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Abstract The SAMPL challenges focus on testing and driving progress of computational methods to help guide pharmaceu-12

tical drug discovery. However, assessment of methods for predicting binding affinities is often hampered by computational13

challenges such as conformational sampling, protonation state uncertainties, variation in test sets selected, and even lack of14

high quality experimental data. SAMPL blind challenges have thus frequently included a component focusing on host-guest15

binding, which removes some of these challenges while still focusing on molecular recognition. Here, we report on the results16

of the SAMPL7 blind prediction challenge for host-guest affinity prediction. In this study, we focused on three different host-17

guest categories – a familiar deep cavity cavitand series which has been featured in several prior challenges (where we examine18

binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which are monofunctionalized around the19

rim to add amino acid-like functionality (where we examine binding of two guests to a series of hosts), and binding of a series of20

guests to a new acyclic TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods based21

on molecular simulations, and overall success was mixed, though several methods stood out. As in SAMPL6, we find that one22

strategy for achieving reasonable accuracy here was to make empirical corrections to binding predictions based on previous23

data for host categories which have been studied well before, though this can be of limited value when new systems are in-24

cluded. Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force field had considerable25

success for the two host categories in which they participated. The new TrimerTrip system was also found to introduce some26

sampling problems, because multiple conformations may be relevant to binding and interconvert only slowly. Overall, results27

in this challenge tentatively suggest that further investigation of polarizable force fields for these challenges may be warranted.28

29

0.1 Keywords30

host-guest binding ⋅ free energy ⋅ binding affinity ⋅ SAMPL ⋅ blind challenge ⋅ OctaAcid ⋅ cyclodextrin ⋅ cucurbituril31

0.2 Abbreviations32

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands33

AM1-BCC Austin model 1 bond charge correction34

RESP Restrained electrostatic potential35

REST Replica exchange with solute tempering36

FSDAM Fast switching double annihilation method37
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B2PLYPD3 Beck 2-parameter Lee-Yang-Parr D3 exchange-correlation functional [1]38

B3PW91 Becke 3-parameter Perdew-Wang 91 exchange-correlation functional [2]39

GAFF Generalized AMBER force field40

CGenFF CHARMM generalized force field41

AMOEBA Atomic multipole optimized energetics for biomolecular simulations42

DDM Double decoupling method43

DFT Density functional theory44

QM/MM Mixed quantum mechanics and molecular mechanics45

MMPBSA Molecular mechanics Poisson Boltzmann/solvent accessible surface area46

MMGBSA Molecular mechanics generalized born/solvent accessible surface area47

TIP3P Transferable interaction potential three-point48

TIP4PEw Traansferable interaction potential four-point Ewald49

OPC3 Optimal 3-point charge50

SEM Standard error of the mean51

RMSE Root mean squared error52

MAE Mean absolute error53

ME Mean signed error54

� Kendall’s rank correlation coefficient (Tau)55

R2 Coefficient of determination (R-Squared)56

QM Quantum Mechanics57

MM Molecular Mechanics58

1 Introduction59

Docking and scoring methods have long been used to assist with hit identification and optimization in computer-aided drug60

design (CADD) [3]. More recently, efforts to improve the reliability of CADDmethodologies have gone beyond qualitative docking61

and scoring towards quantitative modeling [4] via molecular simulations, which can be used to estimate a variety of physical62

properties of interest [3, 4]. In this area, predictions of protein-ligand binding free energies have gained much attention for63

a few decades for their potential to help accelerate small-molecule drug discovery [5], but have received increasing attention64

recently as this potential begins to be realized [6, 7]. The long-term goal is to use computational techniques to aid and direct65

small molecule design to more rapidly and efficiently produce new therapeutics [4]. Right now, much discovery works via a66

slow cycle of experimental trial and error, but accurate enough free energy methods could dramatically accelerate early stage67

discovery [3, 5].68

The accuracy of free energy calculations is dependent on and limited by inaccuracy in the energy model used (i.e., force69

field used, finite-size effects, and water model) [8], sampling, and the protein-ligand system set up, which can include aspects70

such as protonation state, chosen tautomer state, and buffer, to name a few [3, 5]. Although sources of systematic error in71

free energy calculations are known, it is difficult to analyze errors when modeling protein-ligand systems due to their flexibility72

and complexity; such challenges mean that simulations of a few nanoseconds to microseconds may not always adequately73

sample the relevant conformations of the protein, ligand and environment [3, 5]. For this reason, host-guest systems are a great74

substitute for protein-ligand systems in evaluations of computational methods for predicting free energies of binding [3], as75

conformational sampling can be less of a challenge.76

Host-guest systems are similar to protein-ligand systems in that they also involve binding of a small molecule to a pocket77

in a receptor, though they have certain differences. We can think of a host as resembling a very small protein molecule (of78

different chemistry) which has a binding cavity or pocket. A guest is a small molecule which can bind non-covalently to the79

host. Supramolecular host families such as the cucurbiturils, cavitands, and cyclodextrins have diverse binding affinities and the80

ability to bind small drug-like compounds with protein-ligand like affinities [4]. Unlike proteins, the hosts are smaller, simpler,81

and often more rigid [9], removing some of the challenges facing computational modeling of proteins. These characteristics82

make host-guest systems an ideal substitute to test current computational methodologies used to predict physical properties83

of interest and investigate issues including binding, receptor flexibility, solvation, hydrogen bonding, the hydrophobic effect,84

protonation, and tautomers [3]. That is, while prediction of protein-ligand binding is still of interest, host-guest systems can85

serve to help focus on the accuracy of computational methods themselves, without conflating as many other challenges.86
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In this work, we describe the recent SAMPL7 host-guest challenge, which allowed participants using diverse methods to87

predict host-guest binding free energies for a variety of guests to three different host families. Here, we give the challenge88

background, describe the hosts, survey participants’ results, and highlight key lessons learned.89

2 SAMPL Challenge Background, History, and Expectations90

2.1 SAMPL fields blind challenges to provide fair tests91

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) challenges focus efforts on improving and advanc-92

ing computational methods through crowdsourcing. Blind challenges, like SAMPL and companion challenges such the the Drug93

Design Data Resource (D3R) Grand Challenges, ensure participants do not know experimental values when running calcula-94

tions [10], ensuring that method comparisons are fair and performance is hopefully indicative of what could be expected in95

real-world applications to related problems. Host-guest systems form the basis of one category of the SAMPL challenges (with96

others focusing on predicting physical properties, and on protein-ligand binding) and typical challenge performance indicates97

such host-guest systems still pose challenges to contemporarymethods [10]. Occasionally, host(s) or guest(s) are revisited, so re-98

lated experimental results are available, but we avoid cases where the experimental value being predicted is already available in99

the literature. A wealth of experimental data is already available, so SAMPL focuses on predictive tests rather than retrospective100

analysis. The SAMPL challenges are organized in this manner to ensure no participant, even accidentally, adjusts their method101

to agree with "correct" values thereby introducing bias. For example, when experimental values are known, a naive participant102

could stop calculations when they agree with the experimental value because they have "converged". Or more subtly, a partici-103

pant could run calculations with several different sets of settings in the simulation package used and conclude that the settings104

which gave the best results were optimal, whereas in fact they might be just observing random fluctuations. Blind challenges105

avoid such opportunities for bias.106

In general, SAMPL blind challenges typically involve a host-guest component that provides the community an opportunity107

to test and compare performance of a variety of computational methods on the same diverse data. The subsequent release108

of experimental data allows accuracy to be compared relative to experimental results which were not known when predictions109

were made, and the subsequent statistical assessment compares methods on equal footing. Upon evaluation, participants and110

organizers can assess the lessons learned and the potential value of different methods. Subsequently, computational methods111

and their algorithms can be calibrated and optimized for application in future blind challenges and in the real world [11].112

2.2 Host-guest systems113

2.2.1 What are host guest systems?114

As described briefly in Section 1, host-guest systems are similar to protein-ligand systems in that they both involve the binding115

of a small molecule to a pocket in a receptor. Hosts often contain less than 100 non-hydrogen atoms, but are slightly larger116

than small molecules [9], so the broader field of such chemistry is often called supramolecular chemistry. Usually, hosts don’t117

have large number of possible folds or conformational structures like a protein [9]. Eventually some host-guest systems are well118

characterized and become part of the driving force behind methodology improvement, with the ultimate goal of transferability119

to protein-ligand systems [11].120

2.2.2 Why use host guest systems?121

Despite their apparent relative simplicity, host-guest binding has proved a difficult challenge for computation. Large-scale122

protein-ligand binding free energy studies often report RMS errors in the 1-2 kcal/mol range [6, 7, 12–14], which is considerably123

better than typical performance in SAMPL host-guest challenges [3, 4, 15–17]. It may be that host-guest systems are "simple"124

enough that there is essentially nowhere for problems to hide, or confounding factors like polarizability and force field limitations125

may be more profound in these simple mini-receptors. Alternatively, performance of protein-ligand binding free energy calcu-126

lations has often been worse in blind challenges like the SAMPL [18] and D3R [19–22] blind challenges than in the large-scale127

tests cited above, so it may be that typical retrospective tests simply benefit from participants utilizing additional knowledge128

which is not available prospectively or in blind challenges. This is supported to some extent by recent benchmarking work from129

Merck KGaA [13], and by an earlier industry perspective [23]. Moreover, binding affinities for protein-ligand systems are usually130

predicted via relative binding free energy calculations for similar ligands. On the other hand, host-guest systems are typically131

absolute binding free energy calculations and perhaps a reason for the increased difficulty.132
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3 Some aspects can pose particular challenges for free energy calculations133

Several different issues arise in the context of binding free energy calculations that can cause particular difficulties or challenges.134

Here, we survey several major categories of issues which affect some methods participating in SAMPL7.135

3.1 Guests bearing a formal charge can pose methodological challenges136

Molecules with formal charges can pose challenges formolecular simulations, and especially for binding free energy calculations.137

These challenges, and differences in how they are handled, can be particularly important when studying binding in systems like138

those considered here.139

In general, conducting efficient molecular simulations requires making approximations and simplifications of electrostatic140

interactions. For example, typically we are interested in bulk or bulk-like behavior, but simulating macroscale systems is cost141

prohibitive, so we may instead choose to simulate a microscopic box under periodic boundary conditions (PBCs) to minimize142

edge effects. Alternatively, a modeler might choose to apply effective electrostatic interaction functions.143

To effectively treat electrostatic interactions, functions involving cutoff truncation schemes combined with reaction-field (RF)144

contribution or lattice-summation (LS) methods may be employed [8, 24, 25]. These methods cause the charging component of145

the calculated free energies to be sensitive to important system parameters like the cutoff radius or the box size [25]. In addition,146

the raw single-ion solvation free energies from explicit-solvent simulations are extremely sensitive to the boundary conditions147

and electrostatic interaction treatment [24].148

The approximations described above may also introduce bias or offset in the electrostatic potential during the simulation.149

System-dependent artifacts can also arise from system parameters (such as cutoff radius, box shape and/or size). The artifacts150

are due to finite-size effects which impact computed charging free energies/binding free energies. While such errors do not151

have a major effect on computed free energies as long as systems remain net neutral or have a consistent formal charge, they152

become particularly pronounced when the formal charge of a system changes, such as during an alchemical binding free energy153

calculation [8] as employed by many SAMPL participants. For this reasonmethods may need to account and correct for artifacts154

that may not cancel when a formal charge is alchemically inserted in the system. The sign and magnitude of artifacts depend155

on the methods used to calculate electrostatic interactions.156

The exact sources of such finite-size errors have been described previously. Briefly, the finite-size error in ligand/guest157

charging (and by extension, binding) free energies originates from at least four different physical effects in periodic systems: (a)158

Periodicity-induced net-charge interactions; (b) Periodicity-induced net charge undersolvation; (c) Discrete solvent effects; and159

(d) Residual integrated potential effects [8].160

There have been some attempts to address these issues; particularly, both instantaneous and post-simulation correction161

strategies have been proposed [8, 24, 26]. One approach is to apply various after-the-fact corrections to computed free ener-162

gies [8, 24, 26]. Alternatively, others have proposed applying a correction strategy during simulations, which has been called163

a co-alchemical ion approach, wherein an alchemical perturbation of a charged moiety is simultaneously performed with a164

counter-alchemical charge perturbation of a remote molecule (i.e. a counter-ion) [8, 25]. In other words, in this approach, the165

system ismaintained net neutral by offsetting a charge change in one portion of a systemwith a compensating change in another166

portion of the system. The goal in this approach is to ensure that errors from finite-size effects are negligible. Post simulation167

strategies include charge-correction terms which have been shown to work for LS and RF, and can be evaluated via numerical168

and analytical methods [8, 24, 27, 28].169

3.2 Polarization can potentially pose particular challenges170

Chargedmolecules— like those frequent in SAMPL7 – can also pose particular challenges because of strong electrostatic interac-171

tions with their immediate surroundings. This poses two challenges which are particularly relevant here – first, any polarization172

of the surroundings may be particularly important. Second, other electrostatic interactions are quite strong, including interac-173

tions with surrounding ions. These can include screening effects, but also relatively more specific interactions.174

Polarization is a phenomenon where atoms and molecules induce changes in the electron distributions of other atoms175

and molecules they interact with [29]. This effect grows stronger the stronger the electrostatic interactions and/or the more176

polarizable the atoms involved. Because of their strong electrostatics, then, the electrostatic interactions of charged groups177

can be particularly affected by polarization. Additionally, anions such as iodide and bromide are highly polarizable, including178

anions with phosphate or sulfate moieties which are present in a wide range of biomolecules [30, 31]. Phosphates and sulfates179

play important roles in biological functions, interactions, and are present in drug-like molecules [31]. On the other hand, small180
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cations have low polarizability but can still strongly polarize their environment when it is polarizable.181

Much molecular modeling uses classical fixed-charge force fields without an explicit accounting for polarization [31]. Such182

two-body additive force fields are implicitly polarized to hopefully match a level of polarization appropriate on average for183

condensed-phase simulations [32–34]. This is true for common force fields in the AMBER, CHARMM, GROMOS and OPLS-AA184

families (e.g. GAFF [35, 36], OpenFF [37], CGenFF [38–40], and OPLS-AA [41, 42]); these neglect polarization for computational185

efficiency. It’s possible that the approximations made by these fixed-charge force fields may result in particularly large errors in186

systems like those examined here [43].187

Polarizability may also be particularly important for these systems due to the water model. Particularly, with fixed-charge188

force fields, the watermodel is also non-polarizable, whichmay be an especially bad approximation for systems like these where189

water interactions with a buried hydrophobic cavity are at play [43]. The expectation is that binding in host-guest systems like190

those examined here are heavily influenced by the hydrophobic effect, and the hydrophobic effect will certainly be strongly191

influenced by properties like polarizability.192

Fixed point charge water models are limited in some ways by their use of the same partial charges to empirically fit the193

potential energy landscape and dipole moment, two distinct water properties [44, 45]. Inevitably, the choice in water model194

(many listed in [46, 47]) may also dictate the accuracy in (a) solvation, (b) dielectric constant, and (c) dipole moment [44], and195

affect ionic behavior along with many other properties. Previous work in the Gilson lab indicated that even fixed-charge water196

models can vary dramatically in water placement and orientation around hosts as well as in thermodynamic properties like the197

enthalpy of binding [48, 49], and it seems likely that polarizable models may exhibit even larger differences.198

Polarizable force fields potentially help address some of these concerns and challenges. The first general purpose polarizable199

model was introduced by Arieh Warshel for a water model suitable for biomolecular simulations [50], building on his work with200

early QM/MMbased approaches. Peter Kollman [51] and Berne and Friesner [52] developed early polarizable variants of AMBER201

in the 1980s and 1990s, respectively. More recently, the AMOEBA force field has been in development since the early 2000s202

and was first published by Ren and Ponder around 2002 [53]. Polarizable force fields, and their importance for such systems,203

are explained in Section 2. In addition, popular general force fields such as AMBER, OPLS-AA, GROMOS, and CHARMM are204

continuously evolving and polarizable versions of some of these are available [46]. One example of the latter is a recent release205

of CHARMM’s balanced Drude polarizable force field [31]. However, polarizable force fields have been applied relatively seldom206

in SAMPL challenges; the AMOEBA force field was used in some prior host-guest challenges [11], but the Drude polarizable force207

field has yet to be used in a SAMPL challenge.208

In other words, polarizable force fields add additional complexity to the physical model used in describing these systems,209

potentially providing additional accuracy but with additional computational cost. However, for some host-guest systems, this210

may be particularly important for several physical reasons. First, these systems often exhibit strong electrostatic interactions211

in a buried, relatively hydrophobic environment, meaning that the precise degree of polarization and environmental shielding212

may be a key determinant. Polarizability may affect the strength of charge-charge interactions, and may strongly modulate the213

shielding effect of the environment. Additionally, the hydrophobic effect can be a key determinant of binding, and this is also214

likely strongly modulated by polarization of the water and host.215

Polarizable force fields have shown some promise in prior SAMPL challenges. In the SAMPL6 host-guest challenge, a method216

using the AMOEBA force field was employed on CB8 with 14 guests ranging from small organic molecules to larger drug-like217

compounds, including approved drugs. The initial results had an ME and RMSE of 2.63 and 3.62 kcal/mol respectively, and218

interestingly, thismethodwas able to correctly identify questionable host-guest complex ratios of CB8with guests 11 and 12 [11].219

The correct respective ratios for these systems were 1:1 and 1:2, and these were a bonus challenge in SAMPL6. Binding free220

energies were predicted to be too favorable for guests 2 and 3 (Palonosetron and Quinine) which was presumed to be due to (a)221

AMOEBA parameters for the host resulting in single and/or double indentation of the macrocycle and (b) conformers of flexible222

guests locked during solvation in water vs binding in solvated complex [11]. In subsequent studies, revised AMOEBA results223

reported the improvedMEandRMSE to 1.20 and1.68 kcal/mol respectively, though thiswas after challenge resultswere released.224

In total 8 of the 15 predicted free energies were within 0.65 kcal/mol of experiment while the predictions for Palonosetron and225

Quinine guests were in better agreement with experiments. The improvements were attributed to two factors: (a) the value of226

key torsion parameters for C(N)-C-amide N-carbonyl carbons of CB8 and CB7 were adjusted to improve the flexibility description227

of the host ring system and (b) a double annihilation scheme of electrostatics and van der Waals with annihilation of key guest228

torsions yielded much better conformational sampling and hence predictive accuracy. However, through the SAMPL6 challenge229

we had not yet seen methods using the AMOEBA force field dramatically outperform other methods prospectively.230

5 of 44



3.3 The type and concentration of salt could play an important role in some cases231

Empirical force fields’ predictive power can be limited by the quality of their parameters. Parameters are not always available for232

all relevant chemistry, ormay not be of equal quality for all chemistry of interest. For example, experiments for all components of233

the SAMPL7 host-guest challenge were done in sodium phosphate buffer (of varying concentration and pH). However, because234

of concerns about the quality of phosphate force field parameters, we conducted our reference calculations in sodium chloride235

(of the same ionic strength) instead. While this choice seems reasonable and is not uncommon in molecular modeling, it might236

affect computed free energies.237

Particularly, the type of salt and its concentration can alter the solubility of a solute (e.g. in what is known as the Hofmeister238

effect) [54, 55]. Such salt dependence also interacts with the choice of water model. Particularly, one computational study239

reported surprising differences in the salt dependency of binding enthalpy (comparing TIP3P, SPC/E, TIP4P-Ew, and OPC water240

models) during MD simulations for cucurbit[7]uril host with a neutral guest [56]. Despite the system being non-ionized, the salt241

concentration (and the choice of sodium and chloride parameters) affected the behavior and thermodynamics of water, raising242

issues regarding selection and adjustment of water models for charged groups [56]. Incorrect ionic behavior (i.e. dielectric con-243

stant, dipole moment, solvation, and excessive ion-pairing and/or ion pairing strength) has been shown to be due to unbalanced244

force field parameters [31, 44].245

In the present SAMPL challenge, some participants did not use any ions beyond counter ions to neutralize their systems.246

However, salt concentration is known to play a significant role in modulating host-guest binding affinities experimentally in247

some cases [9, 57]. Thus, if salt concentration proves important here, such differences in protocol could produce a systematic248

difference between methods.249

3.4 Some methods require considerable expertise to use successfully250

Some methods for binding prediction require extensive knowledge and expertise. For example, a person with little computa-251

tional experience may not be able to conduct a successful free energy calculation given the historical difficulty of setting up such252

simulations. Few available software tools are user-friendly enough that one might be able to simply insert receptor and ligand253

files and obtain an accurate estimate of a property like a binding free energy. This likely affects accuracy; it’s conceivable that254

users providing the same input files to the same package could obtain dramatically different results because of different choices255

of protocol.256

Some tools provide a relatively straightforward interface for free energy calculations, at least, like YANK, but even YANK257

still requires a command-line interface and a wide variety of settings can affect computed values. Other tools like those from258

Schrödinger and the Chemical Computing Group allow free energy calculations from a GUI (Graphical User Interface), and the259

Schrödinger tools remove many key choices from the hands of users. However, we are not yet aware of a successful application260

of these tools to host-guest binding.261

3.5 We avoid multimeric systems which introduce additional complications262

Binding which involves stoichiometries other than 1:1 can be considered multimeric association. Some proteins exhibit this263

behavior, where a single protein molecule co-assembles with other proteins to form a complex; in other cases, a protein might264

oligomerize only on binding of a ligand or ligands. The reverse can also happen, with multiple ligands binding to a single protein,265

etc. The same holds true for some host-guest systems, with these systems exhibiting binding that is not 1:1 [58, 59], complicating266

both experimental measurement of binding and computational prediction thereof. In SAMPL7, we worked with experimental267

collaborators to deliberately ensure the challenge focuses on systems exhibiting 1:1 binding. However, the formation of host-268

guest multimeric complexes can even depend on the guest identity [59].269

With multimeric host-guest complexes, cooperativity may play a role. Cooperativity occurs when a binding event can either270

increase or decrease the strength of subsequent binding events [60]. In the presence of ions, electrostatic attractions can also271

lead to cooperativity [61]. Indeed, experiments must verify 1:1 binding (as was done here) otherwise computation would need272

to consider other possibilities.273

4 Previous SAMPL host-guest challenges used similar hosts274

Previously SAMPL challenges have included a variety of host-guest systems, but the majority of SAMPL hosts have been in the275

cucurbituril [62] and Gibb deep cavity cavitand (often called "OctaAcid") families [63] thanks to the contributions of Lyle Isaacs276
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and Bruce Gibb’s labs. There have been several analogs of these two families since host-guest systems first appeared in SAMPL3.277

SAMPL7 includes several analogs in the cyclodextrin [64] family thanks to Michael Gilson’s lab.278

Study of these various systems, in SAMPL and elsewhere, can help provide insight into the particular challenges each system279

presents. However, conclusions are not always clear; sometimes, performance remains highly variable across several challenges.280

Particularly, performance in prior SAMPL challenges was highly variable bymethod and target, and no clearmethod emerged281

as reliable across all systems or most systems. Both SAMPL3 and SAMPL4 included some guests in cucurbituril family [15, 65–282

68], with the best RMS errors typically being around 2.5 kcal/mol unless empirical corrections were included [65, 69], and no283

method stood out across both challenges [17]. SAMPL4 also included cavitands. In SAMPL5, the best RMS error was closer to 3284

kcal/mol [65], but correlation with experiment for this approach was not good. Methods based on explicit solvent and electronic285

structure calculations were noted to appear relatively consistent and generally provide the greatest reliability across all SAMPL286

challenges [70], but also had considerable room for improvement. In general, predictions for cavitands seemed to be modestly287

more accurate whereas clip-based hosts have been more challenging in prior challenges (like CB-Clip in SAMPL5 [70]). Thus,288

in the present challenge, we hoped to learn whether we might see a method or methods with significantly improved accuracy289

relative to prior challenges, and whether one might emerge that performs reasonably well (e.g. RMS error under 3 kcal/mol)290

across multiple host classes, as this has not typically been the case in prior challenges.291

5 SAMPL7 Host-Guest Systems and Challenge Organization292

The SAMPL7 host-guest challenge involved three different systems or categories which we explain here – one focusing on293

cucurbituril-derivatives, one focusing on Gibb deep cavity cavitands (GDCCs), and one focusing on modified cyclodextrins.294

5.1 Cucurbiturils and derivatives (CB[n], CB-Clip and TrimerTrip)295

Cucubiturils are a common and relatively well-studied system for host-guest binding [9] which have been featured in some prior296

SAMPL challenges.297

Many cucurbiturils (CB[n]s) have been synthesized by the Isaacs Lab, and several featured in previous SAMPL challenges. The298

potential applications of cucurbiturils include use as solublizing excipients for insoluble drugs, sequestrants for drugs of abuse299

and neuromuscular blockers, and pH triggered delivery agents [62]. This family of hosts typically have a molecular structure300

containing n glycoluril units connected via 2nmethylene bridges, forming a barrel shapedmacrocycle with a central hydrophobic301

cavity. In addition, cucurbiturils contain electrostatic carbonyls protruding out from the hydrophobic cavity.302

In the SAMPL7 challenge, the host is not a classic cucurbituril, as instead of being a macrocycle, it is a clip-shaped molecule303

based on similar chemistry. Particularly, the host is an acyclic cucurbituril clip composed of a glycoluril trimer capped with304

aromatic triptycene sidewalls at both ends (here called TrimerTrip, as it is a trimer of glycoluril units with triptycenes), and305

four sulfonate solubilizing groups protruding out from the sidewalls (Figure 1) [62]. The sulfonate groups also enhance ion-ion306

interactions with cationic guests [71], which are typical cucurbituril binders. Acyclic CB[n]-type receptors often take on a C-shape307

due to their increase in flexibility [62, 71, 72]. Experimentalists synthesized acyclic cucurbiturils with the idea to help increase308

the binding strength and capacity for different guests, including macrocyclic guests.309

Typically, CB[n]-guest complexes have very high affinity, especially for charged hydrophobic ammonium guests similar to310

those of the SAMPL7 challenge (Figure 1). This high affinity is due to the presence of intracavity waters lacking a full complement311

of hydrogen bonds. The lack of hydrogen bonds is known to provide an enthalpic driving force for binding to macrocyclic CB[n]312

complexes [73]. In terms of CB[n]-guest complex interactions, the charged nitrogen group on guests interacts with oxygens from313

the carbonyl portal of the host. The latter contributes to limiting the number of poses that need to be considered [11], at least314

in cyclic hosts.315

CB7 was used as a basis for host-guest benchmarking (including on binding of guests with adamantane and aromatic ring316

cores) since some of its properties and characteristics made it a convenient host both computationally and experimentally [9].317

Four insights and challenges for CB7 are described [9] and somemay be transferable to a clip type cucurbituril. (1) The tight exit318

portal of CB7 makes it difficult for guests with bulky hydrophobic cores such as adamantyl to fit through the portal and hence319

lead to convergence problems. (2) The timescales of wetting and dewetting events may be large compared to typical simulation320

timescales. In CB7, when gradually decoupling a guest there is a large fluctuation of waters in the host cavity. The latter occurs321

when the guest is partially decoupled and may also lead to convergence problems. (3) Experimental and computational binding322

thermodynamics are sensitive to the salt composition and concentration (for buffer conditions). (4) Guests with formal charges323

can pose challenges for binding free energy calculations (Section 3.1).324
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Previous studies of cucurbiturils, including CB7, have highlighted the importance of host and guest sampling, salt effects,325

and water model. Sampling of the CB7 host is thought to be straightforward because it is fairly rigid. However, guest binding326

modes might be challenging to adequately sample, especially for the more flexible guests. In the presence of buffer and/or327

salt, ions may compete with guests for the binding site. In addition, cationic guests could have interactions with counter-ions in328

solution, lowering affinity compared to zero-salt conditions [9]. One previous study showed a 6.4-6.8 kcal/mol dependence on329

salt concentration [9, 74]. The water structure around CB7 is sensitive to the choice of water model, and water is important in330

modulating binding in SAMPL7 systems. The choice of water model is also likely to have an impact on the number of sodium331

ions that must be displaced upon host-guest binding.332

While these insights result from studies on CB7, some of themmay carry over to the TrimerTrip host studied here. However,333

unlike its macrocyclic derivatives, TrimerTrip is acyclic and able to flex the methylene bridged glycoluril trimer backbone [72].334

Hence, with more degrees of flexibility sampling of TrimerTrip may not be as straightforward. TrimerTrip, like the Calabadion335

"cousins" in the family of cucurbiturils, may allow guest cationic groups to interact with other regions of the host rather than the336

carbonyl portals as in CB[n] macrocycles [72], which may complicate guest sampling.337

Previous acyclic CB[n]-type receptors contain a central glycoluril oligomer (monomer, dimer, and tetramer) with aromatic338

triptycene sidewalls, just like TrimerTrip. These clip-like receptors retain the essential molecular recognition properties ofmacro-339

cyclic CB[n] [75]. The monomer [71], dimer [75], and tetramer [66, 75] clips are able to encapsulate typical hydrophobic cationic340

guests which also bind to macrocyclic CB[n]s. In addition, the dimer and tetramer display similar host-guest properties [75].341

While TrimerTrip is a distinct host, it shares substantial similarity with these previous receptors and we expect it to exhibit rela-342

tively similar behaviors in binding to guests.343

5.2 Gibb Deep Cavity Cavitands (GDCCs) – OctaAcid (OA) and exo-OctaAcid (exo-OA)344

Of the several members in the GDCC host family [63], two have been used in several previous SAMPL challenges thanks to the345

Gibb group’s participation. Those featured in previous SAMPL challenges include OctaAcid (OA) and tetra-endomethyl OctaAcid346

(TEMOA). A newer exo-OctaAcid (exo-OA) along with OA are part of the SAMPL7 host-guest blind challenge (Figure 2). The guests347

for this system are diverse in their size and bulkiness, but typically have either a carboxylate or quaternary ammonium (Figure 2).348

OA and exo-OA have a deep and hydrophobic basket-shaped pocket, and are fairly rigid [9, 58]. In total there are eight349

carboxylate groups in both OA and exo-OA. The propionate groups at the exterior site of the cavity are the same in both hosts.350

The difference between the two hosts is the location of 4 carboxylates around the cavity opening. For OA the carboxylates are351

protruding out of the cavity while for exo-OA they are at the cavity entrance (Figure 2).352

GDCCs have been used in SAMPL3-7 and there is much experimental data [9, 43, 63, 76] and insight available. This family of353

hosts bind guests with a hydrophobicmoiety that fits the pocket and a hydrophilic groupwhich points out towards the solvent [9].354

The GDCCs have been shown to bind diverse guests varying in polarity, positively and negatively charged, as well as organic355

cations and anions [9, 77, 78]. The latter has been shown for OA, where binding thermodynamics is sensitive to the concen-356

tration and type of anions present. Shifts in binding enthalpies and free energies of approximately 10 kcal/mol and 2 kcal/mol357

respectively [54] have been observed and attributed to the competition between guests and anions leading to entropy-enthalpy358

trade-offs [9, 54]. In addition, experimental and computational simulation results show that de-wetting of GDCCs leads to in-359

creased guest affinity, because water cannot compete for the pocket [63, 76].360

In the presence of elongated guests, such as a long aliphatic chain, two OA hosts can encapsulate a guest forming a ternary361

complex. This phenomena is more likely to occur as polarity decreases for the groups at both ends of the guest [77]. How-362

ever, as described earlier in section 3.5, SAMPL7 was designed around systems which exhibit 1:1 binding. Isothermal titration363

calorimetry (ITC) experiments have shown that short-chain fatty acids, amphiphilic molecules, and large polarizable anions form364

1:1 complexes [76], as do the guests reported here.365

Previous work has proposed benchmarking free energy calculations on host-guest systems; for GDCCs, the proposed bench-366

mark included OA binding to guests with adamantane, aromatic, and saturated cyclic carboxylates. These host-guest systems367

were chosen because of the broad range of binding free energy values produced, and because both host and guests are small368

and rigid enough to confidently converge binding free energy calculations [9]. Several key challenges were highlighted by prior369

work: (a) a tight entry/exit portal may create a barrier and prevent entry or exit of guests with bulky hydrophobic cores. Hence,370

this can hinder sampling of guests leading to convergence problems. (b) It is important to ensure adequate host conformational371

sampling (though the motions may be slow), particularly of the propionoic acid groups. Benzoic acid flips (at the rim of the372

cavity) have also been reported from several simulations [3, 9, 65], though these have not been verified experimentally and373

may be irrelevant to binding thermodynamics. However, it has been noted that the benzoic acid flips might be an important374
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challenge in some force fields. (c) Waters move only slowly into and out of the cavity, with the number fluctuating over tens375

of nanoseconds [9, 79]. (d) Salt concentration and buffer conditions may modulate binding to GDCCs. Additionally, (e) charged376

guests may introduce finite-size artifacts. (f) Strong electrostatic interactions could result in modified protonation states of the377

host and/or guest. Acidic guests could be protonated, or two of the propionate groups could retain an acidic proton because378

they are in close proximity and can hydrogen bond. At the rim of the cavity a guest may also modulate protonation state of the379

neighboring carboxylates.380

5.3 Cyclodextrins (CDs) and cyclodextrin derivatives381

Cyclodextrin (CD) family hosts are composed of chiral glucose monomers linked to yield a cyclic polymer. The SAMPL7 challenge382

focused on modified CDs provided by the Gilson lab, which synthesized monofunctionalized derivatives differing by addition383

of a substituent projecting outward from a primary or secondary face hydroxyl of the cyclic oligosaccharide (Figure 3). The CD384

host derivatives and native (unmodified) CDs have a truncated cone shape (Figure 4) with a hydrophobic cavity and a hydrophilic385

surface, while the substituents are intended to alter the host’s chemical and physical properties. The new host substituents386

introduce new host-guest interactions, while retaining some of the same binding characteristics [80].387

While typical SAMPL host-guest challenges have focused on binding of a series of guests to one or two hosts, one unique388

aspect of this portion of the challenge is that it focuses on binding of just two guests to a series of related hosts.389

Previous studies on CDs (�-CD, �-CD, and mono-3-carboxyproponamido-�CD) report two distinct bound states for each host-390

guest pair. The first bound state, called the "primary orientation", has the guest polar group (i.e., alcohol, ammonium, carboxy-391

late) towards the glucose subunits primary alcohols, while the "secondary orientation" has the guest polar group towards the392

secondary alcohol [80, 81] (Figure 4). Though a possible third "surface orientation"/binding mode has been speculated to exist,393

it may be this is a transition needed for the guest to flip from primary to secondary phase orientation or vice-versa [43]. The394

difference in binding free energy for the twomain orientations has been reported as being about 2 kcal/mol and up to 5 kcal/mol395

using several different force fields [81], with this of course also depending on the guest. The same report suggested that using396

GAFF v2.1 better models the flexibility of �-CD compared to the SMIRNOOFF99Frosst and GAFF v1.7 force fields.397

The guests proposed in SAMPL7 have been reported to bind native �-CD, mono-3-carboxyproponamido-�-CD, and �-CD sub-398

stitutedwith an amine at the 3position (secondary face). Rimantadine (Figure 3) binds beta-CDandmono-3-carboxyproponamido-399

�CD with its cationic ammonium group projecting out from the secondary face [80, 82]. On the other hand rimantadine prefers400

the primary orientation when binding �-CD with an amine at the 3 position. Both 4-methyl-cyclohexanol (g1) and rimantadine401

(g2) (Figure 3) may bind to the new �-CD derivative hosts (MGLab9 through MGLab36 Figure 3) in either of the three orientations.402

However, it was hypothesized that the rimantadine head group would be oriented towards a negatively charged substituent and403

away from a positively charged one [43].404

Binding modes for the cyclodextrin dataset were determined using 2D NOESY NMR by the Gilson lab [64]. This experimental405

binding mode information can in turn be used to check if the selected binding mode(s) used in a particular method played406

a role in the accuracy (or lack thereof) of computed binding free energies. Table 1 summarizes the binding orientations for407

methylcyclohexanol and rimantadine with each host as determined by the Gilson lab (for specific details of the experimental408

methods see Ref [64]).409

5.4 Challenge Organization and Format410

The SAMPL7 host-guest blind challenge was organized so participants may submit a ranked submission, a non-ranked submis-411

sion, or both for any or all of the three host-guest systems. Participants were advised to submit their best method as their412

ranked submission since only one ranked submission is allowed, as detailed below.413

Participants were provided with pre-prepared host and guest structures, with SMILES strings, mol2, PDB and sdf files pro-414

vided for all compounds. We made an effort to provide reasonable protonation states, etc., but also provided disclaimers that415

participants should carefully consider the choice of protonation state, etc. All provided data/instructions are available in the416

SAMPL7 GitHub repository (https://github.com/samplchallenges/SAMPL7).417

Participant submissions followed a prescribed template and included predicted values and uncertainties, as well as method418

and participant information and other details. All submission files are available in the GitHub repository. Predicted values were419

optionally allowed to include binding enthalpy.420

Only ranked submissions were considered in challenge analysis. Groups were able to submit multiple submissions, but421

needed to designate additional submissions as non-ranked. Non-ranked submissions, or additional submissions, allow "bench-422

marking" of methods. For example, for a particular method a participant can change one parameter in their methodology (i.e.423
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Table 1. Binding orientations of guests g1 (methylcyclohex-
anol) and g2 (rimantadine) with cyclodextrin hosts. Binding ori-entations of guests complexed with hosts determined by NOESYNMR by the Gilson lab [64]. The orientations are summarized hereto cross check with binding mode(s) used by SAMPL7 participantsand ascertain the binding mode(s) which may contribute to accu-rate binding affinity predictions (or lack thereof). In some cases,experiments did not allow determination of a binding mode; suchcases are labeled ND.
Host Location of Mono-substituent (Face) Guest Binding Orientation

G1 - Methylcyclohexanol
�-CD N/A Primary and Secondary
MGLab8 Secondary Secondary
MGLab9 Secondary Primary and Secondary
MGLab19 Secondary Primary
MGLab23 Secondary Primary and Secondary
MGLab24 Secondary Primary
MGLab34 Primary Secondary
MGLab35 Primary Primary
MGLab36 Secondary Primary and Secondary
G2 - Rimantadine
�-CD N/A Secondary
MGLab8 Secondary Secondary
MGLab9 Secondary ND
MGLab19 Secondary Primary
MGLab23 Secondary Primary
MGLab24 Secondary Secondary
MGLab34 Primary Primary
MGLab35 Primary ND
MGLab36 Secondary Secondary

charging method, host conformer, guest pose, water model, etc.) to ascertain its impact on predictions. In previous challenges,424

participants were allowedmultiple ranked submissions; the shift to a single ranked submission per participant is new to SAMPL7.425

This change was made to reduce the potential for multiple shots on goal to be more fair to groups which only submit one set of426

predictions.427

In addition to the formal predictions, one member of our team (MA) conducted a set of blind reference calculations which428

were submitted informally in the non-ranked category. Data collection for TrimerTrip and its 16 guests (Figure 1) of this challenge429

was completed around August of 2019 and a challenge submission deadline of October 4, 2019 was set to avoid delaying the430

experimental publication. The GDCC dataset was finalized on May 25, 2019 and its submission deadline, along with that for the431

Cyclodextrin derivative challenge, was set to November 4, 2019. Submissions for OA with g1-g6 (Figure 2) guests were optional432

(and not part of rankings) since these have been reported in previous challenges and literature values are available. In addition,433

submitting binding enthalpies for GDCC predictions were optional. Similarly, for the Cyclodextrin derivatives dataset, predictions434

for g1 and g2 binding to �-cyclodextrin (Figure 3) were optional since literature values for these compounds are available.435

As noted above, we provided input files in a variety of formats. Participants were advised that (a) further equilibration of436

the host with the guest might or might not be needed (for TrimerTrip, we pre-equilibrated the host structure as discussed in437

Methods) and (b) to exercise their best judgment on the state modeled (i.e protonation, conformer, binding mode, etc.). In438

essence, part of the host-guest challenge for some systems included binding mode prediction.439

6 Methods440

In this sectionwe describe the details of our own reference calculations, give a general overview ofmethods used by participants’441

submissions, summarize key experimental details and methodology (the experimental studies will be published elsewhere [63,442

64, 72]), and describe our statistical analysis and evaluation approach.443

6.1 Absolute Binding Free Energy Predictions444

6.1.1 Reference Calculation Methodology445

In this section we give details of our own reference calculations. These reference calculations were informally part of the chal-446

lenge and used as additional methods for comparison. These calculations were also conducted blindly and were informally447

submitted as a "non-ranked" category, as they do not constitute a formal part of the challenge but are provided as a point of448

comparison.449
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Reference calculations were done using an alchemical free energy calculation toolkit known as YANK [10, 83]. YANK provides450

several schemes for sampling from multiple thermodynamic states. For reference calculations we applied the replica exchange451

sampler (also known as Hamiltonian Exchange) [83, 84], using the OpenMM simulation engine [85–89]. Free energies are esti-452

mated using the multistate Bennet acceptance-ratio (MBAR) [90]. (For details on the thermodynamic cycle used in YANK and the453

theory see http://getyank.org/latest/theory.html)454

Initially, test simulations were done with the goal to determine if we could identify and apply a reasonable single protocol to455

run all host-guest systems. However, due to the guest formal charges and the diversity of the hosts and guests we guessed that456

successful protocols (especially lambda spacings) would be system dependent.457

For the simulations, harmonic distance restraints (between the closest atom to the center of the host and the closest atom458

to the center of the guest from the initial geometries) were used to allow the guest to explore the cavity and different binding459

orientations since the binding mode of some guests were unknown. Restraints are needed to define the standard state and460

ensure the ligand remains near the host to avoid sampling problems. We chose harmonic center-of-mass restraints in particular461

to allow the ligand to sample alternate binding modes if needed. This may help reduce bias in free energy estimates if we start462

from an incorrect binding mode (especially in the cases where the binding mode is unknown).463

We ended up choosing two protocols, varying in number of lambda windows (with all other simulation parameters kept464

consistent), with one being for systems with neutral guests and a second for guests with a formal charge. We expected that465

a second protocol for guests with a formal charge would be needed since electrostatic interactions would be much stronger466

with its environment and limit sampling. Indeed, after testing the "neutral" protocol on a charged guest we noticed insufficient467

replica mixing per an issued warning from a generated YANK simulation health report. The protocol for neutral guests had468

31 lambda windows and was based on a previous protocol used on �-CD with cyclopentanol as the guest. This protocol was469

tested on �-CD with 4-methyl-cyclohexanol as the guest. For systems with a charged guest, we ran a test free energy calculation470

using YANK’s automatic pipeline to determine the best alchemical path (lambda windows and values) based on a �-CD and the471

positively charged rimantadine (g2) guest, resulting in 61 lambda windows. Both of the test calculations were within 4 kcal/mol472

of experimental values [80] upon completion, and simulation health reports showed reasonable exchange between replicas and473

exhibited apparently reasonable convergence. However, in the case of the charged guest, convergence was not as convincing at474

similar time scales. For example, the test calculation for the neutral guest showed reasonable convergence by 14 ns per window475

while in the case of a charged guest, simulations were run for 26 ns per window and convergence was still not as obvious.476

The "neutral guest" protocol described above (31 lambdawindows) was used to run all simulations in the cyclodextrin dataset477

with guest g1, for 16 ns per lambda window when free energy estimates appeared converged. On the other hand, the "charged478

guest" protocol (61 lambda windows) was used for the remaining host-guest systems across all datasets since all other guests479

bore a formal charge. In this case, simulations were run until free energy estimates apparently converged or up to 30 ns per480

lambda window, which ever came first. First, to determine feasible cross application of the "charged guest" protocol to different481

systems (GDCC and TrimerTrip datasets), the charged protocol was tested on OA-g2 and clip-g11. Experimental data for OA-482

g2 was available from a previous SAMPL challenge, so this was an ideal system to test the protocol. The OA-g2 test resulted483

in predicted free energy within 4 kcal/mol, after running the simulation to 26 ns per window. A health report for the OA-g2484

simulation showed reasonable mixing between replicas, and there was apparent convergence. However sampling of replicas485

in individual states was not ideal. For the clip-g11 test simulation (for TrimerTrip dataset), the protocol was initially deemed486

reasonable based on YANK’s health report (with mixing_cutoff and mixing_warning_threshold options at default 0.05 and 0.9487

settings, respectively) which can detect insufficient replica mixing or number of swaps between states and thus issue warnings.488

Warning messages were not issued in this test case. However, in this test case sampling of replicas in individual states was not489

ideal and the calculations apparently did not fully converge even after 30 ns per window. For this reason all simulations for490

TrimerTrip were run for 30 ns per window in an attempt to obtain reasonable convergence, though after the fact convergence491

was only apparent for clip-g1 of TrimerTrip dataset. In addition, an "open" host conformer was extracted from the clip-g11 test492

simulation trajectory, the guest was docked to the open host conformer, and simulation (found in Docking/GAFF/YANK_REF_2) was493

re-run in an attempt to allow the host to relax and adapt to the bulky guest. Still longer simulations, or protocol optimizations,494

might be needed for better converged results.495

Reference calculations were conducted using GAFF parameters and AM1-BCC charges. GAFF parameters and guest AM1-496

BCC charges were assigned using Antechamber, and AM1-BCC charges for the host were assigned using the OpenEye toolkits497

because Antechamber could not charge the hosts. The starting poses were determined by docking via AutoDock Vina [91] and498

the top scoring pose was selected. If multiple orientations need to be considered, our Hamiltonian replica exchange based499

simulations, in theory, ought to sample them despite starting from a single orientation. A host-guest complex was manually500
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created in tLeap and TIP3P was used to solvate the host-guest complex and the guest. In addition, sodium and chloride were501

manually added as counter ions, and additional ionswere added tomimic experimental buffer conditions. Subsequently, AMBER502

restart, topology, and input coordinate files were generated with tLeap. The starting simulation files (AMBER restart/coordinate503

(rst7) and topology (prmtop)), workflow and methodology details, and yaml scripts (with protocol parameters) are available at504

SAMPL7 GitHub repository (see https://github.com/samplchallenges/SAMPL7/tree/master/host_guest).505

6.1.2 Participant Calculation Methodologies506

There were a total of 30 submissions (ranked and non-ranked) from 6 groups for the SAMPL7 host-guest challenge. A good507

number of methods used alchemical free energy calculations with classical fixed charge (GAFF [92], GAFF2 [93], CGenFF [92])508

and polarizable force fields (AMOEBA) [94], different charging schemes (AM1BCC [92, 95], RESP [95]), several explicit water509

models (TIP3P [92], TIP4P-Ew [95], OPC [93]) and even implicit solvent [95]. Outside of simulation-based free energy meth-510

ods, quantum mechanical (QM) and QM/MM (molecular mechanics) approaches were also used [95], and one group employed511

machine learning [96]. In addition, several groups submitted multiple predictions (particularly for the GDCCs) and the ensu-512

ing results are important to provide insight and give merit to the methods used here. Participants’ submissions with specific513

details on their methodologies are available in the relevant host-guest system directory in the SAMPL7 GitHub repo (https:514

//github.com/samplchallenges/SAMPL7/tree/master/host_guest/Analysis/Submissions) and methods are briefly summarized in Ta-515

ble 4.516

6.2 Experimental Measurements517

The experimental binding data for all host-guest systems are listed in Table 2 and in the SAMPL7 GitHub repo (see https://github.518

com/samplchallenges/SAMPL7/tree/master/host_guest/Analysis/ExperimentalMeasurements); if there are any updates/changes, the519

GitHub version is the authoritative one. Asmentioned in Section 3.5 a 1:1 binding stoichiometry was confirmed for all host-guest520

systems. The binding values were determined via ITC and/or NMR typically at 298K. Binding measurements for TrimerTrip were521

performed in 20 mM sodium phosphate at pH 7.4. Binding constants for GDCC systems were determined in 10 mM sodium522

phosphate buffer at pH 11.7. All binding for CD derivative systems were assayed in 25 mM pH 6.8 sodium phosphate buffer.523

Experimental results suggest all binding was inside the CD-derivative cavity so there is no surface binding. Specific experimental524

details can be found in the SAMPL7 github repository (see https://github.com/samplchallenges/SAMPL7/tree/master/host_guest)525

and in the relevant experimental papers [62–64], respectively. Binding of one guest (g1) to the GDCC exoOA was undetectable526

by ITC and NMR (Table 2).527

6.3 Statistical/Error Analysis of Challenge528

In general, analysis was performed using Python scripts deposited in the SAMPL7 GitHub repository adapted from previous529

SAMPL challenges such as the SAMPL6 host-guest challenge, so analysis is extremely similar to what was performed there [97].530

All binding free energy prediction sets were compared with experimental data via the following statistical measurements: RMSE531

(root mean-squared error), R2 (coefficient of determination), � (Kendall Tau correlation coefficient), m (linear regression slope),532

ME (mean error), and MAE (mean absolute error). Any uncertainty in the error metrics was determined via bootstrapping with533

replacement, as described previously [3, 4]. Methods for each host-guest system dataset (TrimerTrip, GDCC, and CD derivatives)534

were only evaluated and compared within the same dataset. In addition, we computed RMSE and ME of methods to each535

individual host-guest system to ascertain problematic molecules.536

The statistical evaluation was separated into two categories, ranked and non-ranked, as described in Section 5.4. All ranked537

submissions’ evaluationdata, plots, and tables are available at the SAMPL7GitHub repository (see https://github.com/samplchallenges/538

SAMPL7/tree/master/host_guest/Analysis/Accuracy_ranked). Statistical analysis was carried out with and without optional guests.539

Optional guests were those for which experimental data was already available. In addition, one very poorly performing CD540

ranked method was not included in much of our analysis because its performance was so poor that it would have made most541

other methods appear virtually identical, but was included in the non-ranked analysis and in Table S1 and S2 (sid 15 or ID AM1-542

BCC/MD/GAFF/TIP4PEW/QMMM). All non-ranked evaluation data, plots, and tables are available in the SAMPL7 GitHub repository543

(see https://github.com/samplchallenges/SAMPL7/tree/master/host_guest/Analysis/Reference/Accuracy), as is the raw data and the544

analysis tools.545
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Table 2. Experimental binding details for all host-guest systems.

ID name Ka (M−1) ΔG (kcal/mol) (a) ΔH (kcal/mol) TΔS (kcal/mol) (b) n

clip-g1 4-azaniumylbutylammonium 31000.0 ± 9000.0 -6.1 ± 0.2 -6.1 ± 0.8 0.0 ± 0.8 0.86
clip-g2 5-azaniumylpentylammonium 1270000.0 ± 80000.0 -8.32 ± 0.04 -8.8 ± 0.3 -0.4 ± 0.3 1.00
clip-g3 6-azaniumylhexylammonium 24000000.0 ± 3000000.0 -10.05 ± 0.07 -10.9 ± 0.3 -0.8 ± 0.3 0.90
clip-g15 trimethyl-[6-(trimethylammonio)hexyl]ammonium 52000000.0 ± 4000000.0 -10.52 ± 0.05 -12.8 ± 0.4 -2.2 ± 0.4 0.97
clip-g12 hexyl(trimethyl)ammonium 1210000.0 ± 70000.0 -8.29 ± 0.03 -8.4 ± 0.3 -0.1 ± 0.3 0.94
clip-g5 8-azaniumyloctylammonium 150000000.0 ± 30000000.0 -11.1 ± 0.1 -11.4 ± 0.4 -0.3 ± 0.4 0.89
clip-g16 10-azaniumyldecylammonium 300000000.0 ± 100000000.0 -11.5 ± 0.2 -11.2 ± 0.4 0.3 ± 0.4 0.89
clip-g17 12-azaniumyldodecylammonium 500000000.0 ± 300000000.0 -11.8 ± 0.4 -10.4 ± 0.3 1.4 ± 0.5 0.97
clip-g9 1-adamantylammonium 360000.0 ± 30000.0 -7.57 ± 0.05 -4.8 ± 0.2 2.8 ± 0.2 0.95
clip-g6 1-adamantyl(trimethyl)ammonium 11000000.0 ± 2000000.0 -9.6 ± 0.1 -10.2 ± 0.4 -0.6 ± 0.4 0.83
clip-g11 1-(1-adamantyl)ethanamine 4100000.0 ± 600000.0 -9.02 ± 0.08 -7.4 ± 0.3 1.6 ± 0.3 0.85
clip-g10 decahydro-2,8,4,6-(epibutane[1,2,3,4]tetrayl)naphthalene-2,6-diaminium 1000000.0 ± 100000.0 -8.17 ± 0.08 -5.8 ± 0.2 2.3 ± 0.2 0.99
clip-g8 [4-(azaniumylmethyl)phenyl]methylammonium 8500000.0 ± 700000.0 -9.45 ± 0.05 -10.6 ± 0.3 -1.1 ± 0.3 0.90
clip-g18 1-methyl-4-(1-methylpyridin-1-ium-4-yl)pyridin-1-ium 54000000.0 ± 8000000.0 -10.55 ± 0.09 -12.4 ± 0.4 -1.8 ± 0.4 0.95
clip-g19 4-(1,1-dimethylpiperidin-1-ium-4-yl)-1,1-dimethyl-piperidin-1-ium 360000000.0 ± 80000000.0 -11.7 ± 0.1 -13.6 ± 0.4 -2.0 ± 0.5 0.79
clip-g7 (4-azaniumylcyclohexyl)ammonium 59000.0 ± 5000.0 -6.5 ± 0.05 -6.7 ± 0.3 -0.2 ± 0.3 0.83
OA-g1 hexanoate 4400.0 ± 200.0 -4.97 ± 0.02 -5.54 ± 0.1 -0.57 ± 0.07 1.00
OA-g2 4-chlorobenzoate 116000.0 ± 5000.0 -6.91 ± 0.02 -9.6 ± 0.3 -2.6 ± 0.2 1.00
OA-g3 (4 S)-4-isopropenylcyclohexene-1-carboxylate 870000.0 ± 40000.0 -8.1 ± 0.02 -12.0 ± 0.02 -3.9 ± 0.02 1.00
OA-g4 (3 S)-3,7-dimethyloct-6-enoate 91000.0 ± 7000.0 -6.76 ± 0.05 -6.7 ± 0.2 0.1 ± 0.1 1.00
OA-g5 trimethyl-2-phenylethanaminium 3000.0 ± 100.0 -4.73 ± 0.02 -7.48 ± 0.05 -2.75 ± 0.05 1.00
OA-g6 hexyl(trimethyl)ammonium 4400.0 ± 200.0 -4.97 ± 0.02 -7.3 ± 0.3 -2.3 ± 0.3 1.00
OA-g7 trimethyl-(4-methylcyclohexyl)ammonium 28000.0 ± 2000.0 -6.07 ± 0.05 -5.7 ± 0.2 0.3 ± 0.1 1.00
OA-g8 1-adamantyl(trimethyl)ammonium 1110000.0 ± 40000.0 -8.25 ± 0.02 -7.8 ± 0.2 0.4 ± 0.1 1.00
exoOA-g1 hexanoate ND ± ND ND ± ND ND ± ND ND ± ND 1.00
exoOA-g2 4-chlorobenzoate 9.0 ± 4.0 -1.3 ± 0.3 ND ± ND ND ± ND 1.00
exoOA-g3 (4 S)-4-isopropenylcyclohexene-1-carboxylate 300.0 ± 40.0 -3.37 ± 0.07 -6.0 ± 0.1 -2.65 ± 0.07 1.00
exoOA-g4 (3 S)-3,7-dimethyloct-6-enoate 440.0 ± 20.0 -3.61 ± 0.02 -7.3 ± 0.7 -3.7 ± 0.7 1.00
exoOA-g5 trimethyl-2-phenylethanaminium 12100.0 ± 500.0 -5.57 ± 0.02 -6.17 ± 0.02 -0.6 ± 0.02 1.00
exoOA-g6 hexyl(trimethyl)ammonium 18900.0 ± 800.0 -5.83 ± 0.02 -3.25 ± 0.02 2.58 ± 0.02 1.00
exoOA-g7 trimethyl-(4-methylcyclohexyl)ammonium 130000.0 ± 20000.0 -6.98 ± 0.1 -4.97 ± 0.07 2.01 ± 0.05 1.00
exoOA-g8 1-adamantyl(trimethyl)ammonium 420000.0 ± 20000.0 -7.67 ± 0.02 -5.04 ± 0.05 2.63 ± 0.02 1.00
bCD-g1 trans-4-methylcyclohexanol 2100.0 ± 100.0 -4.52 ± 0.03 -2.6 ± 0.2 2.0 ± 0.2 0.88
bCD-g2 R-rimantadine 35000.0 ± 3000.0 -6.2 ± 0.04 -10.4 ± 0.7 -4.2 ± 0.7 1.00
MGLab_8-g1 trans-4-methylcyclohexanol 260.0 ± 20.0 -3.3 ± 0.05 -1.8 ± 0.4 1.5 ± 0.4 0.89
MGLab_8-g2 R-rimantadine 830.0 ± 50.0 -3.98 ± 0.04 -6.9 ± 0.5 -2.9 ± 0.5 1.03
MGLab_9-g1 trans-4-methylcyclohexanol 210.0 ± 20.0 -3.17 ± 0.05 -2.7 ± 0.8 0.4 ± 0.8 0.88
MGLab_9-g2 R-rimantadine 700.0 ± 40.0 -3.88 ± 0.03 -9.0 ± 0.6 -5.2 ± 0.6 1.00
MGLab_19-g1 trans-4-methylcyclohexanol 210.0 ± 20.0 -3.18 ± 0.04 -2.1 ± 0.2 1.1 ± 0.2 0.83
MGLab_19-g2 R-rimantadine 320.0 ± 20.0 -3.41 ± 0.04 -11.0 ± 1.0 -8.0 ± 1.0 0.94
MGLab_23-g1 trans-4-methylcyclohexanol 220.0 ± 20.0 -3.2 ± 0.05 -3.0 ± 1.0 0.0 ± 1.0 0.76
MGLab_23-g2 R-rimantadine 1510.0 ± 90.0 -4.33 ± 0.04 -7.6 ± 0.5 -3.3 ± 0.5 0.96
MGLab_24-g1 trans-4-methylcyclohexanol 280.0 ± 20.0 -3.34 ± 0.05 -1.6 ± 0.2 1.7 ± 0.2 0.92
MGLab_24-g2 R-rimantadine 1100.0 ± 70.0 -4.15 ± 0.04 -8.6 ± 0.6 -4.5 ± 0.6 1.03
MGLab_34-g1 trans-4-methylcyclohexanol 700.0 ± 100.0 -3.85 ± 0.09 -3.7 ± 0.3 0.1 ± 0.3 0.81
MGLab_34-g2 R-rimantadine 11000.0 ± 7000.0 -5.5 ± 0.4 -9.0 ± 2.0 -3.0 ± 2.0 0.99
MGLab_35-g1 trans-4-methylcyclohexanol 2300.0 ± 200.0 -4.58 ± 0.05 -4.5 ± 0.3 0.1 ± 0.3 0.85
MGLab_35-g2 R-rimantadine 27000.0 ± 2000.0 -6.04 ± 0.04 -7.3 ± 0.5 -1.2 ± 0.5 0.78
MGLab_36-g1 trans-4-methylcyclohexanol 200.0 ± 10.0 -3.15 ± 0.04 -3.0 ± 0.3 0.1 ± 0.3 0.87
MGLab_36-g2 R-rimantadine 350.0 ± 20.0 -3.48 ± 0.04 -11.0 ± 1.0 -7.0 ± 1.0 0.84

All quantities are reported as point estimate ± statistical error from the ITC data fitting procedure. The upper bound (1%) was
used for errors reported to be < 1%. We also included a 3% relative uncertainty in the titrant concentration assuming the sto-
ichiometry coefficient to be fitted to the ITC data [4] for the Isaacs (TrimerTrip) and Gilson (cyclodextrin derivatives) datasets,
where concentration error had not been factored in to the original error estimates. For the OA/exo-OA sets, provided uncer-
tainties already included concentration error. In some cases, exoOA-g1 binding constants were not detected (ND) by ITC or H
NMR. Binding of guest g2 to exoOA was very weak so only H NMR spectroscopy could produce reliable free energy data. The
stoichiometry for each host-guest system is defined in n
(a) Statistical errors were propagated from the Ka measurements.
(b) All experiments were performed at 298 K.
(c ) Units of M−2.
(d ) Units of M−3.

7 Results and Discussion546

We find that predictive accuracy of binding free energies for host-guests, in terms of RMSE, is comparable to previous SAMPL547

challenges. However, we do see moderate improvement in some cases. For instance, binding affinity predictions of hosts in548

the acyclic cucurbituril category such as H1 featured in SAMPL3 [15], CBClip from SAMPL5 [70], and TrimerTrip (SAMPL7) had549
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a mean RMSE of 7.07, 5.87, and 4.15 kcal/mol, respectively. The best performing methods for acyclic cucurbiturils achieved550

RMSEs as low as 1.60, 3.40, and 1.58 kcal/mol. The accuracy of methods used for acyclic cucurbiturls similar to TrimerTrip show551

improvement across SAMPL challenges. On the other hand, methods used in predicting binding free energies for systems in552

the cavitand category OA/TEMOA (SAMPL5), OA/TEMOA (SAMPL6), and OA/exoOA (SAMPL7) show high variation from challenge553

to challenge. The RMSE across challenges shows similar or slightly poorer accuracy on average. However, the best performing554

methods in the cavitand category usually do better than methods in other categories, or at least as well, by RMSE, and achieve555

R2 values well above 0.7 kcal/mol. This is more apparent in SAMPL6 and SAMPL7, partly from methods using the extensive556

cavitand data available from previous challenges to apply corrections. Comparing accuracy of ranked and non-ranked methods,557

on average ranked methods performed better (Figure S4). In addition, we find participation in the SAMPL host-guest challenges558

to be fairly consistent over time with approximately 30 submissions (the exact submission amount shown in parenthesis next559

to the SAMPL challenge) each in SAMPL3 (29), SAMPL5 (31), and SAMPL7 (30), except the substantial increase to 80 submissions560

for SAMPL6.561

Out of the 30 participant submissions in SAMPL7, 7 were for TrimerTrip, 16 for the GDCCs, and 9 for the CD derivatives. The562

TrimerTrip submissions included 3 ranked and 4 non-ranked, GDCCs included 4 ranked and 12 non-ranked, and CD-derivatives563

had 3 ranked and 6 non-ranked (Figure 5). For a large portion of methods submitted, docking was used to obtain starting564

structures, and one submission used self association molecular dynamics (SA-MD) [96]. General classical fixed charge force565

fields were commonly used, as has become common in SAMPL host-guest challenges (see Section 6.1.2 for methods submitted566

to SAMPL7 host-guest challenge). Alchemical free energy techniques were employed in many cases, with analysis done via567

thermodynamic integration (TI) and Bennett acceptance ratio (BAR) for equilibrium calculations. Nonequilibrium approaches568

were also employed, such as using the fast switching double annihilationmethod (FSDAM) approach [93, 98]. Here we introduce569

the results for all ranked methods separated by host-guest system dataset, give statistics for binding of individual host-guest570

systems averaged acrossmethods, and lastly examine analysis of non-rankedmethods including our own reference calculations.571

7.1 Ranked Submissions572

7.1.1 TrimerTrip573

Statistical analysis of the 3 sets of ranked absolute binding free energy predictions for the TrimerTrip dataset are summarized574

in Table S2 and Figure 6. All methods used explicit solvent. These submissions used nominally very similar free energy tech-575

niques (though with differences in protocol) but force fields were substantially different. Fixed-charge approaches used the576

GAFF and GAFF2 force fields, along with the TIP3P or OPC water models (the method called MD/DOCKING/GAFF/xtb-GNF/ used577

GAFF with TIP3P, while FSDAM/GAFF2/OPC3 used GAFF2 with OPC). The third submission in this category, AMOEBA/DDM/BAR,578

used the AMOEBA force field, which explicitly treats polarizability and includes multipoles; this AMOEBA-based approach was579

consistently the top performing method with values of 2.76 kcal/mol, 0.50, 1.25, and 0.47 in terms of RMSE, R2, slope (m), and580

� respectively (Figure 6). The mean error (ME) for this AMOEBA submission was modestly larger in magnitude than one of the581

other ranked submissions, but in all other respects its performance was superior. Full statistics are in Table 3. AMOEBA-based582

approaches also perform well in the GDCC category, as we will see below.583

For this dataset, the AMOEBA/DDM/BAR method predicted 10/16 binding affinities within 2 kcal/mol, the majority of these584

being within 1 kcal/mol (as discussed in the SAMPL7 virtual workshop [43]; full data available in our GitHub repository). The585

outliers for this method were clip-g6, clip-g7, clip-g8, clip-g9, clip-g11, and clip-g17, of which binding affinities were predicted586

to be too unfavorable. The FSDAM/GAFF2/OPC3 method predicted 10/16 within 2 kcal/mol and host-guest system outliers were587

clip-g3, clip-g8, clip-g10, clip-g11, clip-g16, and clip-g18. The other ranked submission, MD/DOCKING/GAFF/xtb-GNF, predicted588

5/16 binding affinities within 2 kcal/mol, with 4 of those 5 being within 1 kcal/mol. Interestingly, all of the predictions within 2589

kcal/mol used starting poses generated not by docking, but by using SA-MD. The SA-MD approach makes the assumption that590

the host is not in its proper conformation and the host and guest are allowed to associate on their own [43, 96]. It would be591

interesting to see the predictive accuracy of this approach on the remaining TrimerTrip host-guest systems, and which systems592

if any prove to be troublesome.593

Two of these methods, AMOEBA/DDM/BAR and MD/DOCKING/GAFF/xtb-GNF, tended to yield binding free energies which were594

too unfavorable while the FSDAM/GAFF2/OPC3 ranked method was too favorable (Figure 6). Thus, most predictions with er-595

rors larger in 2 kcal/mol in magnitude err in the direction of not predicting binding to be favorable enough, especially with596

AMOEBA/DDM/BAR andMD/DOCKING/GAFF/xtb-GNF are underpredicted (Figure 7). On the other hand, as shown by Figures 6 and597

7, the FSDAM/GAFF2/OPC3method errs in both directions more frequently.598
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We sought to determine whether some hosts/guests are particularly challenging to predict, across all rankedmethods, so we599

examined the RMSE and ME by host and guest for ranked free energy predictions for all individual host-guest systems. This is600

shown in Figure 8. The ranked predictions of all methods for the TrimerTrip/"clip" host-guest systems (shown in blue in Figure 8)601

were in general the most problematic, especially clip-g6, clip-g9, clip-g10, clip-g11, clip-g18, and clip-g19 which had an RMSE602

of about 4 kcal/mol or greater. All of the guests with an adamantane moiety fall within this list of "problematic" molecules.603

The computed binding affinities for these host-guest systems are mostly too weak with ΔG ME of -2.5 kcal/mol or greater, the604

exception being clip-g10 which was predicted to be too favorable with a ΔG ME of 2 kcal/mol.605

Overall for the TrimerTrip/clip-based systems, when we consider both ranked and non-ranked submissions, we believe the606

results suggest that any combination of the following may be limiting predictive accuracy: (a) chosen host conformer, (b) guest607

binding mode, (c) chosen energy model, and (d) water model. More specifically the general performance of the AMOEBA-based608

submissions pointed towards multipoles, polarization and/or shielding effects being important, especially as the guest becomes609

more hydrophobic, but the AMOEBA work (using multiple host conformers) [43, 94] also suggested host sampling could be an610

important issue since host conformers did not interconvert at nanosecond simulation timescales.611

7.1.2 GDCC612

The GDCC dataset, which includes OA and exo-OA host-guest systems, had the most submissions, probably because this host613

is familiar to many participants since it has formed part of a variety of previous SAMPL challenges. The statistical analysis of 4614

sets of ranked methods are shown in Figure 9. For the entire GDCC dataset there was not a clear top performing method in615

terms of RMSE, R2, �, and slope, but the RESP/GAFF/MMPBSA-Cor and AMOEBA/DDM/BAR methods were the two top performing616

methods. Again, the AMOEBA/DDM/BAR method emerged among the top performers, but unlike in the TrimerTrip challenge it617

is not the top method by all error metrics. The RESP/GAFF/MMPBSA-Cor method had the top ΔG RMSE, R2, and � values of 1.24618

kcal/mol, 0.94, and 0.83 respectively. Essentially, the latter approach seems to have done slightly better at ranking compounds619

for binding than the AMOEBA-based approach, but with a slope which is systematically incorrect. Full performance statistics are620

in Table S2.621

Figure 10 shows performance of ranked methods relative to experiment. In general, the AMOEBA/DDM/BARmethod tends to622

yield GDCC binding free energies which are too unfavorable, while all other rankedmethods tend to predict binding free energies623

that are too favorable. The AMOEBA/DDM/BAR method gave calculated values that most directly correlated with experimental624

ones, as evidenced by a slope, m, of 1.11. With this approach, only exoOA-g4 had an error larger than 2 kcal/mol. The exoOA-g2625

host-guest system was the only outlier for the RESP/GAFF/MMPBSA-Cor method, and the participants suggested this was likely626

due to guest g2 containing a chlorine atom. The QM-based method B2PLYPD3/SMD QZ-R had large prediction errors in more627

cases than any other method, in part because it overestimated the dynamic range of predictions and led to calculated binding628

free energies that were often far too negative. The xtb-GNF/MachineLearning/CORINA MD had smaller errors, but the correlation629

between calculated and experimental free energies was poor.630

The xtb-GNF/MachineLearning/CORINA MD, RESP/GAFF/MMPBSA-Cor, and AMOEBA/DDM/BAR methods have greater prediction631

errors for systems with negatively charged guests, which could potentially relate to the challenges alchemical methods have632

with charged guests (Section 3.1). Both xtb-GNF/MachineLearning/CORINA MD and RESP/GAFF/MMPBSA-Cor use the GAFF energy633

model, and its combination with explicit fixed charge water models typically results in predicted free energies that are too634

favorable (particularly, prior work has shown that GAFF with TIP3P leads to a consistent error in this direction for guests con-635

taining carboxylates and alcohols [49]). This is exactly the case here for systems with guests containing a carboxylate for the636

xtb-GNF/MachineLearning/CORINAMDmethod, where an AM1-BCC charging scheme, explicit TIP3Pwater, andGAFF energymodel637

is used. The RESP/GAFF/MMPBSA-Cormethod also used the GAFF energy model, but with implicit (PB/SA) water and a RESP charg-638

ing scheme. During the SAMPL7 virtual workshop [43] the RESP/GAFF/MMPBSA-Cor participants noted that in their methodology639

comparison of RESP and AM1-BCC charging schemes, RESP resulted in better accuracy; it would be interesting to know if this640

holds true more generally. For the AMOEBA/DDM/BARmethod, the single outlier was exoOA-g4, with a ΔG prediction error of 2.5641

kcal/mol.642

The Ponder group’s data suggests that the quality of torsional parameters for the upper rim’s diphenyl ether torsions can643

change predictions by 3 - 4 kcal/mol [43, 94]. In our reference calculations, we observe this guest folding in on itself and becoming644

effectively bulkier, which may mean host torsional parameters play a larger role for this particular guest.645

On the other hand, the B2PLYPD3/SMD-QZ-R quantum method had larger prediction errors for guests with a positive charge.646

Particularly, the method’s ΔG prediction error for exoOA-g6 and exoOA-g7 was 10 kcal/mol, and 5 kcal/mol for exoOA-g5.647

Similarly, for the OA-g7 system which contains a positive guest, the method had a ΔG prediction error of 5 kcal/mol. These648
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prediction errors substantially affected molecule statistics (Figure 8) for these systems.649

7.1.3 Cyclodextrins650

Method performance on the CD dataset is shown in Figure 12. Partly because of the narrow range of experimental binding free651

energies, we observe little difference in performance between the two better performing rankedmethods. The third ranked sub-652

mission AM1-BCC/MD/GAFF/TIP4PEW/QMMMmethod was not included in these plots because the range of binding free energies653

is so dramatically overestimated (Figure 13) that including it in the graph makes performance of the other two methods appear654

identical. In this analysis, optional systems bCD-g1 and bCD-g2 are not included, since these free energies have been previously655

reported. Of the two better performing techniques here (FSDAM/GAFF2/OPC3 and Noneq/Alchemy/consensus), performance was656

remarkably similar, as were the nonequilibrium free energy techniques employed. The third method – which typically predicted657

binding to be far too strong – was the AM1-BC/MD/GAFF/TIP4PEW/QMMM method, which had a ME and slope of 31.27 kcal/mol658

and 7.62 respectively. Since the GAFF force field is shared between this method and one of the more successful methods, it659

seems likely the larger error in this case is due to the QM/MM energy calculation approach.660

7.2 Non-Ranked Submissions661

7.2.1 TrimerTrip662

Several groups submitted multiple methods, often changing just one aspect of their approach. Such tests can help establish663

which aspects of an approach impact accuracy and how. Results for all submissions, ranked and non-ranked, are shown in664

Table 3. Results are listed in ascending order based on ΔG RMSE values. Here we discuss the analysis of these results and what665

we find that we can learn from them.666

On TrimerTrip, two non-ranked submissions with the AMOEBA force field using the same approach, but alternate handling667

of host conformations (AMOEBA/DDM/BAR/ALT1 and AMOEBA/DDM/BAR/ALT2), were used to examine how the selected TrimerTrip668

conformer impacts calculated binding free energies. The submitters examined so-called "indented" and "overlapping" host con-669

formers which they identified in exploratory simulations. They find that these do not interconvert on the timescale of typical670

free energy calculations. The indented conformer resembles the annealed structure we provided in the SAMPL7 GitHub repos-671

itory, while the overlapping conformer is very similar to the previously published structure of the unligated clip analog with672

four glycoluril units [43, 94] and interconverts relatively rapidly with a so-called "spiral" conformer with staggered triptycene673

walls [43, 94].674

Since some of these conformations interconvert slowly, this introduces a conformation-dependence in calculated binding675

free energies. Not only may guests bind differently to the different host conformations, but calculated binding free energies676

depend on the host conformation because different unligated host conformations have different free energies in solution (e.g.677

some will likely be more strained/less populated than others) and do not relax back on simulation timescales.678

To address these issues, the Ponder group used a separate set of free energy calculations to compute the binding free en-679

ergy to each host conformation (indented and overlapping). However, the resulting free energies are sensitive to the choice of680

host conformation, since it does not relax back on simulation timescales, so they needed to estimate the relative free energy of681

the two unligated host conformations. In their submissions, their ranked AMOEBA/DDM/BAR submission assumes the indented682

TrimerTrip conformer is 2.84 kcal/mol more stable than the overlapping conformer, while the AMOEBA/DDM/BAR/ALT1 method683

assumes the overlapping conformer is 2.41 kcal/mol more stable than the indented, and the AMOEBA/DDM/BAR/ALT2 assumes684

both conformers are equal in free energy. The non-ranked AMOEBA submissions performed better than their ranked counter-685

part by almost all of the error metrics (Table 3). Most of the improvement was attributed to better agreement for clip-g6, clip-g7,686

clip-g8, clip-g9, and clip-g11 when using an overlapping conformer. The Ponder group suggests that these results indicate that687

larger and bulkier guests prefer the overlap/spiral conformer(s), while the smaller guests prefer the indented conformer [43, 94].688

TrimerTrip’s flexibility seems to allow it to alter its conformation when binding guests of various size – a feature we noticed in689

our reference calculations and one also reported by the Ponder group [43].690

Overall, TrimerTrip predictions using the AMOEBA force field and alchemical absolute binding free energy calculations were691

consistently the best.692

Our in-house reference calculations provided the only other non-ranked submissions for TrimerTrip. Our two sets of ref-693

erence calculations (Docking/GAFF/YANK_REF and Docking/GAFF/YANK_REF_2) differed only in the choice of host conformer for694

clip-g11, where the latter submission used an alternate, relatively open host conformation to allow it to relax and adapt to695

the bulky cyclic guest in g11 (see Section 6.1.1), though this approach ended up not resulting in substantially different pre-696

dicted binding free energies. Performance statistics for these reference calculations ended up being particularly poor in general697
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Table 3. Error metrics for all (ranked and non-ranked) SAMPL7 methods for all host-guest systems. The rootmean square error (RMSE), mean absolute error (MAE), signedmean error (ME), coefficient of correlation (R2), slope (m),and Kendall’s rank correlation coefficient (Tau) were computed via bootstrapping with replacement. Shown are resultsfor individual host categories, as well as the artificially separated exoOA sub-dataset. Statistics do not include optionalhost-guest systems OA-g1, OA-g2, OA-g3 OA-g4, OA-g5, OA-g6, bCD-g1, and bCD-g2. Each method has an assignedunique submission ID (sid). Table S1 contains statistical data for submissions including optional system predictions.
ID sid RMSE [kcal/mol] MAE [kcal/mol] ME [kcal/mol] R2 m �

TrimerTrip
AMOEBA/DDM/BAR/ALT-2 9 1.58 [1.19, 2.56] 1.39 [0.95, 2.23] -0.36 [-1.36, 0.68] 0.63 [0.18, 0.83] 1.14 [0.54, 1.76] 0.60 [0.17, 0.80]
AMOEBA/DDM/BAR-ALT1 8 1.68 [1.28, 2.64] 1.56 [1.03, 2.34] -0.70 [-1.71, 0.32] 0.70 [0.26, 0.88] 1.28 [0.70, 1.88] 0.67 [0.23, 0.85]
AMOEBA/DDM/BAR 6 2.76 [1.83, 3.98] 2.12 [1.35, 3.33] -1.69 [-2.98, -0.44] 0.50 [0.13, 0.77] 1.25 [0.53, 2.06] 0.47 [0.12, 0.74]
FSDAM/GAFF2/OPC3 4 2.97 [2.11, 5.13] 2.24 [1.62, 4.22] 0.43 [-1.59, 2.33] 0.12 [0.00, 0.56] 0.60 [-0.51, 1.60] 0.24 [-0.23, 0.61]
MD/DOCKING/GAFF/xtb-GNF/ 5 5.65 [3.87, 7.36] 4.51 [3.01, 6.40] -4.23 [-6.19, -2.23] 0.00 [0.00, 0.26] -0.10 [-1.02, 0.80] -0.05 [-0.41, 0.35]
Docking/GAFF/YANK_REF REF2 7.18 [5.63, 8.71] 6.57 [5.16, 8.10] -6.57 [-8.09, -5.16] 0.11 [0.00, 0.59] 0.57 [-0.56, 1.55] 0.12 [-0.35, 0.56]
Docking/GAFF/YANK_REF_2 REF3 7.21 [5.73, 8.75] 6.63 [5.26, 8.13] -6.63 [-8.12, -5.26] 0.12 [0.00, 0.59] 0.57 [-0.55, 1.54] 0.12 [-0.34, 0.57]
GDCC-OA and exoOA
RESP/GAFF/MMPBSA-Cor 20 1.24 [0.73, 2.45] 0.95 [0.57, 2.13] 0.94 [-0.12, 1.99] 0.94 [0.10, 0.97] 0.65 [0.18, 1.14] 0.83 [0.03, 1.00]
AMOEBA/DDM/BAR 29 1.25 [0.68, 2.55] 0.92 [0.54, 2.13] -0.36 [-1.59, 0.83] 0.80 [0.36, 0.97] 1.11 [0.58, 1.94] 0.72 [0.17, 1.00]
AMOEBA/DDM/BAR_2 30 1.78 [0.86, 3.24] 1.31 [0.67, 2.70] -0.62 [-2.09, 0.77] 0.55 [0.04, 0.96] 0.87 [0.14, 1.92] 0.50 [-0.09, 1.00]
xtb-GNF/Machine Learning/CORINA MD 28 2.26 [1.38, 3.43] 1.91 [1.09, 3.08] 0.37 [-1.27, 2.13] 0.01 [0.00, 0.78] 0.04 [-0.58, 0.50] 0.06 [-0.68, 0.78]
AMOEBA/DDM/BAR_3 31 2.32 [1.42, 3.58] 2.05 [1.13, 3.22] -0.29 [-1.95, 1.52] 0.61 [0.21, 0.92] 1.30 [0.54, 2.41] 0.78 [0.24, 1.00]
Docking/GAFF/YANK_REF REF4 4.05 [1.54, 5.88] 2.90 [1.21, 4.93] 2.40 [0.41, 4.67] 0.12 [0.00, 0.65] -0.30 [-1.06, 0.53] -0.11 [-0.70, 0.60]
B2PLYPD3/SMD_QZ-R 23 4.52 [2.55, 6.41] 3.70 [1.95, 5.69] 3.15 [0.85, 5.50] 0.49 [0.02, 0.92] 1.43 [-0.17, 2.92] 0.37 [-0.33, 0.88]
B2PLYPD3/SMD_QZ-NR 24 4.64 [2.77, 6.46] 3.95 [2.23, 5.83] 2.69 [0.06, 5.33] 0.58 [0.03, 0.96] 1.84 [-0.24, 3.28] 0.39 [-0.31, 0.93]
FSDAM/GAFF2/OPC3 14 5.07 [3.12, 8.84] 4.69 [2.53, 7.86] -0.79 [-5.32, 3.40] 0.77 [0.01, 0.94] -1.26 [-2.65, 0.18] -0.59 [-1.00, 0.24]
B2PLYPD3/SMD_TZ 22 5.08 [3.04, 7.03] 4.22 [2.39, 6.37] 3.36 [0.67, 6.04] 0.58 [0.02, 0.96] 1.85 [-0.29, 3.31] 0.39 [-0.33, 0.94]
RESP/GAFF/MMPBSA/Nmode 18 5.84 [4.47, 7.31] 5.60 [4.20, 7.03] -5.60 [-7.03, -4.20] 0.81 [0.44, 0.98] 1.40 [0.79, 2.40] 0.83 [0.31, 1.00]
RESP/GAFF/MMPBSA 19 8.07 [6.96, 9.33] 7.98 [6.81, 9.20] 7.98 [6.81, 9.20] 0.94 [0.54, 0.99] 1.45 [0.96, 1.99] 0.83 [0.39, 1.00]
B2PLYPD3/SMD_DZ 21 8.13 [5.62, 10.34] 7.17 [4.57, 9.75] 7.17 [4.48, 9.75] 0.55 [0.02, 0.96] 1.80 [-0.36, 3.28] 0.39 [-0.33, 0.94]
AM1-BCC/GAFF/MMPBSA 17 10.96 [9.02, 12.80] 10.61 [8.59, 12.59] 10.61 [8.59, 12.59] 0.91 [0.59, 0.99] 2.12 [1.55, 2.83] 0.89 [0.43, 1.00]
RESP/GAFF/MMGBSA 16 11.85 [10.29, 13.47] 11.68 [10.12, 13.29] 11.68 [10.12, 13.29] 0.88 [0.40, 0.99] 1.69 [1.10, 2.36] 0.78 [0.23, 1.00]
GDCC - exoOA
AMOEBA/DDM/BAR_2 30 1.23 [0.65, 2.53] 1.02 [0.51, 2.25] -0.13 [-1.47, 1.27] 0.83 [0.39, 0.99] 1.21 [0.56, 2.29] 0.62 [0.16, 1.00]
AMOEBA/DDM/BAR 29 1.27 [0.56, 2.72] 0.91 [0.45, 2.31] -0.66 [-1.98, 0.61] 0.81 [0.30, 0.99] 1.05 [0.45, 2.12] 0.71 [0.05, 1.00]
RESP/GAFF/MMPBSA-Cor 20 1.32 [0.68, 2.65] 1.03 [0.54, 2.34] 1.01 [-0.18, 2.20] 0.95 [0.04, 0.99] 0.61 [0.04, 1.20] 0.81 [-0.14, 1.00]
AMOEBA/DDM/BAR_3 31 1.72 [0.93, 3.04] 1.57 [0.75, 2.77] -1.44 [-2.66, -0.19] 0.79 [0.15, 0.99] 0.80 [0.22, 1.72] 0.81 [-0.05, 1.00]
xtb-GNF/Machine Learning/CORINA MD 28 2.43 [1.40, 3.71] 2.11 [1.10, 3.42] 0.82 [-1.12, 2.77] 0.00 [0.00, 0.91] 0.01 [-0.81, 0.57] 0.05 [-0.78, 1.00]
Docking/GAFF/YANK_REF REF4 4.48 [1.56, 6.43] 3.25 [1.10, 5.65] 2.60 [0.06, 5.40] 0.37 [0.03, 0.95] -0.58 [-1.56, 0.08] -0.43 [-1.00, 0.33]
B2PLYPD3/SMD_QZ-R 23 4.76 [2.26, 6.93] 3.90 [1.81, 6.26] 3.50 [0.91, 6.12] 0.72 [0.24, 0.99] 1.97 [0.88, 3.77] 0.59 [-0.06, 1.00]
FSDAM/GAFF2/OPC3 14 4.85 [2.61, 8.41] 4.38 [2.13, 7.58] 0.62 [-3.93, 5.08] 0.82 [0.01, 0.99] -1.24 [-2.89, 0.30] -0.59 [-1.00, 0.33]
B2PLYPD3/SMD_QZ-NR 24 4.90 [2.64, 6.93] 4.23 [2.23, 6.33] 2.91 [-0.26, 5.90] 0.80 [0.26, 0.99] 2.46 [0.99, 3.87] 0.62 [0.00, 1.00]
B2PLYPD3/SMD_TZ 22 5.36 [2.93, 7.56] 4.57 [2.40, 6.98] 3.60 [0.40, 6.66] 0.81 [0.24, 0.99] 2.48 [0.90, 3.84] 0.62 [-0.05, 1.00]
RESP/GAFF/MMPBSA/Nmode 18 6.28 [4.78, 7.92] 6.09 [4.54, 7.71] -6.09 [-7.71, -4.54] 0.76 [0.26, 0.99] 1.26 [0.47, 2.43] 0.81 [0.11, 1.00]
RESP/GAFF/MMPBSA 19 7.59 [6.37, 8.90] 7.53 [6.25, 8.79] 7.53 [6.25, 8.79] 0.95 [0.48, 1.00] 1.36 [0.74, 1.96] 0.81 [0.29, 1.00]
B2PLYPD3/SMD_DZ 21 8.41 [5.40, 10.95] 7.42 [4.31, 10.43] 7.42 [4.23, 10.42] 0.79 [0.22, 0.99] 2.44 [0.84, 3.81] 0.62 [0.00, 1.00]
AM1-BCC/GAFF/MMPBSA 17 10.05 [7.92, 12.08] 9.73 [7.58, 11.84] 9.73 [7.58, 11.84] 0.93 [0.61, 1.00] 2.06 [1.38, 2.94] 0.90 [0.29, 1.00]
RESP/GAFF/MMGBSA 16 11.11 [9.58, 12.68] 11.00 [9.46, 12.56] 11.00 [9.46, 12.56] 0.96 [0.66, 1.00] 1.67 [1.09, 2.38] 0.90 [0.37, 1.00]
Cyclodextrin derivatives
FSDAM/GAFF2/OPC3_ranked 12 1.28 [1.33, 3.48] 1.04 [1.04, 2.96] 0.63 [-0.83, 2.09] 0.01 [0.00, 0.50] 0.12 [-1.58, 2.32] 0.21 [-0.44, 0.58]
Noneq/Alchemy/CGENFF 26 1.62 [1.21, 2.39] 1.44 [0.98, 2.13] 1.12 [0.33, 1.88] 0.05 [0.00, 0.41] 0.26 [-0.67, 1.19] 0.10 [-0.46, 0.51]
Noneq/Alchemy/consensus 27 1.70 [1.28, 2.26] 1.48 [1.03, 2.04] 1.21 [0.52, 1.88] 0.02 [0.00, 0.30] 0.16 [-0.50, 0.96] -0.02 [-0.43, 0.46]
FSDAM/GAFF2/OPC3_JB 13 1.74 [1.50, 3.85] 1.51 [1.18, 3.27] 0.77 [-0.78, 2.34] 0.00 [0.00, 0.48] -0.08 [-1.92, 2.27] 0.13 [-0.45, 0.56]
Noneq/Alchemy/GAFF 25 1.94 [1.41, 2.69] 1.66 [1.12, 2.38] 1.30 [0.42, 2.15] 0.00 [0.00, 0.29] 0.06 [-0.73, 1.19] 0.02 [-0.38, 0.44]
Docking/GAFF/YANK_REF REF1 2.74 [1.88, 3.58] 2.25 [1.49, 3.08] 0.51 [-0.81, 1.88] 0.17 [0.01, 0.52] -1.11 [-2.14, -0.18] -0.28 [-0.57, 0.05]
AM1-BCC/MD/GAFF/TIP4PEW/QMMM 15 46.62 [22.85, 65.69] 32.00 [17.92, 49.22] 31.27 [16.89, 48.87] 0.04 [0.00, 0.33] 7.62 [-3.31, 30.72] 0.24 [-0.13, 0.52]

(Tables 3 and S3). The reference method gives free energies for all TrimerTrip host-guest complexes which are too unfavor-698

able, similar to ranked MD/DOCKING/GAFF/xtb-GNF predictions. Both submissions used docking (VINA) to obtain guest poses699

without any MD (except that the MD/DOCKING/GAFF/xtb-GNF technique used SA-MD to obtain poses for four guests), GAFF pa-700

rameters, the TIP3P water model, and AM1-BCC charges, so it may not be surprising that performance was similar. However, the701

MD/DOCKING/GAFF/xtb-GNF approach performed better for the case of the four guests where starting poses were established702

by SA-MD, with errors under 1 kcal/mol in those cases.703

We can perhaps learn a bit more from these non-ranked submissions by comparing to the ranked submission called FS-704

DAM/GAFF2/OPC3, which uses the OPC3 classical 3-point rigid water model with the GAFF2 force field and performed better than705

methods using its TIP3P counter part with GAFF, though there were other methodological differences between these submis-706

sions. The prediction error values for this method were the closest to the top performing methods using free energy methods707

with the AMOEBA force field, however its correlation values were similar to the methods using GAFF/TIP3P. The OPC3 water708

model has been shown to be significantly more accurate for pure water properties compared to other popular 3-point water709

models (i.e TIP3P and SPCE) of the same class [99] whichmay be particularly important in this system. Given the results reported710

in ref [99] for OPC3 and ref [81] for GAFF2; it is tempting to attribute this method’s better performance to use of the OPC3 water711

model and GAFF2, though without comparison to other methods which differ by only small molecule force field or water model,712
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it is difficult to know this for certain.713

7.2.2 GDCC714

There were 11 non-ranked submissions for the GDCC dataset in addition to the 4 ranked predictions (Table 3). Three of the four715

participants with ranked submissions included at least two non-ranked submissions which were different in only a single fac-716

tor, allowing easy sensitivity analysis. For example, all three alchemical AMOEBA-based methods had RMSEs below 2 kcal/mol,717

including the ranked AMOEBA/DDM/BAR submission and the non-ranked AMOEBA/DDM/BAR_2 and AMOEBA/DDM/BAR_3 submis-718

sions. These methods differed by key AMOEBA torsional parameters describing the flexibility of the middle and upper rim of719

the cavity of OA and exo-OA. These differences appear to have substantially affected performance (Table 3). The non-ranked720

AMOEBA/DDM/BAR_2 RMSE was the best of all methods and all predicted binding free energies were within 2 kcal/mol of the ex-721

perimental values, including those for exoOA-g4, which was poorly predicted by other AMOEBA methods. The host parameters722

used in AMOEBA/DDM/BAR_2were similar to those used in previous SAMPL challenges, while the other predictions usedmodified723

parameters. Overall, these AMOEBA submissions suggest guest binding to GDCCs is particularly sensitive to the host’s diphenyl724

ether torsions, and especially so for guest g4 binding to exo-OA and guests g7 and g8 binding to OA.725

Another ranked submission which performedwell usedMM/PBSA, and non-ranked variants of this explored variations based726

on both MM/PBSA and MM/GBSA. One variation assessed the charge model, and found that the RESP charge scheme led to727

improved performance compared to the AM1-BCC charge scheme (RESP/GAFF/MMPBSA vs AM1-BCC/GAFF/MMPBSA), as shown by728

RMS errors of 7.59 kcal/mol vs 10.96 kcal/mol. These methods predicted binding free energies to be too favorable, a common729

issue with such endpoint free energy methods, especially when entropy changes are neglected, as here. An additional variation730

assessed the difference between MM/PBSA and MM/GBSA by changing the solvent model; the use of PB solvation resulted in731

significantly lower RMS errors here (RESP/GAFF/MMPBSA vs RESP/GAFF/MMGBSA), though the correlation with the GB approach732

wasmodestly better. A further variation added an accounting for entropy via normal mode analysis (RESP/GAFF/MMPBSA/Nmode)733

while maintaining RESP charges and PB solvation. This improved typical errors, but hurt correlation and resulted in binding free734

energies often not being favorable enough. One other key difference between the ranked submission in this series, and many735

of the others was that it actually used an empirical correction to binding free energies. Particularly, RESP/GAFF/MMPBSA-Cor used736

a linear correction derived from an analysis of previous SAMPL challenges [43, 95]. Indeed, this correction led to much better737

agreement with experiments. With RMSE andME values of 1.32 and 1.01 kcal/mol, the RESP/GAFF/MMPBSA-Cor performance was738

on par with alchemical AMOEBA results, and for some guests performed even slightly better. In terms of correlation, the ranked739

RESP/GAFF/MMPBSA-Cor was similar to that of RESP/GAFF/MMPBSA. However, such an approach could not be applied without prior740

binding studies for the specific system(s) of interest.741

A series of density functional theory (DFT)-based methods, including ranked and non-ranked submissions, were also used742

here. In SAMPL6, a DFT-based approach yielded good quantitative results [4, 5, 43], though without geometry optimizations743

employed in the current challenge. Here, the QM DFT-based B2PLYPD3/SMD submissions use B3PW91 with GD3BJ [2, 95] to744

treat dispersion, B2PLYPD3 for single point energy calculations [1, 95], and the SMD implicit solvation model [95, 100]. Different745

submissions in this series differed in which basis set was chosen for geometry optimization [43, 95]. Overall, these methods746

were roughly in the middle of all submitted methods in terms of predictive accuracy. All of these QM methods yield binding747

free energies for most guests which are too negative, with ME values of 2.69 kcal/mol or greater, and this is especially true for748

cationic guests binding exo-OA. The participants also highlighted particular difficulties with chlorine-containing guest g2. In initial749

tests, the OA-g2 binding free energy was estimated to be close to -30 kcal/mol, while experimental value in literature was -6.91750

kcal/mol [43]. In the combined GDCC dataset, the ranked B2PLYPD3/SMD_QZ-R method was within 2 kcal/mol of experiments751

in three of nine cases and correctly predicted exoOA-g1 to be a non-binder. Overall, it appears that QM methods are not752

yet competitive with the best other approaches for these systems, and potentially, that molecules containing halogens can753

be particularly problematic.754

Two of the non-ranked methods do not allow for straightforward sensitivity analysis based on a single factor, because755

only a single version was submitted (FSDAM/GAFF2/OPC3 and reference calculation DOCKING/GAFF/YANK ). Both of these meth-756

ods were also used for TrimerTrip and the cyclodextrin challenge. The error metrics for both of the methods were relatively757

similar, although the DOCKING/GAFF/YANK method performed slightly better by a number of metrics. However, the ME for FS-758

DAM/GAFF2/OPC3 is quite low – less than 1 kcal/mol – because the method tends to predict binding free energies for OctaAcids759

with guests bearing a carboxylate group which are too favorable, and too unfavorable for guests with cationic ammoniums. In760

comparison, DOCKING/GAFF/YANK errs for all guests with carboxylate group are too favorable. Still, enough things differ between761

these two submissions that it is difficult to attribute performance differences to any particular source. Such simple variations762
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provide the greatest opportunity for the community to learn.763

One exoOA guest posed a bit of a surprise, in that binding of g1 to exoOA was not detected experimentally (Section 6.2 and764

Figure 2). Since no clear evidence of binding was observed experimentally at the detection threshold via ITC or H-NMR, this indi-765

cates a binding constant (Ka) to be less than 5M−1 or aΔGmore positive than -0.95. Of the 15 GDCC submissions, 7 predicted this766

correctly with computed free energies ranging between -0.98 and 6.40 kcal/mol. Of the methods which incorrectly predicted g1767

to bind, computed binding free energies ranged from -2.45 to -11.54 kcal/mol. All of the QM based submissions (B2PLYPD3/SMD)768

predicted exoOA-g1 to be a nonbinder, with values between 2.70 and 6.40 kcal/mol, and the AMOEBA-based alchemical meth-769

ods also correctly recognized this as a nonbinder. Most MM/PBSA and MM/GBSA submissions failed to recognize this as a non-770

binder, except for the RESP/GAFF/MMPBSA/Nmode method utilizing empirical corrections. The other GAFF-based methods pre-771

dicted exoOA-g1 to be a binder. Predicted binding free energies of xtb-GNF/MachineLearning/CORINA_MD, RESP/GAFF/MMPBSA-Cor,772

RESP/GAFF/MMGBSA, AM1-BCC/GAFF/MMPBSA, RESP/GAFF/MMPBSA, FSDAM/GAFF2/OPC3, and DOCKING/GAFF/YANK were all more fa-773

vorable than -3.84 kcal/mol. Perhaps for this guest, the proximal carboxylates of the host and guest repel one another too774

strongly for binding. This guest has relatively less hydrophobic character than other guests, perhaps meaning that the hy-775

drophobic effect is not enough to offset this potential electrostatic clash. Perhaps only the AMOEBA absolute binding free energy776

calculations and the QM based methods can capture the relevant polarization effects well enough to recognize this complex is777

unfavorable.778

7.2.3 Cyclodextrins779

The cyclodextrin challenge proved to be the least challenging of the SAMPL7 challenges asmeasured by RMS error, as all submis-780

sions except one had RMSE values less than 2.74 kcal/mol (the exception was the AM1-BCC/MD/GAFF/TIP4PEW/QMMM method,781

with RMSE and ME metrics over 30 kcal/mol). However, the dynamic range was particularly small for this challenge, with most782

host-guest complexes showing similar binding free energies. This meant that correlations between calculated and predicted783

values were typically quite poor (Table 3).784

First we compare the ranked FSDAM/GAFF2/OPC3_ranked and non-ranked FSDAM/GAFF2/OPC3_JBmethods, where the ranked785

method performed slightly better; these methods used the same simulation approach but differ in that the former used a786

Gaussian approximation for computing nonequilibrium free energies, whereas the latter used a "boosted Jarzynski" approach787

for analysis [93, 98]. Both analysis approaches ought to give equivalent binding free energies in certain limits, but their underlying788

assumptions and the amount of data available result in substantially different performance here. Here, despite its limitations in789

the SAMPL6 "SAMPLing" challenge [5], the Gaussian approximation was modestly superior, with 15 of 16 binding free energies790

predicted within 2 kcal/mol, versus 11 of 16 for FSDAM/GAFF2/OPC3_JB.791

Three other nonequilibrium free energy methods participated for the cyclodextrin challenge – Noneq/Alchemy/CGENFF,792

Noneq/Alchemy/consensus, andNoneq/Alchemy/GAFF. All threemethods used the TIP3Pwatermodel, included NaCl ions at 25mM,793

and considered multiple binding poses (primary and secondary orientation) and free energies reported as Boltzmann weighted794

averages across these poses. Thesemethods differedonly by force field – CGENFF (Noneq/Alchemy/CGENFF) orGAFF (Noneq/Alchemy/795

GAFF). The third submission, Noneq/Alchemy/consensus, gives "consensus" results obtained by averaging across both force fields.796

In this case the RMSE was under 2 kcal/mol for both methods, but CGENFF resulted in very slightly better performance by most797

metrics. Problematic systems for this method were MGLab23-g1, MGLab24-g1, MGLab24-g2, MGLab36-g1, and MGLab36-g2,798

and what they have in common is larger cyclodextrin side chains. Cyclodextrins with amino acid side chains tend to be the more799

accurately predicted systems for this method, suggesting the methods may be limited by forcefield parameters.800

Our reference calculations (Docking/GAFF/YANK_REF performed reasonably well for this dataset (Table S3), and surprisingly801

had better correlation to experiments compared to other methods (Table 3). Predicted binding free energies were within 2802

kcal/mol for 9 of 16 host-guest systems, and similar conditions and water model were used as for Noneq/Alchemy/GAFF, though803

different free energy estimation techniques were used. These submissions also differed in handling of binding modes; our ref-804

erence calculations used only a single initial binding mode for each (determined by the top scoring pose from docking) whereas805

Noneq/Alchemy/consensus considered up to two poses whenever a second orientation was considered stable and was in better806

agreement with experiments. Thus, suggesting secondary guests orientations may need to be considered, and guest and/or807

host side chain sampling may be an issue.808

When we compare the diverse methods submitted, some observations stand out. First, performance of Noneq/Alchemy/GAFF809

and Docking/GAFF/YANK_REF methods was quite similar with an RMS difference of 0.8 kcal/mol – likely due to use of the same810

force field (GAFF) and water model (TIP3P) despite the fact that the former used nonequilibrium free energy techniques and the811

latter used equilibrium, suggesting the force field played a larger role. Along the same lines, several nonequilibrium methods812
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(FSDAM/GAFF2/OPC3, Noneq/Alchemy/CGENFF, andNoneq/Alchemy/GAFF) all used similar techniques but different force field/water813

model, and performance was thus reasonably similar with an RMS difference of at most 0.32 kcal/mol. In addition, binding free814

energy calculations have been shown to bemore accurate using GAFF2 opposed to GAFF in previous computational studies [81].815

Finally, the most challenging case seems to be binding of cyclodextrins with large side chains to rimantadine (g2), though the816

reason for this is not known.817

7.2.4 Reference Calculations818

In this section we survey additional retrospective tests with reference calculations and analyze the results. For most of the819

reference calculations, simulations which had the greatest error in binding affinity had poor sampling/mixing of the states within820

replicas. Moreover, many of the free energy estimates were not converged, or converged to a value which disagreed with821

experiment at timescales up to 30 ns per window. Convergence to a value which differs from experiment may indicate force822

field problems. These errors was particularly prevalent for TrimerTrip and Cyclodextrin derivatives while also in the presence of823

a guest with a formal charge (Figures S1 and S3). Interestingly, free energy estimates seemed to converge better for the GDCC824

dataset depending on whether the guest was positively or negatively charged (Figure S2). In addition, in simulations for exoOA825

with guests with a negatively charged carboxyl group had poor mixing of states within replicas, while with positively charged826

guests mixing of states was generally better. To check the contribution of the charged protocol in mixing of states between827

replicas and estimate error in reference calculations, additional calculations for exoOA-g1, exoOA-g3, and clip-g1 were done.828

For the exoOAg3 and clip-g1 systems, the automatic pipeline in YANK (while additional simulation options remained the829

same) was used to determine individual and unique alchemical paths. Ideally, this should improve replica exchange overlap,830

thus improve sampling. Despite using unique alchemical protocols (with additional lambda windows) for these systems the831

sampling did not improve and the free energy was not convincingly converged or inaccurate even after simulations up to 30ns832

per iteration.833

In addition, separate experiments were done with exoOA-g1 using the charged protocol, however this time changing simula-834

tion options. First, we added YANK’s ’PME_treatment’ option meant to speed up and improve convergence of systems where a835

guest/ligand has a formal charge. Second, we tested a double annihilation scheme with soft core potentials rather than double836

decoupling. In both cases and with a combination of both we observed significant improvement in sampling of states between837

replicas for both the complex and solvent phase, and convergence of free energy estimates within a 10 ns timescale per iteration.838

However, agreement with experimental free energy for the exoOA-g1 test case did not improve. In retrospect, this is perhaps839

not surprising since only the AMOEBA and QM based methods predicted this with convincing accuracy. It would be interesting840

to see in future challenges how our methods simulation options affect the accuracy of the other systems of this challenge.841

Our final test case involved changing the charge scheme option for the guest in exoOA-g1 from AM1-BCC to AM1-BCCELF10842

with OpenEye Toolkits, otherwise retaining the same protocol. The change in charging scheme essentially made g1 slightly843

less polar, thus we thought this would result in less favorable binding to exoOA. However, that was not the case, the resulting844

binding free energy was slightly more negative at -8.813 ± 0.070 kcal/mol compared to our submitted prediction of -7.629 ±845

0.090 kcal/mol.846

In retrospect, perhaps the results of our follow up simulations should not be surprising since only the AMOEBA and QM847

based methods predicted binding of this guest accurately, perhaps indicating polarizability is particularly important in this case.848

Overall, these follow-up investigations did not find factors which dramatically affected the accuracy of the reference calculations849

on the exoOA-g1 system. It would be interesting to further assess this on the other systems considered.850

8 Conclusions and Lessons Learned851

The SAMPL7 host-guest blind challenge provided a platform to test the reliability of computational methods and tools to accu-852

rately predict binding free energies. Since hosts in the cucurbituril and cavitand families have been featured in previous SAMPL853

challenges (and likely in future challenges) these provide a mechanism to assess how the field progresses across a series of854

challenges. In addition, the amount of attention these have received helps us identify some potential lessons learned and give855

suggestions for improvement.856

The TrimerTrip dataset of SAMPL7, like cucurbiturils from previous challenges, posed the largest challenge for participants,857

as judged bymethod performance. Specifically, mostmethods performed poorly at computing binding free energies for cationic858

guests with cyclic, aromatic, and adamantane based moieties. In addition, most methods were relatively inconsistent at predict-859

ing binding free energies of hydrocarbon chains of increasing length, but the AMOEBA alchemical binding free energy meth-860

ods did very well predicting 7 of 8 within 2 kcal/mol. Both of the best performing methods here used alchemical free energy861
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calculations. Predictions from the best fixed-charge force field submission, based on nonequilibrium free energy calculations862

(FSDAM/GAFF2/OPC3), had errors above 2 kcal/mol for 8/16 host-guest systems considered. In contrast, performance with the863

AMOEBA polarizable force field and alchemical methods was significantly better here, suggesting that one key source of error864

may be polarization effects and/or multipoles.865

In the TrimerTrip case, participants also found evidence that binding free energiesmay bemore accurate if different potential866

host conformations are considered, especially for bulkier guests such as those with adamantane moieties. This exploration867

of sensitivity to host conformation also provided insight into modeling the host’s flexibility; participants found binding free868

energies to be sensitive to the geometry of the triptycene rings [43, 94]. Our reference calculations showed poor sampling of869

interconversion between alchemical states in our simulations, despite use of Hamiltonian Replica Exchange.870

Given these results, it appears that force field accuracy and choice of force field (e.g. GAFF, GAFF2, AMOEBA) may be a871

dominant factor limiting accurate binding affinity predictions.872

On the Gibb deep cavity cavitands (GDCCs), OA and exoOA, as in previous SAMPL challenges, simulation basedmethods with873

empirical fixed charge energy models performed relatively well. Binding affinities for guests with adamantane, aromatic and874

saturated cyclic carboxlylates with OctaAcids were predicted with greater accuracy than TrimerTrip. Performance of methods875

within the GDCC dataset (OA and exoOA) demonstrates significant variation by guest, and especially when the formal charge of876

guest differs (negative vs positive).877

In part because of the relatively extensive prior work on GDCCs, some submissions applied empirical corrections beforemak-878

ing predictions, and/or utilized machine learning approaches. These tended to help performance, here, but rely on availability879

of training data on closely related systems – which is not always available for prospective applications.880

On the GDCCs, as for TrimerTrip, submissions using the AMOEBA force field and absolute alchemical binding free energy881

techniques performed particularly well. Additionally, along with a QM based method, these AMOEBA-based approaches cor-882

rectly predicted exoOA with g1 a non-binder. Perhaps only AMOEBA and QMmethods capture relevant polarization effects well883

enough to accurately describe this particular complex well in general, though one MM/PBSA approach also recognized this as a884

nonbinder.885

For the current challenge, the AMOEBA-based free energy calculations had the most consistent performance across the886

different host-guest complexes, and across datasets (TrimerTrip, OctaAcid, exoOA). Despite the lower variation for this method,887

guest g4 was particularly sensitive to diphenyl ether torsional parameters which worked very well in all other GDCC systems.888

The AMOEBA-based approach did rather well in SAMPL7, but improvements in the approach relative to prior SAMPL challenges889

were entirely in the sampling protocol and torsion values, indicating that these can provide gains in accuracy.890

The cyclodextrin derivatives were new to SAMPL, and many methods achieved relatively low RMS errors – though this may891

partly be due to the low dynamic range of the set; a hypothetical method which predicted a constant binding free energy of -4892

kcal/mol for all guests would achieve an RMS error of only 0.70 kcal/mol . This low dynamic range also meant that correlation893

metrics were typically poor. The force field used in this dataset played a role in computing accurate binding free energies,894

with GAFF2 seemingly giving more accurate results, followed by CGenFF and GAFF (a more detailed comparison of these force895

fields can be seen in Ref [92] and Ref [93] ). In addition, nonequilibrium approaches appear to perform slightly better with896

cyclodextrin systems. The performance ofmethods for the cyclodextrin dataset varied across host-guest systems, but predicting897

reliable binding free energies for cyclodextrins with large side chains to rimantadine was frequently challenging. There were no898

AMOEBA submissions for this aspect of SAMPL7, but the use of a polarizable force fieldmay help ameliorate agreement between899

computational methods with experiments and facilitate accurate modeling of cyclodextrin host-guest interactions.900

Finally, note that twomethods included predictions for all three datasets, DOCKING/GAFF/YANK and FSDAM/GAFF2/OPC, though901

not all of the submissions were ranked. The performance of thesemethods varied across different datasets and across different902

host-guest systems within the same dataset. For both methods, binding predictions for larger and more hydrophobic guests903

were apparently more difficult.904

In terms of overall lessons learned in this challenge, we found that methods which only varied a single factor (such as force905

field or water model, with a fixed method) were particularly valuable in terms of providing insight into accuracy, thus we urge906

participants to continue with such explorations in the future. Another important area of work is to ensure that methods which907

ought to be equivalent do, in fact, give equivalent results across different simulation packages [5].908

Overall, SAMPL7 showedmarked progress in binding prediction relative to previous challenges, and in particular results with909

binding free energy calculations using the AMOEBA force field were particularly promising for two of the challenge components.910

For future challenges it will be interesting to continue investigations of host/guest sampling, polarization effects, and possibly911

salt behavior in similar systems. We look forward to continuing to work with the community to use the SAMPL challenge to drive912

21 of 44



accuracy improvements in binding predictions.913

Table 4. Summary of methods (ranked and non-ranked) used in the SAMPL7 host-guest blind
challenge for binding free energy calculations. Alchemical calculations are flagged by an (A), theuse of explicit and/or implicit solvation is flagged by an (E) or (I) respectively, and a linear correctionapproach was taken on methods flagged with a (C). The Noneq/Alchemy/consensus method was anaverage of the energy models used in Noneq/Alchemy/CGENFF and Noneq/Alchemy/GAFF.
ID sid Energy Model Solvent Model Sampling Ranked SAMPL7 Refs

TrimerTrip
AMOEBA/DDM/BAR/ALT-2 9 AMOEBA AMOEBA (E) Replica Exchange No [94]
AMOEBA/DDM/BAR-ALT1 8 AMOEBA AMOEBA (E) Replica Exchange No [94]
AMOEBA/DDM/BAR 6 AMOEBA AMOEBA (E) Replica Exchange Yes [94]
FSDAM/GAFF2/OPC3 4 GAFF2/AM1-BCC OPC3 (E) RESP Yes [93]
MD/DOCKING/GAFF/xtb-GNF/ 5 GAFF/AM1-BCC TIP3P (E) MD/SA-MD Yes [96]
Docking/GAFF/YANK_REF REF2 GAFF/AM1-BCC TIP3P (E) Replica Exchange No
Docking/GAFF/YANK_REF_2 REF3 GAFF/AM1-BCC TIP3P (E) Replica Exchange No
GDCC-OA and exoOA
RESP/GAFF/MMPBSA-Cor (C) 20 GAFF/RESP TIP4PEW/PBSA (I) MD Yes [95]
AMOEBA/DDM/BAR 29 AMOEBA AMOEBA (E) Replica Exchange Yes [94]
AMOEBA/DDM/BAR_2 30 AMOEBA AMOEBA (E) Replica Exchange No [94]
xtb-GNF/Machine Learning/CORINA MD 28 GAFF/AM1-BCC TIP3P (E) MD/SA-MD Yes [96]
AMOEBA/DDM/BAR_3 31 AMOEBA AMOEBA (E) Replica Exchange No [94]
Docking/GAFF/YANK_REF REF4 GAFF/AM1-BCC TIP3P (E) Replica Exchange No
B2PLYPD3/SMD_QZ-R 23 DFT(B3PW91) SMD (I) MD Yes [95]
B2PLYPD3/SMD_QZ-NR 24 DFT(B3PW91) SMD (I) MD No [95]
FSDAM/GAFF2/OPC3 14 GAFF2/AM1-BCC OPC3 (E) RESP No [93]
B2PLYPD3/SMD_TZ 22 DFT(B3PW91) SMD (I) MD No [95]
RESP/GAFF/MMPBSA/Nmode 18 GAFF/RESP TIP4PEW/PBSA (I) MD No [95]
RESP/GAFF/MMPBSA 19 GAFF/RESP TIP4PEW/PBSA (I) MD No [95]
B2PLYPD3/SMD_DZ 21 DFT(B3PW91) SMD (I) MD No [95]
AM1-BCC/GAFF/MMPBSA 17 GAFF/AM1-BCC TIP4PEW/PBSA (I) MD No [95]
RESP/GAFF/MMGBSA 16 GAFF/RESP TIP4PEW/GBSA (I) MD No [95]
Cyclodextrin derivatives
FSDAM/GAFF2/OPC3_ranked 12 GAFF2/AM1-BCC OPC3 (E) RESP Yes [93]
Noneq/Alchemy/CGENFF 26 CGENFF/AM1-BCC TIP3P (E) MD No [92]
Noneq/Alchemy/consensus 27 NA NA NA NA Yes [92]
FSDAM/GAFF2/OPC3_JB 13 GAFF2/AM1-BCC OPC3 (E) RESP No [93]
Noneq/Alchemy/GAFF 25 GAFF/AM1-BCC TIP3P (E) MD No [92]
Docking/GAFF/YANK_REF REF1 GAFF/AM1-BCC TIP3P (E) Replica Exchange No
AM1-BCC/MD/GAFF/TIP4PEW/QMMM 15 GAFF/AM1-BCC TIP4PEW (E) MD Yes

9 Code and Data Availability914

All SAMPL7 host-guest challenge instructions, submissions, experimental data and analysis are available at915

https://github.com/samplchallenges/SAMPL7/tree/master/host_guest. An archive copy of SAMPL7 GitHub repository host-guest916

challenge directory is also available in the Supplementary Documents bundle (SAMPL7-supplementary-documents.tar.gz). Some917

useful files from this repository are highlighted below.918

• Table of participants submission filenames and their submission ID:919

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/SAMPL7-user-map-HG.csv920

• Submission files of prediction sets:921

https://github.com/samplchallenges/SAMPL7/tree/master/host_guest/Analysis/Submissions922

• Python analysis scripts and outputs:923

https://github.com/samplchallenges/SAMPL7/tree/master/host_guest/Analysis/Scripts924

• Table of performance statistics calculated for ranked methods for TrimerTrip dataset:925

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Accuracy_ranked/TrimerTrip/StatisticsTables/statistics.926

csv927

• Table of performance statistics calculated for all methods for TrimerTrip dataset:928

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Reference/Accuracy/TrimerTrip/StatisticsTables/929

statistics.csv930

• Table of performance statistics calculated for ranked methods for GDCC dataset:931

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Accuracy_ranked/GDCC_no_optional/StatisticsTables/932

statistics.csv933

• Table of performance statistics calculated for all methods for GDCC (without optionals) dataset:934
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https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Reference/Accuracy/GDCC_no_optional/StatisticsTables/935

statistics.csv936

• Table of performance statistics calculated for all methods for GDCC (with optionals) dataset:937

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Reference/Accuracy/GDCC/StatisticsTables/statistics.938

csv939

• Table of performance statistics calculated for ranked methods for Cyclodextrin dataset:940

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Accuracy_ranked/CD_no_optional/StatisticsTables/941

statistics.csv942

• Table of performance statistics calculated for all methods for Cyclodextrin (without optionals) dataset:943

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Reference/Accuracy/CD_no_optional/StatisticsTables/944

statistics.csv945

• Table of performance statistics calculated for all methods for Cyclodextrin (with optionals) dataset:946

https://github.com/samplchallenges/SAMPL7/blob/master/host_guest/Analysis/Reference/Accuracy/CD/StatisticsTables/statistics.947

csv948
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13 Supplementary Information1179

An archive copy of SAMPL7 GitHub repository host-guest challenge directory.1180

Table S1. Error metrics for SAMPL7 methods (ranked and non-ranked) for datasets with optional systems. Theroot mean square error (RMSE), mean absolute error (MAE), signed mean error (ME), coefficient of correlation (R2),slope (m), and Kendall’s rank correlation coefficient (Tau) were computed via bootstrapping with replacement. Shownare results for individual host categories with optional systems, which includes the combined OA and exoOA dataset(GDCC-OA and exoOA) and Cyclodextrin derivatives. Statistics include optional host-guest systems OA-g1, OA-g2, OA-g3 OA-g4, OA-g5, OA-g6, bCD-g1, and bCD-g2. Optional GDCC systems were not included for reference calculations(Docking/GAFF/YANK_REF), thus only cyclodextrin statistics are included.
ID sid RMSE [kcal/mol] MAE [kcal/mol] ME [kcal/mol] R2 m �

GDCC-OA and exoOA
AMOEBA/DDM/BAR 29 1.05 [0.78, 2.17] 0.79 [0.61, 1.76] -0.30 [-1.19, 0.54] 0.83 [0.43, 0.93] 1.14 [0.70, 1.79] 0.78 [0.38, 0.93]
RESP/GAFF/MMPBSA-Cor 20 1.45 [1.05, 2.47] 1.16 [0.82, 2.13] 1.02 [0.15, 1.90] 0.70 [0.03, 0.87] 0.61 [0.13, 1.03] 0.57 [0.00, 0.84]
xtb-GNF/Machine Learning/CORINA MD 28 1.77 [1.15, 2.83] 1.27 [0.86, 2.36] 0.31 [-0.78, 1.45] 0.17 [0.00, 0.61] 0.27 [-0.22, 0.87] 0.34 [-0.24, 0.67]
AMOEBA/DDM/BAR_2 30 1.89 [1.22, 3.05] 1.41 [0.92, 2.51] -0.99 [-2.10, 0.07] 0.43 [0.02, 0.78] 0.70 [0.12, 1.43] 0.50 [-0.02, 0.81]
AMOEBA/DDM/BAR_3 31 2.10 [1.48, 3.15] 1.73 [1.15, 2.74] 0.24 [-1.04, 1.54] 0.53 [0.08, 0.79] 1.18 [0.46, 1.91] 0.48 [0.02, 0.80]
B2PLYPD3/SMD_QZ-R 23 3.92 [2.53, 5.47] 3.00 [1.85, 4.57] 1.84 [-0.03, 3.77] 0.29 [0.02, 0.61] 1.17 [0.29, 2.23] 0.35 [-0.06, 0.66]
FSDAM/GAFF2/OPC3 14 4.57 [3.28, 7.62] 4.17 [2.63, 6.56] -0.40 [-3.54, 2.55] 0.04 [0.00, 0.48] -0.41 [-1.68, 1.70] -0.05 [-0.56, 0.41]
RESP/GAFF/MMPBSA/Nmode 18 5.26 [4.26, 6.47] 4.96 [3.89, 6.12] -4.96 [-6.12, -3.88] 0.68 [0.24, 0.88] 1.30 [0.70, 2.02] 0.61 [0.18, 0.87]
B2PLYPD3/SMD_TZ 22 6.70 [3.64, 9.78] 4.84 [2.74, 7.55] 3.09 [0.13, 6.31] 0.30 [0.04, 0.66] 2.00 [0.62, 3.74] 0.38 [-0.04, 0.71]
B2PLYPD3/SMD_QZ-NR 24 6.78 [3.43, 10.40] 4.71 [2.58, 7.69] 2.61 [-0.42, 6.08] 0.29 [0.03, 0.66] 2.04 [0.63, 4.12] 0.40 [-0.03, 0.72]
B2PLYPD3/SMD_DZ 21 7.12 [5.27, 8.96] 6.16 [4.32, 8.11] 5.44 [2.96, 7.79] 0.25 [0.01, 0.62] 1.41 [0.00, 2.49] 0.34 [-0.10, 0.63]
RESP/GAFF/MMPBSA 19 8.66 [7.54, 9.83] 8.48 [7.32, 9.62] 8.48 [7.32, 9.62] 0.70 [0.16, 0.91] 1.36 [0.70, 1.82] 0.57 [0.17, 0.88]
AM1-BCC/GAFF/MMPBSA 17 10.67 [9.13, 12.16] 10.29 [8.64, 11.89] 10.29 [8.64, 11.89] 0.63 [0.13, 0.90] 1.74 [0.88, 2.38] 0.57 [0.19, 0.88]
RESP/GAFF/MMGBSA 16 11.43 [10.11, 12.79] 11.19 [9.78, 12.56] 11.19 [9.78, 12.56] 0.51 [0.04, 0.87] 1.27 [0.37, 1.89] 0.52 [0.08, 0.84]
Cyclodextrin derivatives
FSDAM/GAFF2/OPC3_ranked 12 1.23 [1.36, 3.39] 1.01 [1.06, 2.84] 0.47 [-0.90, 1.87] 0.04 [0.00, 0.46] 0.17 [-1.26, 1.66] 0.23 [-0.41, 0.55]
Noneq/Alchemy/CGENFF 26 1.55 [1.17, 2.33] 1.35 [0.93, 2.03] 0.99 [0.24, 1.74] 0.05 [0.00, 0.39] 0.24 [-0.45, 0.95] 0.10 [-0.41, 0.49]
Noneq/Alchemy/consensus 27 1.62 [1.21, 2.17] 1.38 [0.96, 1.90] 1.08 [0.43, 1.72] 0.03 [0.00, 0.30] 0.18 [-0.33, 0.74] 0.03 [-0.38, 0.45]
FSDAM/GAFF2/OPC3_JB 13 1.71 [1.55, 3.76] 1.48 [1.21, 3.19] 0.54 [-0.94, 2.04] 0.01 [0.00, 0.41] -0.14 [-1.58, 1.47] 0.03 [-0.44, 0.48]
Noneq/Alchemy/GAFF 25 1.84 [1.35, 2.58] 1.54 [1.07, 2.24] 1.17 [0.37, 1.97] 0.01 [0.00, 0.28] 0.12 [-0.55, 0.83] 0.02 [-0.36, 0.43]
Docking/GAFF/YANK_REF REF1 2.64 [1.87, 3.42] 2.19 [1.51, 2.94] 0.64 [-0.58, 1.84] 0.02 [0.00, 0.36] -0.29 [-1.59, 0.87] -0.10 [-0.44, 0.24]
AM1-BCC/MD/GAFF/TIP4PEW/QMMM 15 46.62 [22.85, 65.69] 32.00 [17.92, 49.22] 31.27 [16.89, 48.87] 0.04 [0.00, 0.33] 7.62 [-3.31, 30.72] 0.24 [-0.13, 0.52]

Table S2. Error metrics for ranked method submission of absolute binding free energy calculations of all host-
guest systems. The rootmean square error (RMSE),mean absolute error (MAE), signedmean error (ME), coefficient ofcorrelation (R2), slope (m), and Kendall’s rank correlation coefficient (�) were computed, with confidence intervals frombootstrapping with replacement. All three datasets (TrimerTrip, GDCC-OA and exoOA, Cyclodextrin derivatives),and an artificial sub-dataset of exo-OA ranked submissions (GDCC-exoOA) are included. Statistical values in this tabledo not include optional host-guest systems OA-g1, OA-g2, OA-g3, OA-g4, OA-g5, OA-g6, bCD-g1, and bCD-g2, for whichvalues had been released previously. Each method has an assigned unique submission ID (sid).
ID sid RMSE [kcal/mol] MAE [kcal/mol] ME [kcal/mol] R2 m �

TrimerTrip
AMOEBA/DDM/BAR 6 2.76 [1.83, 3.98] 2.12 [1.35, 3.33] -1.69 [-2.98, -0.44] 0.50 [0.13, 0.77] 1.25 [0.53, 2.06] 0.47 [0.12, 0.74]
FSDAM/GAFF2/OPC3 4 2.97 [2.11, 5.13] 2.24 [1.62, 4.22] 0.43 [-1.59, 2.33] 0.12 [0.00, 0.56] 0.60 [-0.51, 1.60] 0.24 [-0.23, 0.61]
MD/DOCKING/GAFF/xtb-GNF/ 5 5.65 [3.87, 7.36] 4.51 [3.01, 6.40] -4.23 [-6.19, -2.23] 0.00 [0.00, 0.26] -0.10 [-1.02, 0.80] -0.05 [-0.41, 0.35]
GDCC - OA and exoOA
RESP/GAFF/MMPBSA-Cor 20 1.24 [0.76, 2.46] 0.95 [0.59, 2.15] 0.94 [-0.13, 1.99] 0.94 [0.11, 0.97] 0.65 [0.18, 1.14] 0.83 [0.03, 1.00]
AMOEBA/DDM/BAR 29 1.25 [0.68, 2.53] 0.92 [0.54, 2.12] -0.36 [-1.54, 0.83] 0.80 [0.34, 0.97] 1.11 [0.57, 1.97] 0.72 [0.18, 1.00]
xtb-GNF/Machine Learning/CORINA_MD 28 2.26 [1.39, 3.44] 1.91 [1.10, 3.12] 0.37 [-1.31, 2.06] 0.01 [0.00, 0.78] 0.04 [-0.58, 0.54] 0.06 [-0.64, 0.81]
B2PLYPD3/SMD_QZ-R 23 4.52 [2.52, 6.39] 3.70 [1.96, 5.67] 3.15 [0.84, 5.44] 0.49 [0.03, 0.93] 1.43 [-0.11, 2.98] 0.37 [-0.31, 0.87]
GDCC - exoOA
AMOEBA/DDM/BAR 29 1.27 [0.56, 2.72] 0.91 [0.45, 2.31] -0.66 [-1.98, 0.61] 0.81 [0.30, 0.99] 1.05 [0.45, 2.12] 0.71 [0.05, 1.00]
RESP/GAFF/MMPBSA-Cor 20 1.32 [0.68, 2.65] 1.03 [0.54, 2.34] 1.01 [-0.18, 2.20] 0.95 [0.04, 0.99] 0.61 [0.04, 1.20] 0.81 [-0.14, 1.00]
xtb-GNF/Machine Learning/CORINA MD 28 2.43 [1.40, 3.71] 2.11 [1.10, 3.42] 0.82 [-1.12, 2.77] 0.00 [0.00, 0.91] 0.01 [-0.81, 0.57] 0.05 [-0.78, 1.00]
B2PLYPD3/SMD_QZ-R 23 4.76 [2.26, 6.93] 3.90 [1.81, 6.26] 3.50 [0.91, 6.12] 0.72 [0.24, 0.99] 1.97 [0.88, 3.77] 0.59 [-0.06, 1.00]
Cyclodextrin derivatives
FSDAM/GAFF2/OPC3_ranked 12 1.28 [1.32, 3.51] 1.04 [1.04, 2.95] 0.63 [-0.84, 2.10] 0.01 [0.00, 0.50] 0.12 [-1.62, 2.30] 0.21 [-0.46, 0.57]
Noneq/Alchemy/consensus 27 1.70 [1.27, 2.28] 1.48 [1.03, 2.04] 1.21 [0.52, 1.87] 0.02 [0.00, 0.29] 0.16 [-0.48, 0.93] -0.02 [-0.43, 0.45]
AM1-BCC/MD/GAFF/TIP4PEW/QMMM 15 46.62 [22.85, 65.69] 32.00 [17.92, 49.22] 31.27 [16.89, 48.87] 0.04 [0.00, 0.33] 7.62 [-3.31, 30.72] 0.24 [-0.13, 0.52]
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Table S3. Error metrics for methods used in reference binding free energy calculations of all host-guest systems. Please see sec-tion 6.1.1 for details on the submission methodology. Optional systems in the GDCC and cyclodextrin datasets (OA-g1, OA-g2, OA-g3, OA-g4,OA-g5, OA-g6, bCD-g1, and bCD-g2) are not part of this analysis. This table includes the method ID, method submission ID (sid), root meansquared error (RMSE), mean absolute error (MAE), mean signed error (ME), coefficient of determination (R2), linear regression slope (m),and kendall rank correlation coefficient (�) for cyclodextrin, TrimerTrip, and GDCC datasets (includes both OA and exoOA predictions). Anartificial separation of GDCC was done to obtain a exoOA sub-dataset for analysis.
ID sid RMSE [kcal/mol] MAE [kcal/mol] ME [kcal/mol] R2 m �

Cyclodextrin derivatives
Docking/GAFF/YANK_REF REF1 2.64 [1.87, 3.42] 2.19 [1.51, 2.94] 0.64 [-0.58, 1.84] 0.02 [0.00, 0.36] -0.29 [-1.59, 0.87] -0.10 [-0.44, 0.24]
TrimerTrip
Docking/GAFF/YANK_REF REF2 7.18 [5.63, 8.71] 6.57 [5.16, 8.10] -6.57 [-8.09, -5.16] 0.11 [0.00, 0.59] 0.57 [-0.56, 1.55] 0.12 [-0.35, 0.56]
Docking/GAFF/YANK_REF_2 REF3 7.21 [5.73, 8.75] 6.63 [5.26, 8.13] -6.63 [-8.12, -5.26] 0.12 [0.00, 0.59] 0.57 [-0.55, 1.54] 0.12 [-0.34, 0.57]
GDCC - OA and exoOA
Docking/GAFF/YANK_REF REF4 4.05 [1.54, 5.88] 2.90 [1.21, 4.93] 2.40 [0.41, 4.67] 0.12 [0.00, 0.65] -0.30 [-1.06, 0.53] -0.11 [-0.70, 0.60]
GDCC - exoOA
Docking/GAFF/YANK_REF REF4 4.48 [1.56, 6.43] 3.25 [1.10, 5.65] 2.60 [0.06, 5.40] 0.37 [0.03, 0.95] -0.58 [-1.56, 0.08] -0.43 [-1.00, 0.33]
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Figure 1. Structures of the TrimerTrip host and guest molecules for the SAMPL7 Host-Guest Blind Challenge. The acyclic CB[n]-typereceptor, TrimerTrip, is shown on the top. It is composed of a glycoluril trimer with aromatic triptycene sidewalls at both ends, and four sulfonategroups to increase its solubility. The host can take on a C-shape (though other conformers can be possible) and binds guests inside the cavity.The guests for the SAMPL7 challenge have the characteristics of typical CB[n] binders. The guests are named g1 through g19 (g4, g13, g14 werenot included in the challenge).
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Figure 2. Structures of the GDCC host and guest molecules for the SAMPL7 Host-Guest Blind Challenge. (top left) OctaAcid, (top right)exo-OctaAcid; (bottom) guests. The difference between the hosts is the placement of the carboxylate groups near the cavity opening. Whilethe carboxylates protrude outward away from the cavity in OA, in exoOA they are at the rim of the cavity opening. The guests for SAMPL7 arenamed g1 - g8. Four guests have a carboxylate group, and four a quaternary ammonium group. For the OA host, guests g1 - g6 have bindingfree energies which were previously reported and thus calculation of values was made optional for participants.
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Figure 3. Structures of the cyclodextrin host derivatives and guests for the SAMPL7 Host-Guest Blind Challenge. The cyclodextrinderivatives are a series of macrocycles composed of seven glucose subunits linked by 1,4 glycosidic bonds. The native �-cyclodextrin (bCD)contains the primary (2’OH) and secondary glucose subunit hydroxyls, while all of the cyclodextrin derivatives (MGLab#) differ by a substituentat either of these positions. MGLab8, MGLab9, MGLab19, MGLab23, MGLab24, and MGLab36 have substituents out from the top or primaryface (wide opening), while MGLab34 and MGLab35 have the substituents out from the bottom or secondary face (narrow opening). The twoguests are trans-4-methylcyclohexanol (g1) and cationic R-Rimantadine (g2).
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Figure 4. �CD host structures. Shown are two views of �CD. It and its derivatives are known to bind guests in two orientations, primary andsecondary. The primary binding orientation is when an asymmetric guest’s polar head group projects out towards the glucose primary alcoholsor the smaller opening (down). The secondary binding orientation is when a guest’s polar head group projects towards the secondary alcoholor the larger opening (up).

Figure 5. SAMPL7 submission breakdown. The SAMPL7 challenge saw 7 TrimerTrip submissions, of which 3 were ranked (blue) and 4 werenon-ranked (orange). There were 16 GDCC submissions, with 4 ranked (green) and 12 nonranked (red), and 7 CD submissions, with 3 ranked(purple) and 4 nonranked (brown).
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Figure 6. TrimerTrip ErrorMetrics for RankedMethods. Shown is the distribution of performance for TrimerTrip submissions, ordered basedon the median for each metric. The median is indicated by the white circle in the violin plots. The violin plots were generated by bootstrappingsamples with replacement (including experimental uncertainties), and the plots describe the shape of the sampling distribution for each pre-diction. The black horizontal bar represents the first and third quartiles. From top to bottom the error metrics are RMSE, ME, R2, �, and slope(m).

20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
G (expt) [kcal/mol]

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

G 
(c

al
c)

 [k
ca

l/m
ol

]

AMOEBA/DDM/BAR - CLIP (6)

20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
G (expt) [kcal/mol]

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

G 
(c

al
c)

 [k
ca

l/m
ol

]

FSDAM/GAFF2/OPC3 - CLIP (4)

20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
G (expt) [kcal/mol]

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

G 
(c

al
c)

 [k
ca

l/m
ol

]

MD/DOCKING/GAFF/xtb-GNF/ - CLIP (5)

Figure 7. Correlation plots for TrimerTrip ranked submissions. Shown are correlation plots comparing calculated versus experimental valuesfor (Left to Right) AMOEBA/DDM/BAR, FSDAM/GAFF2/OPC3, and MD/DOCKING/GAFF/xtb-GNF ranked predictions for the TrimerTrip dataset. The R2and slope for each ranked prediction were 0.50 and 1.25, 0.12 and 0.60, and 0.00 and -0.10 respectively.
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Figure 8. RMSE and ME statistics by host-guest system for ranked methods. Shown are free energy error statistics by host-guest system,across methods/participants. The ΔG root mean square error (RMSE) and mean signed error (ME) were computed via bootstrapping withreplacement (including experimental uncertainties) for all host-guest systems (except optional systems OA-g1, OA-g2, OA-g3, OA-g4, OA-g5, OA-g6, bCD-g1, and bCD-g2) and includes all rankedmethods submitted (except the AM1-BCC/MD/GAFF/TIP4PEW/QMMMmethod for the cyclodextrindataset which is omitted from this analysis because errors were so large for that method). The black error bars represent the 95-percentilebootstrap confidence intervals. The host-guest datasets for the SAMPL7 challenge were TrimerTrip (blue), GDCC (separated into OA (yellow) andexo-OA (red) sub-datasets to analyze each host-guest system), and cyclodextrin derivatives (green)
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Figure 9. GDCC Error Metrics for Ranked Methods. Shown is accuracy of GDCC submissions, with the median value for each metric indicatedby the white circle in the violin plots. The violin plots were generated by bootstrapping samples with replacement, and the plots describe theshape of the sampling distribution for each prediction. The black horizontal bar represents the first and third quartiles. From top to bottom theerror metrics are RMSE, ME, R2, �, and slope (m).
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Figure 10. Correlation plots for GDCC (combined OA and exo-OA) and exo-OA ranked submissions. Shown are correlation plots compar-ing calculated and experimental values for (Left to Right) AMOEBA/DDM/BAR, RESP/GAFF/MMPBSA-Cor, B2PLYPD3/SMD_QZ-R, and xtb-GNF/Machine
Learning/CORINA MD ranked predictions for GDCC (top row) and exo-OA (bottom row). The AMOEBA/DDM/BAR approach performed particularlywell by a variety of metrics, as did RESP/GAFF/MMPBSA-Cor. The former had the slope closest to 1 and its RMS error was among the lowest,whereas the latter performed better on error and correlation metrics but had a slope which was systematically incorrect. (See Table 3)
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Figure 11. exo-OA Error Metrics for Ranked Methods. Shown are exo-OA methods, with the median indicated by the white circle in the violinplots. The violin plots for RMSE, ME, R2, �, and slope describe the shape of the sampling distribution after bootstrapping for each method. Theblack horizontal bar represents the first and third quartiles. From top to bottom the error metrics are RMSE, ME, R2, �, and slope (m).
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Figure 12. Cyclodextrin derivatives error metrics for ranked methods. Shown are CD submissions ordered based on the median and isindicated by the white circle in the violin plots. The violin plots were generated by bootstrapping samples with replacement, and the plotsdescribe the shape of the sampling distribution for each prediction. The black horizontal bar represents the first and third quartiles. From top tobottom the error metrics are RMSE, ME, R2, �, and slope (m). AM1-BCC/GAFF/TIP4PEW/QMMMmethod was not included in these plots. In addition,the optional bCD-g1 and bCD-g2 host-guest systems are not included in this analysis.
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Figure 13. Correlation plots for CD ranked submissions Shown are correlation plots comparing calculated versus experimental values for(Left to Right) FSDAM/GAFF2/OPC3, Noneq/Alchemy/consensus, and AM1-BCC/MD/GAFF/TIP4PEW ranked predictions for the CD dataset. The R2 andslope for each ranked predictions were 0.04 and 0.17, 0.03 and 0.18, and 0.04 and 7.62 respectively. Note: the optional bCD-g1 and bCD-g2host-guest systems were not included in the analysis.
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Figure S1. Reference calculations for TrimerTrip. Plots showing converging free energy estimates (top) or lack of convergence (bottom) forthe TrimerTrip dataset. The calculation for clip-g11c is with g11 but run with an open TrimerTrip conformer extracted from one of our previoussimulations.
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Figure S2. Reference calculations for Cavitands. Plots showing converging free energies for the GDCC dataset which includes the OA andexoOA hosts. (Top) Free energy estimate plotted as a function of time for the OA system with the required guests. (Middle) Free energiesestimates plotted as a function of time for the exoOA host with negatively charged guests. For these systems the free energy is closely converged.(Bottom) The free energy estimates for exoOA with a postively charged guest are not readily converged, particularly in comparison to othersystems in the GDCC dataset.
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Figure S3. Reference calculations for Cyclodextrin derivatives. Plots showing the convergence of free energy estimates for cyclodextrinswith g1 (top) or with g2 (bottom). Free energies are well converged for systems with g1, while not all systems with g2 are convincingly convergedat the simulated timescale.
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Figure S4. Comparing rankedandnon-rankedmethods basedonRMSEandR2. Plots compare the distribution of predictive and correlationalstatistics comparing ranked and non-ranked methods for each dataset (GDCCs (OA/exoOA), TrimerTrip, and Cyclodextrins (CDs)) in the SAMPL7host-guest challenge. Ranked methods statistics are shown in yellow, and non-ranked are shown in blue. In addition, the mean is of thedistributions are marked by a dot under the curves. On average the RMSE for ranked methods was better compared to non-ranked methods.However, on average non-ranked methods had a better R2 for all datasets.
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