

1

A quick policy to filter reactions based on feasibility in AI-guided
retrosynthetic planning

Samuel Genheden*, Ola Engkvist, Esben Bjerrum

Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg, Sweden

* Corresponding author: samuel.genheden@astrazeneca.com

Abstract
A neural network-guided Monte Carlo tree search (MCTS) has been shown to be a promising algorithm
for computer-aided synthesis prediction. Here we train and investigate a filter policy that removes
unfeasible reactions from the search. We investigate three different methods to generate negative
data that the filter policy model can be trained on, and we show that these methods are
complementary to each other. Therefore the most robust model is one that combines all generated
negative data. The filter in itself is quick (< 0.1 s per prediction on average) but using the filter policy
in the MCTS results in a doubling of the search time. However it only leads to a small reduction in the
success rate of finding synthetic routes (< 1%) and we are able show that using filter policy the MCTS
algorithm produce more promising routes, although the predicted routes are more complex. The filter
policy has been integrated in the AiZynthFinder software.

Keywords: neural networks, Monte Carlo tree search, synthesis prediction, reaction feasibility

Introduction
Computer-assisted synthesis prediction1,2 has undergone a tremendous change the last couple of years
from hand-encoded rules based on a rather small database of reactions3,4 to automated algorithms
guided by artificial intelligence that has been trained on millions of known reactions.5,6,7 The seminal
paper by Segler et al.8 showed that suitable retrosynthetic templates for a compound9 could be
coupled with a Monte Carlo tree search (MCTS)10 in an efficient retrosynthetic planning tool. Similar
ideas forms the basis of the open-source ASKCOS suite of tools.11 Thakkar et al. implemented a
simplified version of the MCTS algorithm and investigated the effect of the dataset used to train the
neural network.12 The code used by Thakkar et al., was recently productionized and released to the
public as the AiZynthFinder tool.13

The MCTS algorithm consists of four steps: selection, expansion, rollout and update.9,10 In the
expansion phase new nodes are added to the search tree: first, the precursor molecules represented
by the node which is to be expanded are subjected to an expansion policy, a neural network trained
to recommend retrosynthetic templates for a given compound. Typically, only the top-50 templates
are returned to limit the search space, because it is not likely that the remaining templates are
applicable on the query molecule. The second step is to apply the templates in-silico on the query
molecules, which will produce the new nodes in the search tree. The edge between the parent and
child node can be seen to represent a chemical reaction in the backwards direction. However, there is
nothing inherent in this produce that guarantees that the chemical reaction is feasible, i.e. it would be
a successful reaction in the wet-lab. The only guarantee is that the template is applicable in-silico. To
improve the accuracy of the MCTS algorithm, Segler et al., introduced an in-scope filter; 9 in a third step

2

of the expansion phase, the created reactions are subjected to a filter policy, a neural network trained
to determine if a reaction is feasible or not. Only reactions and the newly created child nodes, that are
judged to be feasible, are kept. To train the filter policy, Segler et al., constructed artificially unfeasible
reactions using two strategies. First, they created 30 M unfeasible reactions by taking the additional
products formed when applying the recorded templates to the reactants due to lack of template
specificity. Secondly, they created 70 M unfeasible reaction by randomly picking a template for a
random set of reactants.

In this paper we investigate the choice of method for generating negative data, its influence on the
filter policy and consequences for the route finding in the MCTS algorithm as implemented in the
AiZynthFinder software.13 We build upon the existing methods for generating negative data,8,14 but
further suggests a third and novel method designed to give more plausible negative examples that are
more difficult to distinguish from the reactions recorded in literature. We investigate and compare
the three approaches to artificially generate unfeasible reactions on their ability to generalize between
the constructed datasets. Furthermore we study the effect of the resulting filter policies on the MCTS
algorithm ability to find plausible synthetic routes for a given molecule Our main objective is not to
find as many possible routes as possible, but routes that seem plausible to an expert chemists. This is
a better metric than simply the number of solved routes as this might hide unfeasible routes.

Methods
Template library. The database of reaction templates was obtained from the publicly available US
Patent Office dataset15 as prepared by Thakkar et al.12 The prepared library consists of 911,869
reactions distributed over 46,695 unique templates.

Figure 1 – Illustration of the approach to generate negative data, i.e. unfeasible reactions. The template library
with feasible reactions are shown to left and consist of rows of reactants, templates and true products (in the

illustration there a four such rows). The different approaches to generate unfeasible reactions then pick a
template row for each row of reactants which gives false products. Not all rows of reactants gives false

products.

3

Generation of negative data. In order to generate negative data, i.e. reactions that are unlikely to be
successful in the wet-laboratory, three different procedures were employed (see Figure 1). In the first,
which we will denote as strict in the following, we applied the exact template recorded for each row
of reactants in the template library. This gives the recorded product but also other products due to the
non-specificity of the template. The additional products together with the recorded reactants were
taken as negative data. In the second procedure, which we will denote as random, we picked a random
template from the template library for each row of reactants in the dataset. Templates that were
identical to the dataset template, as well as templates that produced the recorded product, were
discarded. 1000 trials were attempted for each row of reactants; if an applicable template could not
be found after these many iterations, the search was terminated. In the third procedure, which we will
denote as recommender, we trained a neural network to suggest templates. We looked among the
top-20 suggested templates for applicable templates, and as with the random procedure, we discarded
the recorded template or any templates that gave the recorded product. The recommender neural
network is described next.

Template recommender neural network. The architecture of this neural network follows the
architecture of the rollout policy used in the tree search algorithm, 12 but adapted to use on reactant
molecules as follows. The input is a 2048-bit fingerprint (ECFP4, computed by the Morgan algorithm in
RDKit16,17) of the reactants that were created by summing the fingerprints of the individual reactants.
The input is passed to a fully connected layer with ELU activation followed by a drop-out layer and
finally a SoftMax activation to give probabilities for each of the templates in the library. In the model
used to generate negative data, we used 512 nodes in the dense layer and a drop-out rate of 0.4,
although we attempted a limited hyper-parameter search with 1024 nodes in the dense layer and
drop-out rates of 0.5 and 0.6. The accuracy of the validation set was not significantly affected by the
exact values of the hyper-parameters. We trained the neural network using the USPTO template
library.15 Templates were represented as binarized labels in a one-vs-all fashion. Training, validation
and test sets were constructed as random 90/5/5 split of the template library. We used the Keras
interface of Tensorflow18 employing an Adam optimizer with an initial learning rate of 0.001, and
categorical cross entropy loss. The training was carried out for 50 epochs with a batch size of 256.

Figure 2 – Network architecture for filter policy

4

Filter policy training. The architecture of the neural network for the filter policy closely follows the
architecture outlined by Segler et al.8 and is depicted in Figure 2. The network has two inputs: the
ECFP4 of the product and the ECFP4 of the reactions, constructed as a difference fingerprint (the sum
of the fingerprints of the reactants are subtracted from the fingerprint of the product).19 The output is
the probability of the feasibility of the reaction. The model was trained by concatenating the USPTO
template library with the negative data, the output being 1 if the reaction was from the template
library and 0 if it was from the negative dataset. Training, validation and test sets were constructed as
random 90/5/5 split of the template library. We used the Keras interface of Tensorflow18 employing
an Adam optimizer with an initial learning rate of 0.001, and binary cross entropy loss. The training
was carried out for 50 epochs with a batch size of 256.

Evaluation of filter policies. To evaluate the performance of the filter policies on the test set we use a
selection of metrics. Balanced accuracy is the average of the recalls of the feasible and unfeasible
reactions,20 and is used instead of plain accuracy because some of the test sets are highly imbalanced.
Average precision or the area under the curve of the precision-recall graph is used to gauge the
performance over the whole range of decision cutoffs. Recall is the fraction of feasible reactions
predicted to be feasible by the filter. The uncertainty of the balanced accuracy, average precision and
recall was calculated by bootstrapping, using 500 resamples.

Route finding. The filter policy was implemented in the AiZynthFinder software.13 The filter was
applied when a child node is selected for the first time; the reaction leading to this node is evaluated
by the filter policy and if the probability returned by the policy is lower than a threshold the child node
is discarded. The threshold depends on the filter policy and is discussed below. To evaluate the effect
of the filter on the capability of the tree to find routes, we created a set of compounds of 5000 random
molecules from ChEMBL.21 The compounds were assigned the most likely tautomer using RDKit.17 The
SMILES strings22 of these compounds were given as input to the AiZynthFinder software, using an
internal stock of molecules as stop condition.

Results and discussion

Figure 3 – Validation loss and accuracy as a function of epoch for the training of the recommender neural
network

Evaluation of the recommender neural network. The training of the neural network model for the
recommender converges rather quickly as seen in Figure 3. The accuracy of the validation set converges
to 0.79 within circa 15 epochs. The top-10, top-20 and top-50 accuracy of the validation set converges
to 0.95, 0.96 and 0.97, respectively, and the same statistics are obtained for the test set as well.
Because the negative templates for each reactant will be drawn among the top-20 suggested ones,

5

this level of accuracy seems appropriate for the intended application. Therefore, no further
optimization of the recommender network was attempted.

a) b)

Figure 4 – Validation loss (a) and validation accuracy (b) as a function of epoch for four different policy filter
models.

Table 1 – Statistics for different filter policy model1
Model Number of

negative data points2
Average precision Balanced accuracy Recall

strict 77,760 (7.9%) 1.00 0.88 0.98
random 838,057 (47.9%) 0.99 0.95 0.97
recommender 705,667 (43.6%) 0.96 0.87 0.90
strict + random 915,817 (50.1%) 0.98 0.93 0.95
strict + recommender 783,427 (46.2%) 0.95 0.86 0.88
random + recommender 1,543,724 (62.9%) 0.95 0.91 0.89
all 1,621,484 (64.0%) 0.95 0.90 0.89

1The balanced accuracy and the recall was determined at a decision cutoff of 0.5. The bootstrapped uncertainty of the
average precision, balanced accuracy, and recall is less than 0.005 for all sets. 2The number in parenthesis show the
percentage of the number of negative data points to the total number of data points.

Table 2 – Balanced accuracy for different combinations of model and test dataset1

 Filter policy model

 Test set strict random recommender strict + random strict + recommender random + recommender all

strict 0.88 0.67 0.73 0.89 0.88 0.76 0.88

random 0.59 0.95 0.95 0.98 0.94 0.98 0.98

recommender 0.53 0.79 0.87 0.80 0.95 0.97 0.97

random + strict 0.62 0.96 0.93 0.93 0.94 0.96 0.98

strict + recommender 0.57 0.78 0.94 0.81 0.86 0.95 0.96

random + recommender 0.57 0.90 0.96 0.90 0.96 0.91 0.96

all 0.58 0.89 0.95 0.90 0.96 0.95 0.90

1 The numbers in bold on the diagonal are the same numbers as in Table 1.

Performance of filter policy models. We trained several filter policy models based on different
collections of negative data: Apart from training models based on just the strict, random and
recommender datasets, we also trained on combinations of these sets. The positive dataset was always
the USPTO dataset. A shown in Table 1, the number of negative data points ranges from 77,760 for the
strict set to 1,621,484 for the combination of all three datasets. The proportion of negative data points
in the strict, random and recommender sets are 7.9, 47.9 and 43.6%, respectively, showing a spectrum

6

of imbalanced datasets. The training for all models converges quickly as seen in Figure 4, the validation
loss is converged after approximately 30 epochs and the validation accuracy after only approximately
15 epochs. Even though the validation loss show a minimum, the validation accuracy is not affected.
We attribute this behavior to that the network predicts more towards 0 or 1 as the training progresses.
This affects the cross entropy loss, but not the accuracy. The balanced accuracy, the average precision
and the recall is shown in Table 1. Overall the performance is excellent as judged by the average
precision, which ranges from 0.95 to 1.0. The average precision should be a better metric for the overall
performance than the ubiquitous area under the curve of the ROC curve for imbalanced dataset,
because it is sensitive to the sizes of the different classes. Furthermore, the recall is excellent for the
strict and random models, but less so for the combined models. However, the optimal decision
threshold is likely not 0.5 for all models. The balanced accuracy ranges from 0.86 for the strict +
recommender combinations, which is reasonable, to 0.95 for the random model, which is excellent.

Next, we used the balanced accuracy to compare the performance of the models on different test
datasets, which may thus contain negative samples derived by other means than used for the training
set. This is shown in Table 2. For the strict model, we see that it only performs well on its own test set,
whereas the random and recommender models perform well on many test sets but worst on the strict
dataset. The recommender model performs better on the random test set, than it does on its own test
set, whereas the opposite is true for the random model. This fits our hypothesis and intention that the
recommender dataset on average should contain harder to predict negative examples than the
random set. Filter policies trained on the random set have not been presented with so many of the
hard examples during training and more often fails to predict them correctly. Using the top-20 for the
recommender set may on the other hand still include some samples which are like the random after
the first few suggestions. It may be likely that choosing another threshold for the recommender
network data could influence these results. The lower performance of all the different single train set
policies while tested on differently derived data, highlights that the three different procedures to
generate negative data complements each other. Furthermore, performance increases are often seen
with combinations of datasets are used for training. We see that any combination model including the
strict negative dataset performs well on all test sets, and often combinations of trainsets increases the
performance in comparison with the test set derived with the same method as the training set. As
example the balanced accuracy is improved from 0.87 to 0.95 and 0.97 for the recommender test set
by adding strict or random data during data. This cannot be due to the increased train set size alone,
as the strict dataset is by far the smallest (c.f. Table 1). The best overall performance is, perhaps
unsurprisingly, obtained by combining all three datasets of negative data during training. Therefore,
we will continue evaluating the performance of the retrosynthesis tool using four sets of filter policies:
strict, random, recommender and all.

7

Table 3 – Recall and specificity for different filter policy models at different levels of decision cutoff

 Strict Random Recommender All
Threshold Recall Specificity Recall Specificity Recall Specificity Recall Specificity

0.05 0.99 0.65 0.99 0.88 0.96 0.72 0.98 0.85
0.10 0.99 0.68 0.98 0.89 0.94 0.75 0.98 0.87
0.15 0.99 0.70 0.98 0.90 0.93 0.77 0.97 0.88
0.20 0.99 0.71 0.98 0.91 0.93 0.79 0.97 0.89
0.25 0.99 0.72 0.98 0.91 0.92 0.80 0.97 0.89
0.30 0.98 0.73 0.98 0.91 0.92 0.81 0.96 0.89
0.35 0.98 0.74 0.97 0.92 0.91 0.82 0.96 0.90
0.40 0.98 0.75 0.97 0.92 0.91 0.83 0.96 0.90
0.45 0.98 0.76 0.97 0.92 0.90 0.84 0.95 0.90
0.50 0.98 0.77 0.97 0.93 0.90 0.84 0.95 0.91
0.55 0.98 0.78 0.97 0.93 0.89 0.85 0.95 0.91
0.60 0.98 0.79 0.97 0.93 0.88 0.86 0.95 0.92
0.65 0.98 0.80 0.96 0.93 0.88 0.87 0.94 0.92
0.70 0.98 0.82 0.96 0.94 0.87 0.88 0.94 0.92
0.75 0.98 0.83 0.96 0.94 0.86 0.88 0.94 0.93
0.80 0.98 0.84 0.95 0.94 0.85 0.89 0.93 0.93
0.85 0.97 0.86 0.95 0.95 0.84 0.90 0.93 0.93
0.90 0.97 0.87 0.94 0.95 0.82 0.91 0.92 0.94
0.95 0.97 0.90 0.93 0.96 0.79 0.93 0.90 0.95

Numbers in grey are outside our chosen thresholds and numbers in bold highlights the chosen threshold

Decision cutoff. In the retrosynthesis tree search, we need to set a threshold to decide when to reject
or to keep a reaction. We are mostly interested in the recall capacity (true positive rate), i.e. we do not
want to reject feasible reactions. We still want to maintain a high specificity (true negative rate), i.e.
we want to reject unfeasible reactions, although that is secondary to having a high recall. Therefore,
we computed the recall and specificity for different thresholds and show them in Table 3. As guidelines
we decided to have at least 0.90 recall and a specificity of 0.8. We also tried out a number of different
thresholds and looked at distribution of the filter policies of the reactions explored in the tree search
(see Figure S1) to determine that it was a smooth continuum of probabilities. For the strict model, we
then need a threshold of 0.65, giving a recall of 0.98. For the random model, we could have a specificity
of 0.9 and a recall at 0.98 if we choose a threshold of 0.25, so we used that. For the recommender
model, we choose a threshold of 0.35, giving a recall of 0.92 and a specificity of 0.82. Finally, for the all
model, we finally settled on a threshold of 0.05 giving a recall of 0.98 and a specificity of 0.85. We also
tried a threshold of 0.35, but that rejected too many reactions in the tree search (see below).

Table 4 – Statistics of search time and route-finding capabilities

Filter Average increase in search
time

Number of solved
compounds

Number of unsolved
compounds

No N/A (1) 3875 1125
Strict 2.0 3849 1151

Random 1.6 3863 1137
Recommender 2.0 3808 1192

All 1.6 3836 1164

Table 5 – Average difference in selected tree statistics between using a filter and not using one

Filter Number of
nodes

Number of
steps

Number of
precursors

Number of
precursors in stock

Number of
found routes

Strict 7.8 -0.04 -0.01 -0.01 5.7
Random 26.6 -0.03 -0.07 -0.07 15.9

Recommender 61.2 -0.10 -0.12 -0.10 30.5
All 30.4 -0.07 -0.10 -0.09 20.0

8

Effect of filter on tree search. We measure the effect of the filter policies on the tree search by the
route finding capability. How much better or worse does the tree search become at finding a synthetic
route for a target compound when a filter is applied? This is summarized in Table 4. First, we can see
that the application of the filter policy roughly doubles the search time, and this is expected because
the application of the filter policy increases the number of calls to the most expensive routines in the
tree search: the application of the retrosynthetic template using RDChiral23 and the predictions by a
TensorFlow18 neural network. The filter policy network is in itself fast, the average prediction time is
0.03 s for 4,000 random reactions from the search, but repeated calls to the network slows down the
search. Furthermore, when using the filters, we also populate the search tree with many more nodes
as seen in Table 5; the average number of nodes increases with up to 61 nodes. It is noticeable that
whenever the recommender or all model is used, more nodes are populated. Furthermore, we see that
there is a general decrease in the number of compounds for which the algorithm finds a synthetic
route. The decrease ranges from 12 when using the random policy to 67 when using the recommender
policy. (When the threshold of the all policy was set to 0.35, the number of unsolved compounds
increased with 124). However, according to the statistics in Table 5, the number of steps and the
number of precursors does not change substantially when using a filter. The reaction routes are slightly
longer and therefore the number of precursors are higher. Finally, we can see that the number of found
routes decreases by the application of filter.

Table 6 – Number of solved and unsolved compounds for different categories

Solved without filter Unsolved without filter
Filter Solved with filter Unsolved with filter Solved with filter Unsolved with filter
Strict 3837 38 12 1113

Random 3800 75 63 1062
Recommender 3734 141 74 1051

All 3774 101 62 1063

Inspection of synthetic routes. It is of interest to dissect the differences between using a filter and not
using one a little bit further by computing the contingency table for the four filter policies when
comparing to using no filter. These counts are shown in Table 6. There are between 3734 and 3837
compounds for which a solution is found both when using a policy and when not using one, and there
are between 1051 and 1113 compounds for which no solution is found irrespectively if a filter is used
or not. The former compounds can be considered easy and unchallenging, whereas the latter
compounds can probably be considered hard to predict with the current methodology. However, there
are between 38 and 141 routes that are only found when not using a filter, and between 12 and 74
routes that are only found when using a filter, indicating that using and not using a filter can be slightly
complementary.

As mentioned in the introduction, we aim to produce as many plausible routes as possible – not only
as many routes as possible. Therefore, to analyze the quality of the predicted routes, we opted for
analyzing and comparing the routes solved irrespectively if a filter or not was used. By comparing
solved to solved routes, we can highlight different strategies used by the tree search when using or
not using a filter. First, we analyzed the classes of the reaction used in the top-ranked routes. We
extracted all the top-ranked routes for compounds for which a solution was found with all filters or
with no filter, and then we listed all the reactions used in the top-ranked routes and what reaction
class they belong to. For each unique reaction class we then computed the difference between the
occurrence in routes produced when using no filter and the occurrence when using the All filter. The

9

top-5 occurrence differences by reaction classes with no filter and the All filter are shown in Table 7.
We see that when a filter is used, more protective group chemistry is used as well as reactions that are
unclassifiable. Furthermore, we see that the filter effectively lowers the usage of halogenation
reactions and other functional group conversions. These kind of templates are likely to encounter
selectivity issues, and hence it seems that the filter is especially good at picking up such situations.

Table 7 – Reaction classes and the difference in occurrence between using the All filter and not using
a filter.

Reaction classes used more with All filter Reaction classes used more when no filter is used
Reaction class Occurrence difference Reaction class Occurrence difference
NH deprotections -497 Halogenation 996
RH deprotections -373 Other functional group

conversion
954

Unassigned -238 N-acylation to amide 625
Heteroaryl N-alkylation -109 Other functional group

additional
341

O-acylation to ester -107 Acid to acid chloride 152

We then extracted a number of solved routes that we inspected. We identified solved routes for which there
was a large difference in the number of steps in the absence of filter and when using the All filter. In Figure 5, we
show such a pair of routes that differ substantially in length. Without any filter, MCTS finds a route with a single
step. However, this reaction is unlikely due to selectivity issues, and the All filter assigned a 0.005 probability to
this reaction. When the All filter was used, the MCTS finds a route with six steps. The first reaction is a benzyl
protection of one the hydroxyl groups, which appears as an attempt at resolving the selectivity issue, and is a
more intelligent start of the route. However, the second step, an ester hydrolysis, is seemingly unnecessary as it
is later reversed in step 5 . Still, over all the route suggested when using the All filter gives better options for a
chemists to work with.

Figure 5. Example routes no 1. A) the route suggested when not using a filter, and B) the route suggested when
using the All filter.

Another example is shown in Figure 6. Both of the routes involve similar reactions, and both end with
an amide coupling. The route proposed when not using the filter has as the second step a C-O coupling
with ethanolamine, but it is unclear if the reaction is sufficiently specific.24 The All filter would have
rejected this reaction with a 10-4 probability. The route proposed when using the All filter starts with a

10

benzylation, followed by bromination with N-bromosuccinimide and debenzylation. It then alkylates
the hydroxyl group with a side chain which contains a highly sensitive azide group, before performing
a Suzuki coupling. This route suggests a more elaborate sequence of chemistry than the shorter routes
suggested when not using the filter. However, the order of the steps could be reshuffled or modified,
to avoid the use of the azide group.

 Figure 6. Example routes no 2. A) the route suggested when not using a filter, and B) the route suggested when
using the All filter.

We also identify a few instances where MCTS with the All filter suggested a route that was shorter than
the one suggested with a filter. An example of such a route is shown in Figure 7. For this compound,
the route suggested when using no filter is questionable. For instance, the tosyl protecting group is
removed on step 3 to then immediately replace it via reaction with benzenesulfonylchloride on step 4.
On the contrary, the route suggested when using the All filter is shorter and convergent.

We show a few other such pairs of routes in the Supplementary information. In most cases, the route
suggested when using the All filter consists of more complex chemistry than the route suggested when
using no filter. The routes are not always perfect, and will require some optimization by a chemist. It
is also not always clear how to interpret why the All filter rejects a reaction. However, we believe that
the often longer routes suggested when using the All filter overall are a better source of ideas for
synthesis planning.

11

Figure 7. Example routes no 3. A) the route suggested when not using a filter, and B) the route suggested when
using the All filter.

It is also arguable interesting to compare solved routes to partially solved (unsolved) routes, but in our
experience it is very hard. For instance, the MCTS more often hits the maximum depth when it is unable
to solve a route than when it finds a solution. This of course could be fixed by increasing the maximum
depth, but this would increase the fraction of solved routes irrespectively if we use a filter or not.
Therefore, it is hard to entangle the different search parameters into a clear causation relationship.
Therefore, we did not continue with such an analysis.

Conclusions
We investigated three different ways of generating negative data and the effect this has on filter
policies and route finding in a neural network guided MCTS algorithm for retrosynthetic analysis. Our
proposal of using a neural network recommendation for selection of templates for negative data
generation, complemented the already existing methods of using random template selection or
specificity of the templates to generate negative examples. The combination of data derived with all
three methods provided the most robust filter network with the best performance on all test sets.
Using the filter only leads up to a small increase in the number of unsolved routes, at an acceptable
increase in search time (~ 2x). Interestingly the number of nodes populated by the tree search was
increased with the filters and some compounds could only be solved with the filter policies activated.
Comparison of routes proposed when using a filter or when not using a filter, leads us to believe that

12

the filter is for the better. Although the routes suggested when using a filter might be more complex
and not fully optimized, they provide a better start for further retrosynthetic planning. The filter policy
trained on the combination of negative datasets will be made available as an option in the
AiZynthFinder software open-sourced at https://github.com/MolecularAI/aizynthfinder

Acknowledgements
We thank Nidhal Selmi for evaluating the output of the tree search.

References

1 Corey, E. J.; Todd Wipke, W. Computer-Assisted Design of Complex Organic Syntheses. Science. 1969, 166
(3902), 178–192. https://doi.org/10.1126/science.166.3902.178.
2 Engkvist, O.; Norrby, O.; Selmi, N.; Lam, Y.-H.; Peng, Z.; Sherer, E. C.; Amberg, W.; Erhard, T.; Smyth, L. A.
Computational Prediction of Chemical Reactions: Current Status and Outlook. Drug Discov. Today 2018, 23 (6).
https://doi.org/10.1016/j.drudis.2018.02.014.
3 Pensak D., A.; Corey E., J. LHASA—Logic and Heuristics Applied to Synthetic Analysis. In Computer-Assisted
Organic Synthesis, American Chemical Society. 1977, 61, 1–32
4 Ihlenfeldt, W.-D.; Gasteiger, J. Computer-Assisted Planning of Organic Syntheses: The Second Generation of
Programs. Angew. Chemie Int. Ed. English 1996, 34 (2324), 2613–2633.
https://doi.org/10.1002/anie.199526131.
5 Coley, C. W.; Green, W. H.; Jensen, K. F. Machine Learning in Computer-Aided Synthesis Planning. Acc. Chem.
Res. 2018, 51 (5), 1281–1289. https://doi.org/10.1021/acs.accounts.8b00087.
6 Coley, C. W.; Thomas, D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.;
Rogers, L.; Gao, H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W. H.; John Hart, A.; Jamison,
T. F.; Jensen, K. F. A Robotic Platform for Flow Synthesis of Organic Compounds Informed by AI Planning.
Science (80-.). 2019, 365 (6453). https://doi.org/10.1126/science.aax1566.
7 Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. Molecular Transformer: A
Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci. 2019, 5 (9), 1572–1583.
https://doi.org/10.1021/acscentsci.9b00576.
8 Segler, M. H. S.; Preuss, M.; Waller, P. Planning Chemical Syntheses with Deep Neural Networks and Symbolic
AI. Nature. 2018. 555, 604-610 https://doi.org/10.1038/nature25978.
9 Segler, M. H. S.; Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction.
Chem. - A Eur. J. 2017, 23 (25), 5966–5971. https://doi.org/10.1002/chem.201605499.
10 Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Member, S.; Cowling, P. I.; Rohlfshagen, P.; Tavener, S.;
Perez, D.; Samothrakis, S.; Colton, S. A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput. Intell.
AI Games 2012, 4 (1). https://doi.org/10.1109/TCIAIG.2012.2186810.
11 Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of Organic Reaction Outcomes
Using Machine Learning. ACS Cent. Sci. 2017, 3 (5), 434–443. https://doi.org/10.1021/acscentsci.7b00064.
12 Thakkar, A.; Kogej, T.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E. J. Datasets and Their Influence on the
Development of Computer Assisted Synthesis Planning Tools in the Pharmaceutical Domain. Chem. Sci. 2019.
https://doi.org/10.1039/C9SC04944D.
13 Genheden, S.; Thakkar, A.; Chadimova, V.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E. J. AiZynthFinder: A Fast
Robust and Flexible Open-Source Software for Retrosynthetic Planning. J. Cheminf. 2020, 12
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00472-1
14 Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of Organic Reaction Outcomes
Using Machine Learning. ACS Cent. Sci. 2017, 3 (5), 434–443.
15 D. Lowe, Chemical reactions from US patents, 1976–Sep 2016,
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/ 5104873, accessed 31-
04-2018.
16 Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742−754
17 RDKit: Open-source cheminformatics, http://www.rdkit.org.

13

18 Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.;
Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.;
Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.;
Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. 2015.
19 Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. Development of a Novel Fingerprint for Chemical
Reactions and Its Application to Large-Scale Reaction Classification and Similarity. J. Chem. Inf. Model. 2015, 55
(1), 39–53. https://doi.org/10.1021/ci5006614.
20 Brodersen, K. H.; Ong, C. S.; Stephan, K. E.; Buhmann, J. M. The Balanced Accuracy and Its Posterior
Distribution. In Proceedings - International Conference on Pattern Recognition; 2010; pp 3121–3124.
https://doi.org/10.1109/ICPR.2010.764.
21 Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis,
L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. P.; Papadatos, G.,
Smit, I.; & Leach, A. R. The ChEMBL database in 2017. Nucl. acids res., 2017, 45(D1), D945–D954.
https://doi.org/10.1093/nar/gkw1074
22 Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and
Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28 (1), 31–36. https://doi.org/10.1021/ci00057a005.
23 Coley, C. W.; Green, W. H.; Jensen, K. F. RDChiral: An RDKit Wrapper for Handling Stereochemistry in
Retrosynthetic Template Extraction and Application. J. Chem. Inf. Model. 2019, 59 (6), 2529–2537.
https://doi.org/10.1021/acs.jcim.9b00286.
24 Shafir, A.; Lichtor, P. A.; Buchwald, S. L. N-versus O-Arylation of Aminoalcohols: Orthogonal Selectivity in
Copper-Based Catalysts. J. Am. Chem. Soc. 2007, 129, 3490–3491. https://doi.org/10.1021/ja068926f.

14

Supplementary information

a)

b)

c)

d)

Figure S1 – the distribution of the filter probability of the reactions in the tree search.

15

Example of more routes

The route suggested when using no filter is shown atop the route suggested when using the All filter.

Here the simple transesterification reaction suggested when using no filter seems to be okay, but is rejected by the All filter. Instead the algorithm suggests, when the filter is applied, a long
route with multiple redundant protection and deprotection steps.

16

17

18

19

