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Abstract 
Computational power and quantum chemical methods have improved immensely since 

computers were first applied to the study of reactivity, but the de novo prediction of 

chemical reactions has remained challenging. We show that complex reactions can be 

efficiently and autonomously predicted using chemical activation imposed by simple 

geometrical constraints. Our approach is demonstrated on realistic and challenging 

chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural 

product and several oxidative addition reactions of complex drug-like molecules. Notably 

and in contrast with traditional hand-guided computational chemistry calculations, our 

method requires minimal human involvement and no prior knowledge of products or 

mechanisms. Imposed activation can be a transformational tool to screen for chemical 

reactivity and mechanisms as well as to study byproduct formation and decomposition. 

 

Main 
Under typical conditions, chemical kinetics, with timescales of seconds to days, is at least 

fifteen orders of magnitude slower than the femtosecond timescales of quantum 

dynamics. Even the most facile reactions are vanishingly unlikely to occur spontaneously 

in large-scale, state-of-the-art computer simulations.1 Consequently, the de novo 

prediction of chemical reactivity remains one of the most important challenges in 

computational chemistry. 

Despite the unfavourable timescales, multiple methods have been developed to predict 

chemical reactions using dynamical simulations, potential energy surface exploration, 

and machine learning (ML). In dynamical approaches, time-dependent simulations are 

biased to increase the probability of rare events by artificial attractive interatomic forces2–

5 or by performing simulations under high-energy conditions.6,7 Alternatively, reaction 

paths can be generated by “walking” the potential energy surface between products and 

reactants, probing only necessary dimensions of the full surface.8–10 Machine learning 
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models can predict chemical reactions based on learned information from the literature 

and databases (e.g., patent fillings).11–15 Finally, heuristics approaches encode and 

formalize human-derived chemical transformation rules.16–18 

Nevertheless, current techniques have significant drawbacks that curtail their general 

use. Standard computational chemistry techniques require fairly accurate initial guess 

structures to converge to reasonable transition states. Importantly, this necessitates 

knowledge of the reaction mechanism itself. Systematic and exhaustive reaction pathway 

searches are computationally costly,19 and difficult to scale to larger molecules.20–22 

Heuristics approaches can map extensive reaction networks23 but face issues when 

confronted with non-conventional bonding and organometallic complexes.16 

Although these issues could, in principle, be solved using ML and data mining, the 

available data (e.g., from patent filings and publications) is heavily clustered around 

molecular families thought to be of economic or academic importance24 and is skewed 

towards reactions commonly performed.13 Data biases produce, for example, 

unnecessary sequences of protection and deprotection steps.14 ML approaches trained 

on currently available data can be thought of as predicting the actions of chemists rather 

than the actions of molecules. 

Herein, we describe a simple computational approach that automatically and robustly 

explores chemical reaction pathways from knowledge only of the reactants and their 

reactive bonds. Specifically, we show that these pathways can be obtained by 

conformational exploration with a chemically activating constraint. Reactions of sizable 

molecules are found rapidly with only modest computational resources using state-of-the-

art semi-empirical methods.25 We demonstrate this approach using three case studies: 

(1) an epoxide-initiated stereoselective polyene tricyclization cascade with many side 

products, (2) a solvent-mediated Michael addition with a proton shuttle involving multiple 

water molecules, and (3) the late-stage oxidative addition of ten drug-like molecules with 

electronically unsaturated palladium phosphine complexes. 

Results  
Transition state theory describes chemical reactions as primarily occurring through the 

transition state, the highest energy saddle point (a critical point of order 1) that lies on the 

reaction coordinate connecting reactants and products.26 If the barrier to products is a 

mountain range, the transition state is the highest point on the most accessible pass 

through this range.27 Transition states are not readily found without a suitable initial 

geometry. The high dimensionality of the coordinate space of even moderately sized 

molecules precludes any brute force search,28 and characterizing transition states 

requires costly second-derivative calculations.29 

Conformer generation,30 the identification of local minima on the potential energy surface, 

suffers from the same dimensionality issues but is otherwise significantly simpler. Indeed, 

energy minimization always yields a local minimum, irrespective of starting structure, as 

a consequence of the variational principle.26 Modern conformer generation methods can 



 

 

rapidly and reliably find and identify many low-lying conformers starting from only a single 

reasonable chemical structure as input.31–35  

Here, we find reaction pathways and products in a fully automated fashion using 

conformer generation with applied constraints. A chemical coordinate (such as the length 

of a bond) is chosen as the activating coordinate 𝑞‡. Conformer generation is performed 

while constraining 𝑞‡ to a value between the initial reactant structure and possible product 

structures to explore the orthogonal coordinates 𝒒⊥
‡. To continue with the mountain range 

analogy, this corresponds to a search for valleys, local energy minima in the constrained 

space amidst the range separating products from reactants. These valleys, found by 

conformational exploration, are possible reaction pathways. A subsequent relaxed scan 

of 𝑞‡ pushes the molecule along discovered pathways, walking the valleys to the 

products. We note that neither approximate transition structures, nor the identity of 

reaction products, nor any training data are required in the search. 

 

 

Figure 1: Diagram of reaction search by conformer exploration with imposed activation. a, 
Conformer search methods generate stable three-dimensional molecular structures, such as those shown 
for complex 1, composed of a molecule of (R)-2-iodobutane and an ethoxide anion. b, Our reaction 

prediction methodology consists of constraining a specific activation coordinate 𝑞‡ to out-of-equilibrium 
values (vertical dotted arrows) and performing searches for activated conformers with the other coordinates 

free (solid horizontal arrows). This is demonstrated here on 1, using the carbon-iodine bond as 𝑞‡ (green). 
Further increasing the carbon-iodine distance of the activated conformers yield reaction pathways to 
multiple products (compounds 2–8). Non-reacting hydrogen atoms are omitted. 



 

 

 

For example, consider the various elimination and substitution reactions of (R)-2-

iodobutane and ethoxide anion. Generating ground-state conformers for this system 

yields many loosely bound complexes (Figure 1a). Reaction prediction from these 

structures is challenging, as they are quite far from any transition states, such as those 

shown in Figure 1b. 

The traditional approach to obtaining a transition state for a given reaction requires setting 

up the reacting molecules in a configuration close to the transition state, but this requires 

a fairly good assessment of the reaction mechanism and transition state geometry.36 

Coordinate driving and related approaches circumvent this issue by pulling together (in 

relaxed scans) pairs of atoms to induce new bonds to form.20,21,37 For example, bringing 

together the ethoxide anion oxygen and the α-carbon of 2-iodobutane produces the SN2 

reaction. However, a fully systematic search of all possible bond-forming pairs scales 

quadratically with the number of atoms21 and generally can only be performed for small 

systems.5 

The cornerstone of our approach is to activate the reactants using a single coordinate 𝑞‡ 

that can produce many interesting reactions, thereby circumventing the scaling issues of 

searching for possible bond formation pairs systematically. In the case of the (R)-2-

iodobutane molecule shown in Figure 1, bond dissociation energies dictate that the 

carbon-iodine bond is readily broken.38 Stretching the carbon-iodine bond (increasing 𝑞‡) 

produces an activated electrophilic molecule. In this case, a constrained conformer 

search (in the orthogonal space 𝒒⊥
‡) yields geometries close to the SN2 transition state, 

as the ethoxide oxygen stabilizes the complex when it lies close to the halogenated 

carbon. Further scanning 𝑞‡ starting from one of these transition structures results in the 

SN2 products (2 in Figure 1).  

Notably, other activated conformers corresponding to different reactions are found in 𝒒⊥
‡.  

Indeed, solely stretching the carbon-iodine bond of other activated structures also yields 

E2 and E1 elimination reactions (with Hofmann39 product 3 and Zaitsev40 products 4 and 

5), SN1 substitution reactions (with products 2 and 6), γ-elimination to methylcyclopropane 

7 as well as a curious alkoxide hydride transfer41 forming 8. The latter two reactions, which 

have significantly higher estimated activation energies, are unlikely to occur in this system 

but demonstrate the complex chemistry that can be obtained automatically from imposed 

activation by a single constrained coordinate. 

Reactions from coordinate scans are highly dependent on starting geometries, especially 

when the scanned coordinate is not bond-forming. Indeed, for an iodine-carbon bond 

scan to alone generate a pathway to compound 7 by γ-elimination requires the ethoxide 

to be placed in very close proximity to the eliminated hydrogen. The diversity of products 

and paths discovered by the imposed activation approach comes at a cost: initial guess 

structures need to be relatively close to reactive pathways. Crucially, constrained 

conformer generation can produce these higher-energy, activated structures,31,42 and is 



 

 

critical to making our approach practical. A diverse sample of similarly simple reactions is 

described in the SI. Below, we demonstrate this approach on some challenging examples. 

Cyclization Cascade in the Synthesis of a Natural Product 

A robust and automated reaction prediction approach can help to understand and 

rationalize complicated reactions with multiple outcomes. This is demonstrated here using 

the epoxide-initiated polycyclization of 9 to form 10 (Figure 2), an essential step in a short 

total synthesis of the fungal meroterpenoid berkeleyone A.43  

 

Figure 2 : Reaction mechanism and obtained side-products for an epoxide-initiated β-keto ester-
terminated triple cyclization reaction. The polycyclization yielding 10 from 9 is an essential step in the 
total synthesis of berkeleyone A presented in ref. 43. Here, a reaction search is performed starting from 9a 
(details in the text), the protonated enol form of 9, using the epoxide C-O bond of the tertiary carbon (green) 
as the reactive coordinate. Compounds 11 to 16 are example of side-products obtained in computations. 

 



 

 

This triple cyclization was chosen as it is a complex reaction, with the potential to form 

many byproducts.44–47 Indeed, the 39% yield reported in ref. 43 was only achieved after 

extensive optimization of reaction conditions. Previous attempts at similar reactions 

yielded a range of mono- and polycyclic, fused and bridged products from ether formation 

by the epoxide and cyclization at the β-keto ester oxygen instead of the desired carbon 

cyclization.48 Here, we initiate the computation from 9a, the reactive enol form of 9 

protonated at the epoxide. Compound 9a is activated by opening the epoxide on the 

tertiary carbon side using the carbon-oxygen distance as the constraint (highlighted in 

green in Figure 2). More than 200 distinct reaction pathways are discovered, including 

many tautomerizations and high energy processes as well as all experimentally reported 

modes of action. 

A subset of thermodynamically favourable products with estimated activation energies 

below 35 kcal/mol is shown in Figure 2. Notably, 9b is discovered by the reaction search 

from an epoxide-initiated triple cyclization cascade terminating at the β-keto ester and 

forming the desired product 10 by deprotonation. The approximate transition state for this 

reaction is shown in Figure 3, a, with the three bond-forming atoms highlighted. The 

cyclization cascade is barrier-free after this transition structure. 11 and 12 result from 1,2-

addition of the epoxide to the nearest alkene, forming bridged bicyclic ethers.44 Triple 

cyclization terminating at the β-keto ester oxygen forms 13, a major experimental 

byproduct,48 by a mechanism that differs from that forming 9b only in the terminating atom 

(Figure 3, b). The nucleophilic opening of the epoxide by the same oxygen yields 14, a 

16-membered ring. Product 15 is obtained when the second step of the triple cyclization 

cascade is a five-membered, not six-membered, ring closure, as shown in Figure 3, c. 

Finally, the surprising product 16 is formed from the transfer of a proton from the epoxide 

(which forms an enol45) to the far alkene followed by an oxygen cyclization (Figure 3, c). 

The short duration and easy initialization of our computational experiments compensate 

for their unsystematic nature. All the above reactions were obtained from a single 

calculation targeting compound 9a, which took only 6.3 hours on a single compute node. 

In this case, we note that success followed a failed search initiated from the less reactive 

keto form of 9a. Similarly, computations starting from a tautomer of 9a with protonation of 

the ester carbonyl instead of the ketone uncovers significantly fewer reactions and, 

specifically, fails to yield 9b. In practice, the problem of sensitivity to the initial molecular 

identity is solved by iteratively trying new tautomeric structures, an approach enabled by 

the fast turnaround times of these calculations, and the ease of generating tautomers of 

a given structure using basic chemical rules.49 
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Figure 3: Selected transition structures forming triple cyclization products. a-d, Transition state 
guesses for the formation of 9b (a), 13 (b), 15 (c) and 16 (d). Bond-forming atoms are connected by thin 
lines annotated with their interatomic distances. Non-reacting hydrogen atoms are omitted. 

Water-Mediated Michael Addition 

Automated reaction search is specifically needed when the reacting system consists of 

multiple loosely bound fragments with many possible arrangements. This is the case, for 

example, in solvent-mediated reactions, where specific solvation geometries play a major 

role in transition structures.50 Setting up traditional transition state calculations for such 

systems is very time-consuming and error-prone, as it requires carefully arranging 

fragments in different and sometimes non-intuitive reactive geometries.51  

 

  



 

 

 

 

Figure 4: Water-catalyzed 1,4-addition reaction and some important side-products obtained by 
imposed activation. a, Reactions were obtained by stretching the carbon-carbon double bond of an 
acrolein molecule (shown in green) in the presence of p-toluenethiol and six explicit water molecules. 
Products are annotated with semi-empirically estimated activation energy (top) and reaction energy 
(bottom). b-e, Reaction pathways forming 17 include a direct proton transfer (b) and proton transfer shuttled 
by one (c), two (d), and four water molecules (e). Structures b-c are s-cis and structures d-e are s-trans, 
compact conformations. 
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Here, we demonstrate imposed activation on the water-mediated Michael addition of 

acrolein to p-methylthiophenol, shown in Error! Reference source not found., an 

example inspired by a recent popular science article.52  Six explicit water molecules are 

added to the reacting system. The addition reaction forming 17 is obtained as both the 

thermodynamic product and the kinetic product upon stretching the carbon-carbon double 

bond of the acrolein. Byproducts include hydration of acrolein to 3-hydroxypropanal (18), 

a biologically important process,53 and various Diels-Alder reactions between acrolein 

and p-methylthiophenol. 

The Michael addition involves the transfer of a proton from the thiol to the carbonyl group 

of acrolein, which is facilitated by a chain of hydrogen-bonded water molecules. Acrolein 

has s-cis and s-trans isomers, and the transition state for this reaction has the acrolein 

double bond either lying along the aromatic ring (the compact conformation) or away from 

it (the expanded conformation). Amongst the possible combinations of isomers, 

conformers, and number of chained water molecules, our reaction search method 

identifies, in a single run of the algorithm, fourteen different pathways and distinct 

transition structures (Table 1), five of which are kinetically favoured over the formation of 

18.  

The uncatalyzed reaction only occurs for the s-cis isomer, as it requires the carbonyl and 

thiol to be in proximity (Figure 4b). The larger distance required for the proton transfer in 

the trans isomer favours proton shuttling by two or three water molecules. In contrast, 

addition of the cis isomer is efficiently mediated by one water molecule (Figure 4c). The 

lowest activation energy is obtained for the trans isomer facilitated by two water molecules 

in the compact conformation (Figure 4d). The longest identified water chain comprises 

four water molecules (Figure 4e) with a total of five distinct proton transfers. In the 

expanded conformation, only trans-acrolein with a two-water molecule bridge is 

favourable. 

A significant saving in human labour is achieved using the automated search, at the cost 

of moderate computational resources. Indeed, obtaining sufficient sampling of all these 

transition structures took only 20 hours of wall-clock time on a mid-range workstation. 

This calculation required minimal human involvement as the search is entirely automatic, 

Table 1.  The 176 reaction trajectories yielding 17, decomposed based on transition structure 
characteristics. For each entry, the estimated activation energies in kcal/mol (bold, <12 kcal/mol) and the 
number of occurrences is provided. 

Acrolein isomer TS conformation Number of H2O molecules in H+ transfer chain 

  0 1 2 3 4 
s-cis compact 21.2 | 6 8.7 | 20 11.2 | 8 — — 

expanded — 15.6 | 17 13.6 | 5 17.1 | 1 — 

s-trans compact — 27.4 | 1 5.8 | 49 8.5 | 14 20.6 | 1 
expanded — 23.3 | 4 9.8 | 41 17.1 | 11 16.6 | 1 

  Estimated Δ𝐸†(kcal/mol) | no. of occurrences 
       



 

 

even starting from a structure far from the identified reactive pathways. By contrast, the 

human labour needed to set up any one of those 14 transition state searches using 

traditional means is on the order of hours. 

Oxidative Addition Complexes of Drug-Like Compounds 

In addition to the exploration of chemical pathways, our reaction search methodology can 

also minimize the effort of setting up transition state calculations. We demonstrate this 

application here using calculations on the oxidative addition of a palladium catalyst to a 

set of drug-like molecules.54 Forming oxidative addition complexes in this way provides a 

potentially powerful means of late-stage diversification in screening studies and avoids 

the still-inconsistent performance of catalytic Buchwald-Hartwig couplings of highly 

functionalized substrates. 

 

Figure 5: Formation of oxidative addition complexes of drug-like substrates. (a) The reaction studied 
here is the formation of complexes with tBuXPhosPd by oxidative addition. The aryl-halide distance is the 
activation coordinate (green). (b) Imposed activation reaction search is performed for the ten drug-like, 
functionalized molecules 19-28. 

 



 

 

Computational studies of organometallic catalysis generally include either complex 

ligands or complex substrates, but very rarely both, due to the required computational 

resources. Such studies are specifically challenging when including designer catalysts 

such as tBuXPhosPd (studied here and shown in Figure 5a) and functionalized ligands, 

due to the many possible coordination modes around the metal catalyst.55  

Here, we present transition state calculations enabled by our methodology for ten 

reactions exhibiting both catalyst and substrate complexity. Because the aims of this 

section differ from those of the previous two (i.e., finding transition states for a 

predetermined reaction as opposed to searching for new reactions), the calculations were 

set up slightly differently. In these computations, the activated catalyst was initially placed 

(programmatically) such that the Pd atom is ~5 angstroms away from the target halide; 

the halide-aryl bond is the reactive coordinate. Imposed activation reaction search was 

performed on this structure and the most accessible reaction pathway was selected. 

Finally, the lowest-energy reactant and product structures were re-optimized at a higher 

level of theory. Transition states were obtained by relaxing the automatically obtained 

approximate transition structures using DFT with the aryl-halide bond constrained, 

followed by a subsequent systematic transition state optimization.  

The corresponding results are shown in Table 2. The data show two general trends. First, 

as expected, activation energies tend to decrease when changing the halogen from 

chlorine to bromine to iodine.56,57 Secondly, electron-rich (hetero)aromatic rings seem to 

lead to more facile oxidative addition. This is in contrast to the expected trends for 

bisligated palladium(0) catalysts but in line with the results obtained for monoligated 

palladium(0), as the pre-reactive complexes of monoligated palladium(0) and aryl halide 

tend to be more tightly bound for electron-poor (hetero)aromatic rings.57,58 Furthermore, 

oxidative addition products with electron-poor (hetero)aromatic rings tend to be more 

thermodynamically favourable, as previously demonstrated.58,59 Moreover, all the 

estimated oxidative addition barriers are consistent with facile room temperature 

reactions, as observed in the original study.54 Looking at the contributions of London 

dispersion to the reaction energies, we find that larger Gibbs free energies of activation 

correlate with more repulsive dispersion contributions. This indicates that attractive 

interactions are lost during the oxidative addition, causing an overall higher barrier, and 

suggests that proper alignment of noncovalent interactions in the transition states is 

important in accelerating these reactions.60,61 Finally, we show in Table 2 that the 

computing demands of imposed activation reaction search at a semi-empirical level of 

theory are comparable to those of a DFT optimization of the reactant geometry, and thus 

well within the realm of current high-throughput screening capabilities.62 

 

 

 



 

 

Table 2. Summary of reaction searches and DFT calculations for the oxidative additions shown in Figure 
5. The first four columns provide the substrate, the total number of atoms in the system, the reacting halide 

and the reacting aromatic system on the substrate. Gibbs free energies of activation Δ𝐺‡ and Gibbs free 

energies of reaction Δ𝐺 are obtained from PBE-D3/def2-SVP calculations. The last two columns compare 
the times required (in hours) for the reaction search and DFT optimizations of product, reactant, and 
transition state geometries. 

  Reaction energies 
(kcal/mol) 

Compute time (node hours)  

Substrate Natoms Halogen Core aryl group Δ𝐺‡ ΔG Reaction 
search 

DFT 
Optimizations 

19 123 Cl Thiophene 13.5 -12.2 10.6 4.5 
20 106 Cl Benzoxazinone 8.9 -16.7 4.8 5.1 
21 131 Cl Benzene 16.0 -6.7 10.3 3.7 
22 141 Cl Indane 4.4 -15.8 10.5 4.5 
23 132 Br Indole 1.1 -18.1 8.7 4.1 
24 118 Br Pyridine 12.2 -12.1 7.6 3.9 
25 130 Br Isoindoline 7.6 -9.6 9.6 4.1 
26 131 Br Isoindoline 8.0 -5.6 10.7 4.6 
27 110 Br Quinoxalinedione 4.7 -16.2 5.2 6.1 
28 106 I Benzene 6.0 -2.1 4.9 4.3 

 

Discussion 
Virtual reaction prediction could accelerate the search for novel catalysts, automatically 

flag detrimental reaction pathways (e.g., solvolysis or formation of side products), and 

help discover new reaction mechanisms. However, chemical reactions are extremely rare 

events not spontaneously captured by in silico dynamics. The complexity of all but the 

smallest molecules limits full, systematic searches of all possible bonding patterns and 

bonding transformations. 

We showed that conformer searches with imposed activation can identify chemical 

pathways and provide approximate transition state structures using modest 

computational resources. Leveraging some human-derived heuristics, that is, the 

selection of one chemical bond to undergo reaction,  allows us to bypass the quadratic 

scaling of possible bond-forming processes encountered by more systematic 

approaches4,20,21 while still maintaining sufficient chemical freedom to discover new 

reaction products and mechanisms. In essence, imposed activation is analogous to 

starting a curly arrow mechanism by breaking one bond, then computationally completing 

the mechanism by systematically finding the most energetically feasible responses.  

Imposed activation using semi-empirical approaches is sufficiently low-cost to be 

deployed in an exploratory fashion for medium- to high-throughput virtual screening, 

predicting and studying the mechanisms behind byproduct formation or catalyst 

decomposition, and exploring the role of explicit solvation in chemical reactions. Although 

the semi-empirical calculations used here are appropriate for qualitative discovery, they 

are not accurate enough for quantitative analysis.42 Yet the high degree of inherent 

parallelism present in our approach makes it scalable on distributed and cloud compute 

systems, which would compensate for the computational demands required by higher 



 

 

levels of theory.63 Efforts are ongoing in this direction. Additionally, we are currently 

investigating the use of machine learning methods (such as Gaussian process 

regression29,64,65) to systematically and robustly refine the transition state guesses 

obtained using semi-empirical calculations at higher levels of theory. 

Investigations are also underway to improve systematicity by, for example, automating 

the selection of activation coordinates using chemical and computational means. This 

kind of automation could enable the study of complex chemical reaction networks16,66 by 

applying imposed activation computations recursively over obtained products.23 Finally, 

the inclusion of automated (de)protonation and tautomerization capabilities67,68 could 

increase the range of chemistry that can be studied systematically. 

 

Methods 
The results presented in this paper were obtained using the xTB package69,70 and a 

custom interfacing and data analysis code. Additional results for the Buchwald-Hartwig 

coupling reactions were computed using ORCA,71 as described below. Timing data is 

reported for a single dual-socket compute node with two 20-core, 2.4 GHz Intel Skylake 

processors. 

 

Algorithm  

The reaction search consists of the four steps below, followed by post-processing of 

obtained reaction trajectories. 

1. The initial structure of the reactants is optimized, and the user selects a reactive 

coordinate 𝑞 (i.e., an interatomic distance, a bending angle, or a torsional angle). 

With the reactive coordinate fixed at its equilibrium value 𝑞0, an initial conformer 

search is performed to obtain a diverse set of structures. A relaxed scan of the 

reactive coordinate follows, starting with one of the initially generated conformers, 

to an intermediate value between that of reactants and products 𝑞𝑖.  

2. A second, shorter and less exhaustive conformer search is undertaken with the 

reactive coordinate constrained at 𝑞𝑖 to explore the local energy landscape. 

3. All the structures thereby generated are scanned from 𝑞 = 𝑞𝑖 to 𝑞𝑁  to obtain new 

reaction products. A backward scan from 𝑞𝑖 to 𝑞0 yields a complete trajectory back 

to a reactant conformation. 

4. Finally, structures corresponding to energy minima of the trajectory (potential 

reactants and products conformations) are optimized without constraints to ensure 

stability. 

Steps 2 to 4 above are then repeated for different values of 𝑞𝑖 to obtain an ensemble of 

reactive trajectories sampled from multiple transition structures. Specific numerical values 

of all parameters are given in the SI. 



 

 

For generating conformers, the metadynamics module integrated in xTB is used with 

parameters based on those of the highly reliable algorithm of Grimme et al.31 In effect, 

molecular dynamics are performed with regular snapshots, and these simulations are 

augmented with a biasing potential 𝑉bias = ∑ 𝑘𝑖 exp(−αΔ𝑖
2) where Δ𝑖 is the root-mean-

square displacement (RMSD) between the current structure and the 𝑖-th previous 

snapshot, and 𝑘 and α are numerical parameters. The biasing potential strongly drives 

the discovery of new structures. The obtained structures are then optimized, with similar 

structures being removed based on RMSD, rotational constant and energy thresholds.31 

Finally, structures exceeding a maximum energy threshold are discarded. Numerical 

values for all parameters are given in the Supplementary Information. 

In the examples presented, the overall number of sampled trajectories varies between a 

few hundreds (such as the iodobutane example) and 10,000 (to obtain the results of Table 

1), depending on the number of atoms and the chosen sampling parameters. The duration 

of metadynamics simulations, and thus the number of trajectories, is chosen proportional 

to the size of the system. A more thorough sampling is done for the 1,4-addition to sample 

many reactive geometries. 

The trajectories are collected and parsed into reactions by transforming geometries of 

trajectory minima to canonical SMILES using Open Babel72 and identifying changes in 

the SMILES strings. For structures containing a metal complex, the metal atom is 

removed before conversion to eliminate spurious bond changes. The transition structure 

of a trajectory is taken to be the highest energy structure between reactants and products. 

The guess transition state for a given reaction is the lowest energy transition structure 

amongst all trajectories for this reaction, and the estimated activation energy is computed 

by subtracting the energy of the most stable identified reactant conformer from the energy 

of the approximate transition state. 

Refinement of Trajectories for Oxidative Addition Complexes 

Additional refinement of reaction trajectories was performed for the results shown in Table 

2. The specific protocol described here broadly follows that of the computational study by 

Barder et al. involving a similar catalyst.73 We note that our study involves more 

substrates and that those substrates are more complex. DFT calculations were performed 

at the PBE-D3/def2-SVP level of theory. 

Approximate transition structures obtained from the reaction search were used to find 

transition states with Berny optimization at the semi-empirical level of theory employed in 

the search (GFN2-xTB). Here, performance is excellent, with every guess transition 

structure converging to a transition state. At this point, further transition state refinements 

were attempted using DFT, but GFN2-xTB was found to significantly overestimate the 

length of the aryl-halide bond in the transition state, hindering convergence and making 

the transition state poorly transferable to higher-level theory. Hence, a more sophisticated 

procedure was followed for transition state refinements. Specifically, a first transition state 

guess was obtained by geometry optimization of the xTB-obtained transition state, 

constraining the carbon-halogen bond. Unconstrained geometry optimization of the 



 

 

resulting structures resulted in the respective oxidative addition products in all cases. 

Subsequently, a relaxed scan of the carbon-halogen bond to 0.8 times the initial bond 

length starting from the geometry obtained after constrained optimization was carried out. 

In addition, a partially relaxed scan of the palladium-halogen bond to 1.5 times the initial 

bond length was performed by constraining the carbon-halogen bond length. Relaxed 

geometry optimization of either the last point of the first scan or the minimum energy 

structure of the second scan, whichever was lower in energy, yielded the reactant 

structure. Next, nudged elastic band (NEB) calculations together with a subsequent 

transition state optimization (keywords NEB-TS or ZOOM-NEB-TS in Orca) was 

performed using the reactant as starting structure and the transition state guess from the 

constrained geometry optimization as product structure. Final optimizations of reactants, 

products and transition states were performed using exact initial Hessians to remove any 

residual imaginary frequencies. The transition states were verified by calculating both the 

forward and backward intrinsic reaction coordinates and comparing the resulting endpoint 

structures with the respective reactant and product structures. 
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Figure S6: Selected set of diverse chemical reactions obtained by imposed activation. 
Representative products are shown in each case, annotated with estimated activation energy (top) and 
reaction energy (bottom) calculated at the semi-empirical GFN2-xTB level.1 All results are obtained directly 
from the automated search without additional refinement. Activated bonds and constituent atoms are shown 
in green. In (e), an improper dihedral angle is activated instead of a bond length. Details of each reaction 
are in the text. 

Additional set of diverse chemical reactions 
Initial tests were performed using the small but chemically diverse set of simple reactions, 

the results of which we describe here. All the chemical reactions shown in Figure S6 are 

adequately captured with minimal reaction-specific parameter choices (Table S4). The 

relatively small size of the molecules involved allows this entire set of reactions to be run 

on a single compute node in less than 5 hours. 



 

 

The SN2 reaction of methanethiol and iodomethane (Figure S6a) is readily obtained by 

stretching the carbon-iodine bond. Some high-energy side products include 

thioformaldehyde formation (by transfer hydrogenolysis) and iodomethanethiol (by a 

stepwise σ-bond metathesis). The aromatic Claisen2 rearrangement (Figure S6b) is found 

as the sole product of stretching the allyl ether bond. Energies of the two expected 

transition structures, six-membered rings with chair and boat conformations, respectively, 

are well reproduced.3 

 

In Figure S6c, the Johnson-Corey-Chaikovsky reaction4 is obtained from stretching the 

methylene-sulfur bond on the ylide. The expected epoxide has by far the lowest estimated 

activation energy. Interesting side products include addition to the aromatic ring as well 

as homologations by methylene insertion into a C–H bond and by insertion into the aryl-

carbon bond. This last reaction has been reported previously for benzophenones5, with a 

hypothesized mechanism matching the one found here. The stretching of the sulfur-

methylide (C1 in Figure S7a) bond yields the reactive intermediate shown in Figure S7b. 

Insertion of C1 between carbons marked C2  and C3 occurs through a four-membered 

cyclic transition state, displacing the sulfoxide and forming the homologation product 

(Figure S7c). 

The Dieckmann condensation6 in Figure S6d is found readily upon dissociation of a 

carbon-hydrogen bond in the presence of an ethoxide molecule. The reactants (an ester, 

an ethoxide molecule and two molecules of ethanol) are initially arranged without regard 

to the expected transition structure. The assembly is optimized to obtain the initial 

conformer in Figure S7d. The explicit solvent is required here to stabilize the ethoxide. 

The reaction search finds the Dieckmann condensation product in Figure S7e, with the 

standard7 two-step mechanism of formation of an enolate ion followed by a nucleophilic 

attack. Approximate transition structures are shown in Figure S7f-g. It should be noted 

that the initial input structure is highly dissimilar to both the structures of the transition 

states and the products, illustrating that our method allows handling explicit solvent 

molecules without prior spatial placement by the user.  

For the Diels-Alder reaction, activation can be imposed in two ways: by stretching the 

dienophile double bond to the length of a single bond or by pyramidalizing one of the 

dienophile carbons through an improper dihedral constraint applied to the two ene 

carbons and terminal hydrogen atoms. Both approaches yield the same products, with 

the pyramidalization resulting in significantly better transition structures and energies due 

to the asymmetric dienophile and resulting asynchronous transition state8. The results for 

this reaction are shown in Figure S6e with the atoms of the dihedral constraint marked in 

green. Notably, both the endo- and the exo-products are obtained, though the activation 

energy is approximated too poorly to reproduce experimental selectivities. Observed side 

reactions include Michael additions as well as an inverse electron-demand Diels-Alder 

reaction, with the acrolein acting as the diene and the cyclopentadiene acting as the 

dienophile. 



 

 

The final two examples are taken from catalysis and organometallic chemistry, 

respectively: a base-catalysed alkyne-allene isomerization and an oxidative addition of 

palladium bisphosphine into a carbon-chlorine bond (Figure S6f and g). In the first case, 

the N-H bond on the catalyst is stretched to obtain the isomerization, and the reaction 

pathway and transition structure are near identical to those obtained by traditional 

means.9 The oxidative addition of Pd in Figure S6g is readily found by increasing the Ph-

Cl bond distance, showing that imposed activation can be applied to organometallic 

reactions using extended density-functional tight-binding theory.10 

 

 

 

 

Figure S7: Detailed structures for Johnson-Corey-Chaikovsky methylene insertion and Dieckmann 
condensation reactions.  (a-c) Reactants (a), reactive intermediate (b), and product structures (c) 
obtained for the homologation reaction by methylene insertion in Figure S6c. (d-g) Input structure (d) and 
products (e) for the Dieckmann condensation in Figure S6d and transition structures of the two steps, 
formation of an enolate (f) and nucleophilic attack (g), as obtained from a single relaxed scan. 

 



 

 

Algorithmic details and numerical parameters. 
Table S3 lists default numerical parameters used for the computations described in this 

article. Unless otherwise noted, these values are used throughout. Reaction-specific 

parameters (specifically, those that differ from defaults) are shown in Table S4. Here, we 

described in more details the implemented algorithm. 

All runs are initialized by performing a metadynamics propagation (MTD1 in Table S3)  

filtering all the resulting structures and selecting the bottom 10% on the basis of energy. 

This is done with the activation coordinate 𝑞‡ constrained to its initial value. 

Relaxed scans are performed from the initial value of 𝑞𝑖
‡ to its final value 𝑞𝑓

‡ over a 

uniformly discretized grid of values. Metadynamics searches for activated conformers 

(MTD2) are performed for points 𝑗 = 𝑀𝐿 to 𝑀𝑈 of the scans with 𝑞‡ constrained to its value 

at that point, denoted 𝑞𝑗
‡. Each metadynamics search is initialized from one of the 

structures obtained in the initialization. 

Structures obtained from metadynamics propagation at point 𝑗 are optimized with 𝑞‡ 

constrained to  𝑞𝑗
‡ and screened for duplicates. Those structures with energy below two 

thresholds, a local threshold 𝐸 < min𝑗𝐸 + Δ𝑙 (where the minimum is over structures from 

the same metadynamics propagation) and a global threshold 𝐸 < 𝐸0 + Δ𝑔  (where 𝐸0 is 

the energy of the reactant conformer) are selected as starting points for reaction scans. 

The reaction scans are relaxed scans from 𝑞𝑗
‡ to  𝑞𝑓

‡ and to 𝑞𝑖
‡, yielding new product 

and reactant structures. 

Finally, all reaction scans are searched for potential stable structures, which are local 

energy minima on the 𝑞‡ axis. Those stable points are optimized without any constraining 

potentials. The overall scan is then analyzed for reactions, as described in the methods 

section. 

  



 

 

Table S3 Default parameters used in computations. 

xtb parameters Parametrization GFN2 

Electronic temperature 300K 

Cavity potential 1 Logfermi, spherical with diameter 𝑑reactants + 4Å 

   

Metadynamics 
propagation 
(MTD1) 

Propagation time 0.5 ps per atom 

Bias potential 2  𝑘 = 0.20𝐸𝐻 , α = 0.2/Å2  
 
Structure saved every 100 fs 
Biasing by previous 10 saved structures 

Timestep 3 5 fs 

SHAKE constraints 3 All atoms 

Structures kept Bottom 10% in energy after filtering 

   

Relaxed scans Number of scan points 

between  𝑞𝑖
‡ and 𝑞𝑓

‡ 

 𝑁𝑆 = 50 

Constraint force constant 4  𝑘 = computed or 1 kcal/mol 

Optimization tolerance “normal” 

Δ𝐸 = 5 × 10−6𝐸𝐻 , max grad = 10−3𝐸𝐻/α 

   

Metadynamics 
propagation 
(MTD2) 

Propagation time 0.1 ps per atom 

Bias potential5 

 

𝑘 = 0.20 𝐸𝐻 , α = 0.8/Å2  

𝑘 = 0.20 𝐸𝐻 , α = 0.2/Å2  

𝑘 = 0.05 𝐸𝐻 , α = 0.8/Å2  

𝑘 = 0.05 𝐸𝐻 , α = 0.2/Å2  
 
Structure saved every 100 fs 
Biasing by previous 10 saved structures 

Timestep 2 fs 

SHAKE constraints None 

 Performed at... ... every point between 𝑀𝐿 = 0 and 𝑀𝑈 = 0.5 × 𝑁𝑠 

   

Conformer 

filtering 6 

Optimization tolerance “tight” 

Δ𝐸 = 10−6𝐸𝐻 , max grad = 8 × 10−4𝐸𝐻/α 

Similarity thresholds RMSD = 0.4 Å 
Energy = 1.0 kcal/mol  

Local threshold Δ𝑙  12 kcal / mol 
 

Global threshold Δ𝑔 60 kcal/mol above reactants 

 
1 For metadynamics propagations, a spherical constraining potential11 is added to stop molecules in the reacting 
system from separating. 𝑑reactants is the maximum atom pair distance of the reactant structure. 
2 The metadynamics potential has the following form 𝑉bias = ∑ 𝑘𝑖 exp(−αΔ𝑖

2) where the sum is over contributing 
structures and Δ𝑖  is the RMSD between contributing structure 𝑖 and the current structure. 
3 If the initial metadynamics propagation fails to converge, it is restarted with a timestep of 2 fs and no SHAKE 
constraints. 
4 For bond stretches, the force constant is computed from an estimated bond force constant, computed from a 
quadratic fit of the energy from a five-point relaxed scan around the equilibrium bond length. 
5 Four metadynamics propagations are done,11 one for each pair of values 𝑘, α. 
6 Structures from all metadynamics calculations are first optimized and then duplicated structures are removed 
based on similarity, followed by elimination using energy thresholds. 



 

 

 

Table S4 Parameters used for specific reactions described in this article. 

 Activation 
coordinate scans 

Parameters changed from Table S1 

Reactions of 2-iodobutane  𝑞0
‡  → 6.0 Å  GBSA solvent model for THF 

 𝑁𝑆 = 100 
   
Cyclization cascade  1.5 Å → 3.0 Å   𝑁𝑆 = 100 

 𝑀𝑈 = 0.3 × 𝑁𝑆 
   
Acrolein water-mediated 1,4-addition   𝑞0

‡  → 1.6 Å   𝑁𝑆 = 100 

 𝑀𝑈 = 0.3 × 𝑁𝑆 
 MTD2 time per atom = 0.5 ps 

   
Oxidative additions of drug 
candidates 

 𝑞0
‡  → 3.5 Å  𝑁𝑆 = 200 

 𝑀𝐿 = 0.06 × 𝑁𝑆,  𝑀𝑈 = 0.12 × 𝑁𝑆 
   
Reactions in Figure S1 

(a)  𝑞0
‡  → 6.0 Å GBSA solvent model for methanol 

   
(b)  𝑞0

‡  → 4.0 Å  

   
(c)  𝑞0

‡  → 4.0 Å  

   
(d)  𝑞0

‡  → 3.5 Å  

   
(e)  𝑞0

‡  → 120°  𝑀𝐿 = 0.30 × 𝑁𝑆,  𝑀𝑈 = 0.80 × 𝑁𝑆 

   
(f)  𝑞0

‡  → 3.0 Å  

   
(g)  𝑞0

‡  → 3.5 Å  

   

𝑞0
‡ denotes the equilibrium value of the activation coordinate. 
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