molecules.78

The recent development of the SMIRNOFF99Frosst [33] force field proved the concept of the SMIRNOFF79

typing formalism. The types and numerical parameters of SMIRNOFF99Frosst were designed for maximal80

consistency with the Parm@Frosst force field[34], a general force field in the AMBER family with similar-81

ities to GAFF, and indeed, SMIRNOFF99Frosst retained the accuracy of simulations for several important82

properties, such as the densities and dielectric constants of organic liquids, hydration free energies of small83

molecules, and host-guest binding thermodynamics.[35] Importantly, the new typing formalism allowed84

this to be achieved with only ∼ 300 lines of parameters, which may be compared with > 6000 lines of param-85

eters for GAFF. Moreover, the independent hierarchies of typing rules for each force field term allows for86

simple extensions to increase accuracy in new areas of chemical space. This prior work sets the stage for op-87

timizing the parameter sets using available and/or newly generated training data from quantum chemistry88

and/or experiment.89

Here, we describe the development of OpenFF 1.0.0, code-named Parsley, the first optimized force90

field using the SMIRNOFF format. To create Parsley, we reoptimized nearly all (481/500) of the valence91

parameters against quantum chemical data, leading to improved agreement with quantum chemical ge-92

ometries, energetics, and vibrational frequencies. Parsley largely retains the nonbonded interactions of93

SMIRNOFF99Frosst; it uses the same Lennard-Jones parameters, with a few changes to the Lennard-Jones94

typing hierarchy, and continues to use the AM1-BCC [36] charge model. The resulting force field provides95

improved accuracy relative to its predecessor for a wide variety of properties, especially energetics and96

geometries relative to gas phase quantum chemical calculations. In keeping with the Open Force Field Ini-97

tiative’s core philosophy, the Parsley force field, and the software tools and data sets created during the98

development of Parsley, are released under permissive open source licenses. These research products,99

along with some existing software tools used here, are also available on an open and free basis, with some100

limited exceptions, notably that commercial OpenEye toolkits (which are free for academics) were used in101

portions of the procedure.102
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We also report here on the initial benchmarking of Parsley, which focuses on two major aspects: (1) ac-103

curacy relative to quantum chemical calculations on small molecules in the gas phase; and (2) accuracy of104

liquid-state properties for a diverse set of organic molecules. For the condensed-phase properties, which105

span density, dielectric constant, heat of vaporization, excessmolar volume, and enthalpy of mixing, no dra-106

matic performance differences were noted in this release, relative to SMIRNOFF99Frosst, and the overall107

accuracy is similar to that of GAFF. This is as expected, because valence parameters typically play a rela-108

tively minor role in these properties. However, the quantum chemical benchmarks, which cover more than109

2,000 molecules and consider the quality of optimized geometries and relative conformer energies, show110

substantially better performance relative to SMIRNOFF99Frosst. The present Parsley force field represents111

the first of what we expect will be a series of continually improving, open force fields for small molecules.112

2 Methods113

TheParsley force fieldwas generatedby refitting theparameters in the valence termsof SMIRNOFF99Frosst [33]114

against an extensive new set of high-level quantummechanical data, which include energies, gas-phase ge-115

ometries, and other properties. Note that the starting parameters in SMIRNOFF99Frosst in turn originated116

from two parent force fields, AMBER parm99[37] and Merck’s parm@Frosst[34], which had been parame-117

terized to reproduce gas phase geometries and energetics computed at lower levels of QM than that used118

here, for selected molecules. Here, Section 2.1 details the force field parameters that were optimized, the119

QM dataset used to drive the optimization, and the application of ForceBalance [38] to carry out the op-120

timization from the SMIRNOFF99Frosst [33] starting point. Section 2.2 then describes how the resulting121

Parsley force field was tested against gas phase QM data and condensed phase data outside the training122

sets.123

2.1 Training the Parsley force field124

2.1.1 Parameters that were refit125

We reoptimizedmost of the valence parameters present in SMIRNOFF99Frosst. In the following discussions,126

an individual parameter definition is uniquely identified by an interaction type (e.g. bond stretch) and a127

SMIRKS pattern (e.g. [#6X4:1]-[#6X4:2]), and can contain one ormore physical values (e.g. the bond length128

and the force constant). The full list of parameter definitions, which can be viewed in the published force129

field XML file, openff-1.0.0-RC2.offxml[39], may be summarized as follows:130

• Harmonic bond stretch: 86 equilibrium bond lengths and force constants.131

• Harmonic angle bend: 35 equilibrium angles and 39 force constants. These two numbers differ132

because four angles are linear and were kept linear during fitting.133

• Proper torsions: Each of the 154 torsion types is associated with an N-term Fourier series of potential134

energy contributions, whereN ≤ 6, and each term, i, is of the formEi = ki cos
(

i� + �i
). Weoptimized all135

of the amplitudes that were defined in SMIRNOFF99Frosst, comprising 154, 62, 26, 5, 4 and 3 values of136

k1, k2, k3, k4, k5, and k6 respectively, for a total of 254 parameters. Parameters t156, t157, t158 represent137

torsion angles containing a linear angle, and their values of k1 were kept at 0.0 during fitting. The138

phase parameters, �i and the selection of Fourier terms used for each torsion were not optimized in139

this release.140

• Improper torsions: The four improper terms were kept unmodified, to avoid overfitting.141

Thus, we were prepared to fit up to 500 bonded parameters (applied by 279 SMIRKS patterns: 86 bonds,142

39 angles, and 154 torsions). However, the quantum chemical datasets we utilized for fitting (Section 2.1.2)143

exercised only 481 of these parameters, so 19 parameters were left unchanged here. All of the above144

parameters were fitted simultaneously against all QM data.145

2.1.2 Compound sets used in training146

Two sets of small organic molecules were used to generate the quantum chemical datasets used in fitting.147

The first, termed the Roche Set, contains 468 fragment-sized molecules, most containing one to three ro-148

tatable bonds, that were provided by Roche as a collection of important and/or interesting chemistries.149
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Representative compounds from this set are illustrated in Figure 2, and the full set can be found in Support-150

ing Information section 1.1.1. The second, termed the Coverage Set, contains 80 molecules selected from151

eMolecules[40] using a greedy algorithm aimed at providing parameter coverage for the maximum num-152

ber of parameters using theminimumnumber ofmolecules. Figure 3 illustrates representative compounds,153

and a full list of SMILES can be found in Supporting Information section 1.1.1.154
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Figure 2. An illustrative subset of small fragment-like molecules from the Roche Set.
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Figure 3. An illustrative subset of molecules from the Coverage Set.

Initial automated selection of the Coverage Set is described in a subdirectory of the openforcefields155

GitHub repository, and details of the additional molecules added manually to cover remaining gaps can be156

found in Supporting Information section 1.1.1. Nonetheless, for a variety of technical reasons, it proved157

difficult to generate compounds with suitable quantum chemical data to cover 19 parameters. In future158
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work, these gaps will need to be addressed by generation of suitable data and/or deletion of parameter159

types that may be overly specialized or exotic.160

2.1.3 Selection of quantum chemistry methodology161

Quantumchemical calculations (geometry optimizations and torsion scans)were performedonadistributed162

set of high-performance computing clusters using the MolSSI QCFractal[41] distributed quantum chemistry163

engine, with results deposited in the public MolSSI QCArchive Server (MQCAS)[42, 43] to allow open public164

access to all data. We used a single level of theory for all QM calculations, B3LYP-D3(BJ) / DZVP [44–47]. This165

choice was based on two benchmark studies of conformational energies [48, 49] and our own initial studies166

that aimed to balance accuracy against computational cost. Themolecules in both of these studies included167

amino acids, small to medium-sized peptides, and macrocycles. Geometries were optimized at the MP2/cc-168

pVTZ level, and reference energies were computed using explicitly correlated focal point analysis methods169

considered to be equivalent to complete basis CCSD(T) in accuracy. Both studies found that B3LYP-D3(BJ) re-170

produces the reference energies with RMSEs of < 1 kcal/mol when very large basis sets (e.g.def2-QZVP [50])171

are used; the empirical D3 dispersion term played a major role, as the errors were typically 2-4x larger172

without it.173

Notably, Řezáč et al. 2018 [48] reported that the double-zeta quality DZVP basis set [44] gave nearly174

the same RMSE as def2-QZVP, which we were able to reproduce in our own tests. When similar-sized and175

better-known basis sets such as 6-31G* and def2-SV(P) were used, the RMSEs increased significantly but176

there were only minor differences in computational cost. Our results are largely consistent with Řezáč et177

al. 2018 [48] even though we did not use the custom empirical dispersion parameters they derived for the178

DZVP-DFT basis set. A scatter plot of RMSE vs. calculation time for a representative molecule, labeled as179

FGG114 in Řezáč et al. 2018.[48], is shown in Figure 4; the results confirm that the DZVP-DFT basis set gives180

the best compromise between accuracy and computational cost.181

Although we believe our choice of QMmethod is appropriate for gas-phase conformational energies for182

the neutral compounds comprising our training set here, we did not conduct benchmark studies on opti-183

mized geometries and vibrational frequencies which were also part of our parameterization dataset. More184

comprehensive benchmarks are planned to inform future force field generations. However, the present185

level of theory is superior to the HF/6-31G* approach used in parameterizing the parm99/parm@Frosst186

force fields from which SMIRNOFF99Frosst descended, and thus should afford greater accuracy.187

Figure 4. Tradeoff between speed and accuracy in selecting quantum chemical basis set. Computational time (forsingle conformer) versus RMSE to benchmark-quality relative energies for 15 conformations of a representativemoleculefrom Ref. 48 for several choices of basis set.

2.1.4 Generation of quantum chemical data for compound datasets188

Prior to running quantum chemical calculations, the input molecules were subjected to protonation state189

and conformer expansion, using the Fragmenter software package.[51] After the expansion, each proto-190

nation state was identified as a new molecule, so the number of distinct molecules increased; and each191
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Roche Set Coverage Set
Compounds 468 80
Cmpds × Prot. States 468 233

Opt. Geom.
Cases 936 831
MQCAS Dataset OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Vib. Freq.
Cases 660 235
MQCAS Dataset OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Tors. Scans
Cases 669 417
MQCAS Dataset OpenFF Group 1 Torsions SMIRNOFF Coverage Torsion Set 1

Table 1. Summary of quantum chemical calculations used to fit the force field valence parameters in this work.

molecule could have one or more conformers. Each conformer provided one optimized geometry used in192

fitting. Three classes of gas phase quantum chemical data were generated for both the Roche and Coverage193

compound sets: optimized geometries, vibrational frequencies, and torsional energy profiles. Themethods194

used are detailed below. The results of all quantum chemical calculations are stored as DataSet objects on195

the MQCAS[42] and are freely available to the public. Examples of working with several MQCAS datasets196

can be found in Supporting Information section 1.1.2.197

Optimized geometries198

We used the MQCAS to store and distribute geometry optimizations with the geomeTRIC optimization199

driver[52] and the Psi4 quantum chemistry package[53, 54] as backends. Optimized QM geometries were200

downloaded from the MQCAS, then filtered to remove cases where the bonding pattern changed on opti-201

mization, as well as issues which pose other problems for the openforcefield toolkit v0.4.1[55], e.g. unde-202

fined stereochemistry, missing torsion terms, or inability to assign AM1-BCC charges. Details can be found203

in Supporting Information section 1.1.2.204

The objective function that measures deviations of MM fromQM geometries is designed in the following205

way: MM geometry optimizations are first locally minimized starting from QM optimized structures, then206

MM and QM Cartesian coordinates are converted to lists of bond lengths, bond angles, and both proper207

and improper torsion angles. The difference between QM and MM optimized internal coordinates for a208

single molecule contributes to the objective function as:209

Loptgeo(�) =
∑

i∈ICs

(

xMM
i (�) − xQM

i

di

)2

(1)
where � stands for the force field parameters used in the MM calculation, di refers to scaling factors of 0.05210

Å, 8 degrees and 20 degrees for bond lengths, bond angles, and improper torsion angles, respectively. Proper211

torsion angles were not considered here, but instead are fitted based on comprehensive torsional energy212

profiles, as detailed below.213

Vibrational frequencies214

For each optimized geometry in the Roche and Coverage molecule sets, Hessian calculations were both ex-215

ecuted and stored in the MQCAS. From the calculations that were completed, the Hessians for the lowest-216

energy conformation of each compound / protonation state were kept. After screening the dataset for217

topology changes and other errors, normal mode analysis was performed to obtain harmonic vibrational218

frequencies and Cartesian displacements for the internal degrees of freedom. Details can be found in Sup-219

porting Information section 1.1.2.220

The corresponding force fieldHessianswere computedby locallyminimizing theQMgeometrieswith the221

force field, followed by evaluating forceswith numerical displacements (0.001 Å). Normalmode analysis was222

carried out and theQMand FF frequencies were sorted from lowest to highest to yield the sorted sequences223

�QM,i and �FF ,i, respectively. The objective function contribution for each set of normalmodeswas computed224
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as the sum of squared differences of corresponding frequencies, scaled by a factor of dvib = 200cm−1, as:225

Lvib(�) =
∑

i

(�QM,i − �FF ,i
dvib

)2 (2)

2.1.5 Torsional potentials226

Figure 5. Example torsions selected for 1D torsion scans in the Roche TorsionDrive dataset. H, white; C, gray; N, blue; O,red; S, yellow; F, green (lower middle); Cl, green (lower left).

Quantum mechanical energy profiles were generated for dihedral angles in the Roche and Coverage sets.227

All calculations were carried out on the MQCAS, which employs the TorsionDrive software to compute each228

torsion energy profile using a wavefront propagation procedure, [56] described briefly here. Multiple ini-229

tial geometries were generated for each molecule via fragmenter and provided as input at the start of the230

procedure. Each input structure was energy-minimized with the selected torsion angle constrained to val-231

ues on a 15◦ resolution grid, with QCArchive managing parallel job execution, and individual constrained232

optimizations handled by geomeTRIC/Psi4 as described above. At the conclusion of the constrained min-233

imizations, the lowest-energy structure at each grid point was used to initiate new constrained minimiza-234

tions at neighboring grid points. This cycle was repeated until the grid was fully populated with constrained235

minimization results and no new lowest-energy structures were found. In order to avoid pathologies such236

as bond-breaking that may occur when driving torsions into sterically hindered or high-energy regions, an237

upper energy limit was applied such that no constrained minimizations were started from structures with238

energies greater than 0.05 Hartrees (31.3 kcal/mol) above the minimum.239

The set of lowest-energy constrained minimized structures for each grid point was downloaded from240

the MQCAS and checked for bonding topology changes; calculations that contained such changes were241

discarded. In addition, any scans that included a frame with an internal hydrogen bond were discarded242

to avoid building strong internal electrostatic interactions into fitted torsional profiles. Hydrogen bonds243

were detected using the Baker Hubbard method (Angle(D-H..A) > 120 degrees and Dist(H..A) < 2.5 Å), as244

implemented in the MDTraj package[57]. Details can be found in Supporting Information section 1.1.2.245

For compounds in the Roche Set, torsional scans were generated for the 819 dihedral angles matching246

all of the following conditions:247

1. the center bond is not part of a ring;248

2. there is at least one heavy side group on both sides of the bond;249

3. neither of the two angles involved is close to linear (≥ 165◦).250

Among all torsions sharing the same center bond, the one with the largest side groups, by number of atoms,251

was picked. For the compounds in the Coverage Set, we used the SMIRNOFF force field to label the torsions252

in eachmolecule and selected the first five dihedral angles thatmatch each torsion term for scanning. (Note,253
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however, that the force field term t155bwas added after this datasetwas created, so no torsionwas selected254

for that term.)255

The objective function contribution was computed as a weighted sum of squared differences between256

QM andMM energies. During the fitting process, each structure along the QM torsional profile was partially257

relaxed using the empirical force field being optimized. These MM optimizations were started from the258

QM constrained optimized structure, the four atoms defining the torsion were fixed at the QM coordinates,259

and all other atoms were held near the QM coordinates by applying harmonic energy restraints with force260

constant 1 kcal/mol/A2. These added harmonic restraints avoid the possibility of large structural changes261

of the MM structures away from the QM structures, which could make the torsional profile differences less262

meaningful. The QM and MM energies being compared were calculated as:263

EQM
(

xi
)

= EQM
′ (xi

)

− EQM
′ (x0

)

EMM
(

xi; �
)

= EMM
′ (OptMM

(

xi; �
))

− EMM
′ (OptMM

(

x0; �
))

(3)
where the primes indicate absolute energies, subscripts indicate grid point indices, x0 is the lowest energy264

energy-minimized structure, � represents the MM force field parameters, and OptMM(x; �) denotes the MM265

constrained optimization procedure described above. The objective function is then calculated as:266

L (�) = 1
dE

2

∑

i∈N(gridpoints)
w
(

EQM
(

xi
))(

EQM
(

xi
)

− EMM
(

xi; �
))2

∑

i∈N(gridpoints)
w
(

EQM
(

xi
)) (4)

where dE = 1.0 kcal mol−1 is a scaling factor. The weights are calculated by a formula that uses two cutoffs,267

where the weight is constant until the first cutoff (1.0 kcal/mol) then starts to decrease, followed by a hard268

second cutoff at 5.0 kcal/mol above which the weights are zero:269

w(E) =

⎧

⎪

⎨

⎪

⎩

1 E < 1.0kcal∕mol
√

1 + (E − 1)2 1.0 ≤ E < 5.0kcal∕mol
0 E ≥ 5.0kcal∕mol

(5)

2.1.6 Optimization algorithm and convergence criteria270

The parameter optimization was carried out with ForceBalance[38], a Python toolkit to optimize force fields271

in a systematic, reproducible, scalable and flexible manner.[38, 58] We employed a development version272

of ForceBalance based on v1.6.0[59]) to minimize the objective function. Support of the OpenFF force field273

was enabled by an interface with the OpenFF Toolkit v0.4.1[55]. The commercial OpenEye toolkit version274

2019.4.2 was used to generate .mol2 files, which are needed by ForceBalance to set up OpenFF simulations275

using the toolkit.276

Numerical derivatives of the objective function with respect to parameters were computed with dimen-277

sionless displacements of 0.01 for improved numerical stability, relative to the ForceBalance default of 0.001.278

Fitting was terminated once two convergence criteria were met:279

1. The dimensionless parameter step size fell below 0.01;280

2. The objective function (Section 2.1.7) decreased by less than 0.1 during the step.281

To efficiently optimize the parameters in as few iterations as possible, ForceBalance uses a quasi-Newton
iteration to take near-optimal steps in parameter space:

�(n+1) = �(n) + [H(�) + �I]−1

To approximate the Hessian H(�), ForceBalance computes an approximation to the the matrix of second282

derivatives of each least-squares component in a manner that neglects parameter couplings:283

Hi,pq(�) =
)2

)�p)�q
Li(�) =

∑

j∈data

)Aj

)�p

)Aj

)�q
+

)2Aj

)�p)�q
≈

∑

j∈data

)Aj

)�p

)Aj

)�q
(6)
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The � parameter is used to set the optimization step size, and was determined by line-search minimiza-284

tion for a given parametric gradient and Hessian. This strategy was employed because the line search over285

� only requires repeated evaluation the objective function itself, and not the parametric gradient which is286

relatively expensive.287

2.1.7 Objective function with regularization288

ForceBalancewas used tominimize anobjective, or loss function,L(�), with respect to force field parameters
�. The objective function quantifies deviation of quantities derived with the force field from the reference
quantum chemical data while adding a regularization penalty to minimize the deviation from a reference
set of parameters, following the standard approach for ForceBalance[38]:

Ltot(�) =
∑

i∈targets
wiLi(�) +wreg

∑

p∈parameters

|Δ�p|
�2p

2

Here, wi is the weight of each class of optimization data targets with corresponding loss functions Li(�),which are often least-squares penalized loss:
Li(�) =

∑

j∈data

(

Aobsj − Acalcj (�)
)2

where Aobsj is an observed quantum chemical or physical property target to fit, and Acalcj (�) is the calculated289

value. wi of each target type was chosen to prevent the optimizer prioritizing one target type over other290

types. Carefully selected weights enabled the objective function contributions of different target types to291

have the same order of magnitude. wreg is the regularization penalty weight, andΔ� quantifies the deviation292

from a reference set of parameters – here, the initial SMIRNOFF99Frosst v 1.1.0 parameter set[33]. Regular-293

ization ensures that parameter adjustments are made conservatively to avoid introducing large problem-294

atic parameter changes that may only providemarginal improvements in the optimization target, especially295

when smaller datasets are used in parameterization. We used the regularization scales, �p, listed in Table 2,296

based on past observations of variations in these parameter types in previous studies.[58]297

parameter regularization scale �p
bond force constant Kr 100 kcal∕mol∕A2

bond equilibrium length r0 0.1 Å
angle force constant K� 100 kcal mol−1 rad2

angle equilibrium angle �0 20 degrees
proper torsion barrier height K 1 kcal∕mol

vdW well depth � 0.1 kcal∕mol
vdW minimum rmin−half 1 Å

Table 2. Regularization scaling parameters used in ForceBalance optimization runs for each force field parameter type.

2.2 Testing the Parsley Force Field298

Once the parameters had been trained as detailed in Section 2.1, we tested the resulting force field, Parsley-299

1.0.0, against optimized geometries outside the training set, and compared the results to those obtained300

with the initial force field, SMIRNOFF99Frosst-v1.1.0.[33] We also tested Parsley against two data types out-301

side the training set: energy differences among conformers of a given molecule, and physical properties302

of various organic liquids. Tests against vibrational spectra and torsional energy potentials are reserved303

for future studies. Benchmark comparisons of Parsley in the context of other general force fields are also304

available.[60] We now describe how these tests were done.305

2.2.1 Quantum chemical test set generation306

The QCArchive tool was used to generate and archive additional QM data, using the procedures detailed in307

Section 2.1, for compounds in three collections.308
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OpenFF Discrepancy Benchmark 1 This comprises 2,802 fragment-likemolecules (19,712 conformers) se-309

lected from the eMolecules catalog[40] because their energy-minimized geometries are substantially310

different in SMIRNOFF99Frosst 1.0.8 relative to GAFF, GAFF2, MMFF94, and MMFF94s [61, 62]. We311

retained all protonation and tautomer states present in our initial dataset, but did not generate any312

additional ones. Further details can be found in Supporting Information section 1.2.1.313

Pfizer Discrepancy Optimization Dataset 1 This comprises 100 fragment-likemolecules forwhich Pfizer’s314

QM calculations of torsional profiles computed with HF/minix followed by B3LYP/6-31G*//B3LYP/6-315

31G** differed substantially from those generated with the OPLS3e force field. Pfizer code for rele-316

vant related work is public on GitHub.[63] Enumeration of conformers, but not of protonation states,317

led to 352 conformers.318

FDA Optimization Dataset 1 This is a subset of the list of FDA-approveddrugs in the ZINC15 FDAdataset[64].319

Molecules were kept if they had 3-55 heavy atoms and consisted only of elements H, C, N, O, F, P, S, Cl,320

Br, I and B. We retained multiple protonation and tautomer states in the database, but did not gener-321

ate any additional ones. Generation of up to 20 conformers per molecule led to 6,675 conformers for322

the 1,038 structures.323

Test results are presented for the merger of these three datasets, termed the Full Benchmark Set. This324

dataset canbe retrieved from theMQCASasOpenFF Full OptimizationBenchmark 1, as documented elsewhere.[65]325

This is an "optimization dataset" in the sense that it – and the results presented here for benchmarking on326

this set – are for performance on optimized geometries only.327

Conformational energy differences were assessed as follows. Compound conformers were energy-328

minimized using QM. For a compound with at least three conformers, we identified the conformer imin with329

the lowest QM energy Eimin ,QM and computed the energies of its other conformers relative to it: Ei,QM −330

Eimin ,QM . We then computed the force field energies of the same conformers, Ei,FF , and, for each compound,331

computed the RMSE of Ei,FF − Eimin ,FF from the corresponding QM energies. Note that conformation imin is332

based on the QM energies and used again for the FF energies.333

2.2.2 Testing against physical properties of organic liquids334

We assessed the ability of molecular dynamics simulations using the newly fitted Parsley force field to repli-335

cate 221 experimental observables for organic liquids spanning 104 molecules. The observables used are336

densities, heats of vaporization, and static dielectric constants, of pure liquids, and excess molar volumes337

and heats of mixing of binary liquid mixtures. The experimental data were drawn from the NIST ThermoML338

Archive[66]. For systems involving water, the TIP3P model [67] was used. Automated scripts used to select339

the data can be found in Supporting Information section 1.2.2.340

We started with all available measurements of the properties listed above. When multiple values were341

available for a given quantity, only the ones with lowest reported uncertainties were retained. We further-342

more excluded ionic liquids, compounds containing elements other than H, N, C, O, S, F, Cl, Br, and I, and343

data measured outside the temperature range 288-318K and the pressure range 0.95-1.05 atm. Dielectric344

constants < 10 were also excluded, because a force field that does not explicitly include electronic polar-345

izability is not expected to replicate lower dielectric constants well. The scripts then used a greedy search346

to identify compounds for which the most data were available and that exercised the largest number of347

nonbonded parameter types with the fewest compounds. They also weighted smaller compounds more348

heavily. Sample compounds from the resulting set are shown in Figure 6, and further information on the349

data set can be found in Supporting Information section1.2.2.350

Values for all of these properties were computed with the OpenFF-Evaluator (formerly named the Prop-351

ertyEstimator) 0.0.5 tool, using scripts which can be found in Supporting Information section1.2.2. Calcula-352

tionswere carried outwith the newParsley 1.0.0, and, for comparison, with its precursor, SMIRNOFF99frosst353

1.1.0, as well as GAFF 1.81 and GAFF 2.11.354
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Figure 6. Representative molecules in the condensed phase physical property benchmark set.

3 Results and Discussion355

This section first describes the consequences of parameter optimization for accuracy over the training set,356

and then benchmarks Parsley on the separate test set compounds and properties. The test set results357

should be indicative of Parsley’s accuracy in new applications.358
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3.1 Improvements in accuracy over training set data359

3.1.1 Optimization of the objective function360

Figure 7. Objective, or loss, function, as a function of number of ForceBalance iterations.

The parameter fitting process dramatically increased the accuracy of the force field for the training data.361

Although this was anticipated, it is important to confirm, because it verifies the effectiveness of the opti-362

mization procedures and provides a scale for the degree of improvement. The dimensionless objective (or363

loss) function—the weighted sum of squared differences between QM and MM values—decreased dramat-364

ically in the fitting, from 25,708 to 4,522 (Figure 7). As described in Section 2.1, the objective function is a365

sum of contributions which report the accuracy of optimized geometries, vibrational spectra, and torsional366

energy profiles. The effect of training on these components is summarized in Table 3 (Training Set data)367

and Figure 8, and the following subsections provide further details of these results. Full fitting details, as368

well as inputs and outputs, can be found in the release package[68].369
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Table 3. Overall change in root-mean-squared error (RMSE) metrics vs. the quantum chemical result calculated for fourtypes of properties, using the initial and optimized force field, and divided into training set and test set. ND = No Data.
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Figure 8. Improvement in components of the training set and test set objective functions with fitting. Red his-togram shows performance with our initial force field, green histogram shows performance with the optimized forcefield and blue histogram shows the distribution of changes in objective function contribution of each target (individualmolecules/geometries contributing to the objective function) due to the parameter optimization. Left column (a-c) pro-vides the training set results. Right column (d-e) provides test set results. The range of each plot encompasses ≥ 94.94% of the population of initial objective function contributions and ≥ 99.2 % of the population of final objective functioncontributions.

3.1.2 Optimized geometries370

The geometric component of the objective function is computed from the deviations of bond-lengths, bond-371

angles and improper torsions, in structures optimized with the force field, from their values in correspond-372

ing structures optimized with QM (Section 2.1.4). As shown in Figure 8a, the fitting process led to improved373

overall agreement between force field and QM geometries; compare the initial (red) and final (green) his-374

tograms. The portion of the blue histogramon the negative / positive x-axis shows the percentage of targets375

where accuracy is improved / degraded, respectively. The accuracy was somewhat reduced for a small mi-376

nority of conformers, as evident from the histogram of differences (blue), but this is as expected, because377

compromises have to bemade for somemolecules in order to improve the accuracy for others that use the378
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same parameters. Table 3 provides a physically interpretable perspective of these results, showing that the379

RMS errors of bond-lengths, bond-angles, and improper torsions, in the optimized geometries, decreased380

by 14-49% with training.381

It can also be useful to assess the fitting of individual parameters. To do this for a given bond-stretch382

parameter, for example, we collected all test cases that included the parameter of interest and made a383

scatter plot of the length of the bond in the QM geometries vs the length in the MM geometries. Such plots384

were generated for each bond-length, bond-angle, and improper dihedral, in the training set, and all are385

available in the release package.[68] When considering this term by term analysis, it should be kept in mind386

that the length of a bond or the value of an angle in an optimized geometry is determined not just by the387

parameters of the corresponding force field term, but also by the rest of the structure. For example, a bond388

length may be shifted by ring strain. However, when these values consistently differ between QM and MM389

geometries, this can be an indicator that the specific force field parameter requires further attention.390

Bond type [#16X2:1]-[#8X2:2], N=696 Bond type [#7:1]-[#7:2], N=32

Figure 9. Comparison of QM and MM energy-minimized bond lengths for two parameters. Left: divalent sulfursingle-bonded to a divalent oxygen. Right: divalent bond between nitrogens. Vertical line indicates the value of the forcefield’s equilibrium bond length. Orange and blue indicate results for initial and optimized force field. Dashed: Line ofidentity.

The fitting process moved most bond lengths and angles closer to the diagonals of these scatter plots,391

implying better agreement between MM and QM, as expected based on Figure 7. For a clear example,392

see Figure 9(left), where a change in the equilibrium bond length shifted the MM results to the diagonal393

and thus into better agreement with QM. However, a few of these scatter plots are more problematic. For394

example, Figure 9 (right), which examines a general N=N bond stretch, shows a small shift of the data points395

toward the diagonal, but does not correct the fact that this bond length falls in a narrow range across all the396

MM geometries but is varied in the QM geometries. In cases like this, greater accuracy might be achieved397

by creating two or more force field types for N=N bonds, rather than just one. Before taking such a step,398

though, one should consider whether the variations in the QM bond lengths trace to varied amounts of399

strain placed on the bond by other components of the structure. If so, then the accuracy of the N=N bond400

lengths should be improved by adjustment of other parameters that would correct the strain, rather than401

correcting parameters intrinsic to the bond itself.402

Relationships among force field equilibrium bond lengths, chemical environment, and strain, may be403

further explored by examining the lengths of a given bond type across the geometrically optimized con-404

formers of various compounds. Figure 10 illustrates this concept for a generic C-N single bond. The curves405

18 of 29



in the left panel show the energy-minimized central bond lengths in QM torsion profiles taken from the406

Roche dataset, including all cases where the central bond is matched by the SMIRKS pattern indicated.407

The rise and fall of an individual curve indicates a dependence of the central bond length on the torsion408

angle, and the vertical displacements of the various curves relative to each other indicate the torsion angle-409

independent differences of central bond lengths between different molecules, or different central bonds410

in the same molecule. When integrated over all torsion angles, the bond lengths across all instances of the411

central bond matched by this SMIRKS pattern has a bi- or tri-modal distribution (Figure 10 right panel). This412

result suggests that this generic bond type ought to be split into at least two or perhaps three more specific413

types determined by SMIRKS patterns matching more specific chemical environments.414

Figure 10. Dependence of bond lengths of a given force field type upon the chemical and conformational environ-
ment. Left: Length of the central bond as a function of the torsion angle in the Roche dataset for central bonds matchingthe C-N bond type indicated. Each line corresponds to the length of the C-N bond matching the b7 parameter for con-strained energy-minimized conformers over a range of torsion angles. Right: Histogram of the observed bond lengthsafter summing over the torsion angles. Solid line in both panels indicates the force field’s equilibrium bond length fortype b7, and dashed lines indicate the lengths for which the bond energy equals 1.2 kcal/mol. The lines labeled in redare b7 in the initial force field, and lines labeled in green are b7 after force field optimization. Example molecules andtheir given b7 bond(s) are highlighted on the far right, which correspond to typical environments where the bond lengthis 1.44 Å (orange), 1.46 Å (green), or 1.52 Å (violet).

3.1.3 Vibrational frequencies415

Fitting against the training set led to substantial improvements in the accuracy of the vibrational frequencies416

in the training data, relative to the reference QM results, as evident from a dramatic fall in the vibrational417

components of the objective function. This is evident in Figure 8b, which shows decreases in error for the418

sum of squared vibrational frequency differences for individual molecules. Indeed, the improvement from419

initial results (red) to fitted results (green) appears even more marked than that of optimized geometries420

(Figure 8a). The distribution of improvements for individual conformations (blue) also shows strong im-421

provement, with only a tiny minority of cases becoming less accurate with fitting. These results correspond422

to a 67% drop in the RMSE of individual MM vs QM frequencies; i.e., from 119 to 40 cm −1 (Table 3).423
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3.1.4 Torsional energy profiles424

Fitting also led to improvements in the accuracy of the torsional energy profiles in the training set (Figure 8c),425

although the improvements (red to green) appear less dramatic than for the geometric and vibrational426

components discussed above. As for the other objective function components, the improvements observed427

for many torsions come at the expense of decreased accuracy for some others (blue). The RMSE of the MM428

torsional energy profiles relative to the QM ones in the training set fell from 2.96 to 1.89 kcal/mol, a 36%429

drop (Table 3).430

It is also of interest to compare the MM and QM potential energy profiles for individual torsion angles431

across the full training training set, and a full set of comparisons is available in the Supporting Information.432

Sample plots for a torsional profile that improves with fitting and another that gets worse are provided433

in Figure 11, left and right panels respectively. Interestingly, the parameter in the second plot occurs 231434

times in the training set, so degraded performance is likely not due to lack of sufficient data, but instead to435

either changes in other portions of the force field, or improved performance on other molecules utilizing436

this same parameter at the expense of degraded performance for this particular target. Note that most437

torsional parameters appear in in many molecules in the training set, so fitting can improve accuracy for438

most occurrences while degrading it for others.439

The greater difficulty of fitting torsional profiles may result from the fact that these are particularly sen-440

sitive to nonlocal interactions within the molecules, such as longer-range sterics and electrostatics. Also,441

defining force field types for torsional terms is more complex than for most other terms in the force field,442

as multiple torsional terms contribute to the profile around a given bond, and torsional terms include step443

changes in periodicity. Note, too, that the present fitting process adjusted only amplitudes, and left peri-444

odicities and phases unchanged. Adjustment of these additional parameters will clearly be of interest in445

future rounds of force field development.446

Figure 11. Examples of torsional profiles that were improved (left) or degraded (right) by fitting. Data are for aspecific torsion angle in a specific molecule, as detailed below the plot. Blue: QM energy. Orange: force field energybefore training. Green: force field energy after training (Parsley). The metadata at the bottom explains which datasetthis data is drawn from, andwhich specificmolecule this torsion occurs in, as well as the SMIRKS pattern for the particulartorsion being fitted here. The total count of this SMIRKS pattern across the dataset (5) is also shown at the bottom, as wellas the parameter ID and the atom indices in the molecule. The full set of plots are available in the release package[68].

3.2 Test Set Results447

Results for data outside the training set provide an indication of the transferability of the new parameters448

and hence of the accuracy that may be expected in actual use. Here, we examine the ability of the new449

parameters to replicate QM-optimized gas-phase geometries for molecules outside training set, energy450

differences between gas-phase conformers, and, through MD simulations, physical properties of liquids.451
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3.2.1 Quantum chemical data452

The overall objective function for the test set is lower for Parsley (20,672) than for the initial force field453

(29,469). The distribution of improvements over the test-set compounds (Figure 8d) shows that the ob-454

jective function improves for almost all compounds, given that the blue histogram of differences has few455

positive values. Accordingly, improvements of 6-35% are observed in the terms that contribute to the ob-456

jective function (Table 3. It is worth noting that the test set exercises 415 out of the 500 parameters. We457

also grouped the bond lengths, bond angles, and improper dihedrals across test set compound according458

to their FF types and examined the improvement in accuracy by type, as illustrated for the bond-lengths459

in Figure 12. The full figure can be found in Supporting Information Figure 1. Clearly, optimization over460

the training set led to improved test-improvement for most parameters. Comparable plots for angles and461

torsions are available in the release package for this force field[69].462

Figure 12. Bond length RMSE comparison for initial and optimized force fields for the Full Set. For each bond type(b1, b2...), a gray circle indicates the RMSE of bonds of this type for the initial force field and arrows show the drops (green)or increases (red) in error on going to the new force field. (SMIRKS patterns for these parameter IDs can be retrievedfrom the force field XML file, openff-1.0.0-RC2.offxml[39].

We also tested the ability of the Parsley force field to replicate differences among conformations of463

gas-phase molecules in the test set. Note that this type of data is entirely absent from the training data.464

Nonetheless, the RMSE for these quantities fell by 12% on going from the initial force field to the new Parsley465

force field (Table 3). The improvements accuracy are distributed acrossmany compounds, rather than being466

dominated by improvements for a few, as evident from the histograms in Figure 8e.467

3.2.2 Physical properties of organic liquids468

We tested Parsley’s ability tomodel condensed phase properties by using it to compute densities, enthalpies469

of vaporization, static dielectric constants, enthalpies of mixing, and excess molar volumes, of organic liq-470
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uids and mixtures, and comparing with experimental data from NIST’s ThermoML. Note that no condensed471

phase data were used in the fitting process. As shown in Figures 13 and 14, the new Parsley force field472

offers competitive performance for these data, with marginal, though not statistically significant (by com-473

parision of the root-mean-square errors and their 95% confidence intervals), improvement over the previ-474

ous SMIRNOFF99frosst 1.1.0 release (Table 4). The overall accuracy also is similar to that of the established475

GAFF family of force fields. This pattern presumably reflects the fact that these physical properties are not476

sensitive to the valence parameters optimized here, and that condensed phase data were not used to guide477

the optimization.478

1

2

3

T
he

rm
oM

L

smirnoff99frosst 1.1.0 parsley 1.0.0

1 2 3
Estimated

1

2

3

T
he

rm
oM

L

gaff 1.81

1 2 3
Estimated

gaff 2.11

ρ (g/ml)

0

20

40

smirnoff99frosst 1.1.0 parsley 1.0.0

0 50
Estimated

0

20

40

gaff 1.81

0 50
Estimated

gaff 2.11

ε

40

60

80
smirnoff99frosst 1.1.0 parsley 1.0.0

50 75
Estimated

40

60

80
gaff 1.81

50 75
Estimated

gaff 2.11

Hvap (kJ/mol)

Figure 13. Results of pure property benchmarks. Liquid properties computed with various force fields, as labeled, arecompared with experiment. Density: �; dielectric constant: �; heat of vaporization: Hvap;

−2

0

2

T
he

rm
oM

L

smirnoff99frosst 1.1.0 parsley 1.0.0

−2.5 0.0
Estimated

−2

0

2

T
he

rm
oM

L

gaff 1.81

−2.5 0.0
Estimated

gaff 2.11

Hmix (x) (kJ/mol)

−1

0

smirnoff99frosst 1.1.0 parsley 1.0.0

−1 0
Estimated

−1

0

gaff 1.81

−1 0
Estimated

gaff 2.11

Vexcess (x)
(
cm3/mol

)

Figure 14. Results of binary mixture property benchmarks. Liquid properties computed with various force fields, aslabeled, are compared with experiment. Enthalpy of mixing: Hmix; excess molar volume of mixing: Vexcess.

22 of 29



Table 4. Measures of accuracy of force fields for the physical property benchmarks. RMSE: root-mean-square error;
R2: coefficient of determination; �: Kendall’s tau ranking accuracy metric. Subscripts and superscripts indicate 95%confidence intervals on these statistics.

Property Force Field RMSE R2 �

Vexcess (x)
(

cm3∕mol
) smirnoff99frosst 1.1.0 0.410.520.29 0.390.700.14 0.440.670.13parsley 1.0.0 0.390.510.26 0.440.710.18 0.500.710.22gaff 1.81 0.470.610.34 0.170.450.01 0.230.46−0.01gaff 2.11 0.410.540.27 0.360.660.10 0.420.620.14

Hmix (x) (kJ∕mol) smirnoff99frosst 1.1.0 0.640.760.50 0.500.670.25 0.490.660.28parsley 1.0.0 0.580.690.46 0.590.740.34 0.540.700.32gaff 1.81 0.690.870.52 0.450.620.25 0.440.630.22gaff 2.11 0.600.730.45 0.580.740.35 0.580.720.40
Hvap (kJ∕mol) smirnoff99frosst 1.1.0 6.037.564.24 0.790.900.62 0.700.830.50parsley 1.0.0 5.877.374.23 0.850.930.71 0.790.880.61gaff 1.81 5.537.123.97 0.800.900.63 0.720.840.54gaff 2.11 7.008.525.33 0.600.800.30 0.590.760.35
� (g∕ml) smirnoff99frosst 1.1.0 0.100.140.06 0.960.980.94 0.900.920.85parsley 1.0.0 0.100.150.05 0.960.980.94 0.900.920.85gaff 1.81 0.050.070.03 0.981.000.95 0.910.940.87gaff 2.11 0.050.070.03 0.991.000.97 0.920.940.87
� smirnoff99frosst 1.1.0 14.7818.1711.62 0.530.800.22 0.500.720.22parsley 1.0.0 15.7219.1912.54 0.530.790.22 0.490.690.20gaff 1.81 13.2215.6310.80 0.640.820.44 0.540.730.34gaff 2.11 12.1614.969.40 0.620.820.40 0.670.810.42

4 Using and Citing Parsley479

The present Parsley force field, formally named openff-1.0.0, can be accessed fromPython by installing the480

Open Force Field Toolkit with the command conda install -c omnia openforcefield openforcefields481

and then loading the force field as follows:482

483
from openforcefield . typing . engines . smirnoff import ForceField484

ff = ForceField (’openff -1.0.0. offxml ’)485486

The default version of Parsley includes hydrogen bond length constraints, which allow use of the typical487

2-4 fs timestep in molecular dynamics simulations. A second version without these constraints, which is488

suitable for geometry optimizations and single-point energy calculations, may be accessed as follows:489

490
ff = ForceField (’openff_unconstrained -1.0.0. offxml ’)491492

An example of the use of Parsley to run a molecular dynamics simulation can be found in Supporting Infor-493

mation section 3. Alternatively, the force field files themselves can be found under the openforcefields/of-494

fxml subdirectory of the openforcefields GitHub repository[70].495

The present Parsley versionmay be referred to as “Open Force Field (OpenFF) Parsley Force Field (v1.0.0)”496

on first reference, and “Parsley” thereafter. Newer Open Force Fields are in development, and updates in497

the OpenFF 1.x series will also be referred to as Parsley, while new major versions will receive updated498

codenames. To cite Parsley, please reference the latest version of this article and the DOI of the force field499

version you use. This information is available in the OpenForceField repository[70], and the present version500

may be cited as [39].501

To provide feedback on the performance of the OpenFF force fields, we highly recommend using the502

issue tracker at http://github.com/openforcefield/openforcefields. For toolkit feedback, use http://github.com/503

openforcefield/openforcefield. Alternatively, inquiries may be e-mailed to support@openforcefield.org, though504

responses to e-mails sent to this address may be delayed and GitHub issues receive higher priority. For505
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information on getting started with OpenFF, please see the documentation linked at http://github.com/506

openforcefield/openforcefield, and note the availability of several introductory examples.507

5 Conclusions and Future Directions508

We have reported a new force field with bonded, or valence, terms optimized against a range of gas-phase509

QM reference data. The resulting Parsley v.1.0.0 provides more accurate molecular geometries and confor-510

mational energetics, while preserving accuracy for a range of condensed phase properties. However, more511

benchmarking and testing would be of value. Areas of particular interest include:512

• Broadened range of chemistries513

• Additional condensed-phase properties, such as hydration and transfer free energies514

• Host-guest binding free energies515

• Protein-ligand binding free energies516

• Small molecule conformer generation and optimization517

• Ligand strain energy in protein-ligand crystal structures518

• Further comparisons with other force fields519

Work along these lines has already begun [60], and we look forward to interacting with others in the com-520

munity to continue assessing the performance of this and future OpenFF force fields.521
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