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When chemists want to explain a molecule’s stability and reactivity, they often refer to the

concepts of delocalization, resonance, and aromaticity. Resonance is commonly discussed within

the electronic structure framework of valence bond theory as the stabilizing effect of mixing

different Lewis structures. Yet, most computational chemists work with delocalized molecular

orbitals, which are also usually employed to explain the concept of aromaticity, a special kind of

ring delocalization that shows up in cyclic planar systems which abide certain number rules[1].

As an intuitive picture for aromaticity, an electronic ring current has been hypothesized[2, 3].

However, all three concepts lack a real space definition, that is not reliant on orbitals or specific

wave function expansions. Here, we outline a redefinition from first principles: the concepts

are of kinetic nature and related to saddle points of the all-electron probability density |Ψ|2.

Delocalization means that likely electron arrangements[4, 5] are connected via paths of high

probability density in the many-electron real space. In this picture, resonance is the consider-

ation of additional electron arrangements, which offer alternative paths of higher probability.

Most notably, the concept of aromatic ring currents in absence of a magnetic field is rejected

and the famous 4n+2 Hückel rule is derived from nothing but the antisymmetry of fermionic

wave functions. The analysis developed in this work allows for a quantitative discussion of

important chemical concepts that were previously only accessible qualitatively or restricted to

specific electronic structure frameworks.

Why do neutral atoms bind? In the early twentieth century, the covalent bond formulated by

Lewis proposed a conundrum, which even lead Lewis to believe, that “Coulomb’s law . . . must fail

at small distances.”[6] The first molecular application of Schrödingers wave equation[7] by Heitler

and London[8] solved the puzzle mathematically, but lacked a physically understandable explana-

tion. Hellmann[9] and later Ruedenberg[10] related the covalent bond to the—essentially kinetic—

‘electron sharing’, while others—starting with Slater[11]—saw a predominately electrostatic origin.
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While the kinetic picture prevailed for molecules with first-row atoms (e.g. H +
2 and H2), it is disputed

for larger systems[12, 13].

Pauling improved the Heitler-London picture of the chemical bond by giving even homoatomic

bonds a certain ionic contribution, which gave rise to valence bond (VB) theory[14]. This mixing

of ionic terms into the covalent wave function does not only lower the total energy—which is called

resonance—, it also offers a coherent generalized picture of bonding, where covalent and ionic bonds

are only the extreme forms of a continuously defined bond.

The stability of conjugated or aromatic systems is commonly attributed to the delocalization

of π electrons, which is closely related to Ruedenberg’s ‘electron sharing’. Hückel had an elegant

orbital-based explanation for the at first sight bizarre difference between aromatic and antiaromatic

systems, i.e. with 4n+ 2 and 4n π electrons respectively[1]. This apparent simplicity—among other

things—eventually lead to the rise of molecular orbital (MO) theory. The Hückel rules’ seeming fail-

ure for some extended aromatic molecules like pyrene (Fig. 1)—which is not a failure of the Hückel

method—is elegantly resolved with the concept of ‘conjugated circuits’[15, 16, 17]: the total aro-

maticity is ascribed to the existence of cyclic electronic subsystems, which abide the 4n + 2 rule.

Baird showed, that for triplet systems, the aforementioned Hückel rule is inverted, i.e. compounds

with 4n π electrons are aromatic[18].

Figure 1: Pyrene, a planar aromatic system.

Already before Hückel’s work, the diamagnetic properties of aromatic systems were attributed to

electronic ‘ring currents’[2, 19, 20, 3]. Theoretical studies used this notion of ring currents to explain

aromaticity also in absence of a magnetic field and discussed the role of the ionic structures[21, 22,

23, 24]. Notably, Shurki et al. stated that the “flow of the electrons around the C4H4 ring is, therefore,

interrupted”, which is close to the line of arguments we intend to develop in this article.

Bader and coworkers developed the ‘delocalization index’ (DI) as a real space measure of

delocalization[25, 26] in the framework of the quantum theory of atoms in molecules (QTAIM).[27,

28] It is based on the one- and two-electron densities ρ(r) and ρ2(r, r′). Poater et al. subsequently
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introduced the “mean of all DIs of para-related carbon atoms in a given six-membered ring (PDI)” as

a measure of aromaticity.[29] However, as Martı́n Pendás and Francisco and the authors of this work

showed recently, the delocalization index is better understood as a measure of ionicity.[30, 5]

Probability density analysis (PDA)[4, 5] was introduced as the all-electron equivalent of QTAIM.

PDA recovers Lewis structures by analyzing local maxima of |Ψ|2, which we label structure critical

points (SCPs). Here, we add the 3N dimensional saddle points, labeled delocalization critical points

(DCPs), to the analysis. A DCP is the lowest point on the maximum probability path (MPP) between

two adjacent SCPs, much like the lowest point on a mountain ridge.

This mathematical framework allows for the probabilistic quantification of Ruedenberg’s ’elec-

tron sharing’, which is an increased freedom of movement (i.e. delocalization) lowering the kinetic

energy—cf. increasing the box length for a particle in a box.

For H +
2 , the two SCPs are simply the two proton positions (PDA and QTAIM are identical for

one-electron systems). For infinitely separated protons, |Ψ|2 at the DCP approaches zero, while it is

non-zero for the bound state 2Σ+
g at equilibrium distance (Fig. 2). For the first exited state 2Σ+

u , |Ψ|2 at

a b

Figure 2: |Ψ|2 with the electrons on the bond axis z. a H +
2 at the equilibrium distance (dHH =

2.00 a0[31]). b H2 at the equilibrium distance (dHH = 1.40 a0).

the DCP equals zero (node) independent of the proton-proton distance. For the infinitely dissociated

system as well as for the 2Σ+
u state, the electron is thus not shared, since—while mathematically being

at both protons—the electron could never move from one nucleus to the other. This impossibility of

crossing a node of |Ψ|2 is well established in the context of potential barriers, where an infinitely

large barrier prevents particles from tunneling. In order to discuss barriers instead of low probability

density, we define a probabilistic potential Φ, which is monotonically decreasing with |Ψ|2. It is the

scalar potential of the drift velocity u, which appears in the diffusion Monte Carlo method[32] as well
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as in stochastic quantum mechanics[33].

Φ = − ~
2me

ln |Ψ|2, u = −∇Φ =
~
me

∇Ψ

Ψ
(1)

A probabilistic barrier between two SCPs can thus be defined as the value of Φ at the highest DCP on

the connecting path (this barrier approaches infinity, if |Ψ|2 at the DCP vanishes).

A VB wave function in the minimal basis of orbitals ϕK is chosen to investigate the two-electron

bond in H2, (Eq. 2).

Ψ = N [(1− η)ψcov. + ηψion.] , ϕK(r) =

√
ζ3

π
e−ζ|r−rK| (2)

The coefficient η controls the ionic contribution and the exponent ζ the contraction of the wave func-

tion at the protons. Note, that this ansatz is equivalent to CASSCF(2,2). Four structure critical points

and five delocalization critical points are identified with PDA. For all of these points, both electrons

are positioned on the bond axis, (Fig. 2b). The four SCPs are the covalent and ionic arrangements

of the electrons. The central DCP is a second-order saddle point connecting the two covalent SCPs

as well as the two ionic SCPs. It describes a concerted two-electron exchange. With a correlated

wave function, the electrons would avoid each other, moving the central DCP away from the de-

picted plane. The four covalent-ionic DCPs describe the one-electron move from a covalent to an

ionic arrangement or vice-versa. There are apparently two paths from one covalent SCP to the other:

the concerted two-electron exchange via the central DCP and the step-wise electron exchange via

two covalent-ionic DCPs and an ionic SCP. Since |Ψ|2 is lower at the central DCP compared to the

ionic-covalent DCP, the probabilistic barrier (i.e. the largest probabilistic potential Φ) is larger for

the concerted two-electron exchange, (Fig. 3a). The ionic arrangements thus serve a purpose which

is analogous to a reaction intermediate. The probabilistic barriers is minimal for η = 0.42, which is

close to the Hartree-Fock wave function (η = 1/2). This is consistent with the established view, that

“. . . the electrons in the HF-MO description of H2 are completely delocalized.”[24]

In order to validate the proposed connection between resonance and the probabilistic barrier, the

kinetic (T ) and potential (V ) contributions to the total stabilization have to be investigated. For H2,

the resonance energy is defined as the energetic difference between the purely covalent (η = 0)

Heitler-London wave function and the optimized (η = 0.21) VB wave function. Since the orbital
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a b

Figure 3: H2 at the equilibrium distance (1.4 a0). a Probabilistic barriers for the concerted two-
electron exchange and for the step-wise exchange with an ionic intermediate SCP. b Step-wise mor-
phing of the covalent Heitler-London wave function Ψ(η = 0, ζ = 1.169) into the full VB wave
function Ψ(η = 0.209, ζ = 1.200). All energies in mEh.

coefficients ζ have been optimized, the virial ratio is close to one (|2T/V | < 1.007) for both functions.

It is not exactly equal to one, since the proton-proton distance has not been relaxed. Due to this non-

relaxation, the virial ratio of the resonance energy is quite large: |2∆T/∆V | = 1.320. However,

the energy difference is obviously still dominated by a decreasing potential and an increasing kinetic

energy, qualitatively following the virial theorem. Yet, it can be shown—analogously to the ‘stepwise

morphing’ by Ruedenberg et al.[10, 31]—that resonance in H2 is a kinetic stabilization.

Resonance can be divided into two ‘physical’ steps: contraction of the wave function at the nuclei

and the actual resonance (i.e. mixing in of the ionic contribution), (Fig. 3b). There are two ways

of describing the step-wise morphing: mixing followed by contraction or contraction followed by

mixing. We will proceed with the former, since the contraction is destabilizing for the latter. The

total energy difference of −8.7 mEh can be attributed to 89 % to the mixing, which, for its part, can

be attributed to a kinetic stabilization (−39.3 mEh) outweighing an increase of the potential energy

(+31.6 mEh). The remaining 11 % resulting from orbital contraction lead—of course—to an overall

increase of the kinetic energy. Yet, the nature of resonance remains essentially kinetic, justifying the

discussion of the probabilistic barrier as the fundamental principle of resonance.

Going beyond singlet two-electron systems, the antisymmetry of fermionic wave functions has

to be considered: the exchange of two same-spin electrons changes the sign of the wave function

Ψ, while the probability density |Ψ|2 remains the same, preserving the elecrons’ indistinguishability.
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For an hypothetical triplet two-electron bond, having an antisymmetric spatial function, the picture

thus changes drastically. There are only two SCPs (the covalent ones) and upon exchange of the

two electrons, the sign of Ψ changes. Therefore, according to the intermediate value theorem, it is

necessarily zero somewhere on any path connecting the two covalent SCPs, yielding an infinitely high

probabilistic barrier. This is an easy explanation for why triplet H2 is not binding: the electrons are

not shared.

Going beyond two electrons, the same arguments can still be used to predict and explain delo-

calization. For n same-spin electrons equally spaced on a ring, the rotation of the ring by 2π/n is

described by the cyclic permutation σn = (2 3 . . . n 1) ∈ Sn. This permutation is positive for

odd n and negative for even n. If the sign of a permutation is negative, the sign of Ψ changes upon

its application. If it is positive, Ψ is unchanged. Thus, again arguing with the intermediate value

theorem, the rotation of an even-numbered ring of same-spin electrons is impossible, since it has to

pass |Ψ|2 = 0 (i.e. an infinitely large probabilistic barrier). This discussion of parity is related to the

‘electron-switch symmetry index’ by Shurki et al.[24]

If two rings (spin-up and spin-down) are combined (cf. the alternating spin structure of benzene),

the intermediate value theorem apparently does not help anymore: rotating two rings of the same size

at once always preserves the sign of Ψ independent of the parity. However, for a Hartree-Fock (HF)

wave function there would still be a node crossing: the HF wave function can be written as a product

of a spin-up and a spin-down determinant[32]. For both determinants individually, the intermediate

value theorem can still be applied, making the rotation of two rings possible only if both have an odd

number of electrons. While HF wave functions do not solve the Schrödinger equation, they are often

(in some respect) qualitatively correct—especially for aromatic systems. The exact wave function

can be expressed as a sum of determinants, each of which is an eigenfunction of Ŝz and can also be

written as a product of two determinants. While the intermediate value argument holds for each of the

determinants, they have different nodes and are not all 0 at the same all-electron position. However,

paths, that are forbidden at Hartree-Fock level are are still presumably unlikely at a correlated level,

since the Hartree-Fock determinant often dominates the exact wave function expansion.

The numbers of both, spin-up and spin-down electrons thus have to be odd in order to have circular

delocalization: N↑, N↓ ∈ {2n + 1 : n ∈ N}. This can be called the ‘two times 2n + 1’ rule. If the

model of electrons on a ring is applied to the π system of singlet planar ring molecules (i.e. N↑ = N↓),
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the Hückel rule follows directly as 2(2n+1) = 4n+2. ForMS = ±1, which determine the symmetry

of the triplet state, the Baird rule is retrieved: N↑ = N↓ ± 2 leads to the two equivalent rules 4n + 4

and 4n.

This real space view of delocalization can also describe the aromaticity of polycyclic aromatic

compounds like pyrene (Fig. 1), for which the Hückel rule is not valid. While the total number of

π electrons is 16, there is still a plethora of possible rotations: e.g. on each six-membered ring (6

electrons), along two six-membered rings (10 electrons), or including all electrons on the edges of

the system (14 electrons). All these possible rotations lead to a stabilizing delocalization of the π

electrons. This picture of polycyclic aromatic compounds is the real space analogue of ‘conjugated

circuits’.[15, 16, 17]

The two times 2n + 1 rule is not restricted to circular planar systems as the permutations’ signs

are independent of the spatial arrangement. As has been shown, it also applies to H2. Furthermore,

the concept of ‘paired electrons’ is to some degree justified by and connected to the real space picture

presented in this work: the electron pair is the smallest multi-electron system abiding the ‘two times

2n+ 1’ rule.

While singlet cyclobutadiene (CBD) is considered to be antiaromatic, the D6h symmetric benzene

is aromatic according to the Hückel rule. With π-only wave functions, the two alternating covalent

spin structures are the most important (by PDA weight[5]) for both systems in planar geometry. In

order to explore delocalization, the maximum probability paths connecting these structures thus have

to be investigated. This is somewhat analogous to work by Shurki et al.[24] and seemingly related

to the concept of diamagnetic ring currents[20, 3]. However, like Maynau and Malrieu[23] we do

not restrict our search to paths, where all electrons move in the same circular direction (Fig. 4a).

Instead, the spin-up and spin-down electrons can also rotate in opposite directions (Fig. 4b), which

will eventually turn out to be more likely. Staying with the picture of a ring current, the electrons can

move between the covalent spin structures 1 and 7, passing step-wise through the ionic SCPs 2–6a

without any concerted movement. A restriction of this same-direction path to covalent SCPs enforces

a concerted movement of six electrons. Assuming, that the spin-up and spin-down electrons rotate in

opposite directions, the step-wise movement passes the two non-alternating covalent SCPs 3b and 5b

in addition to the ionic SCPs 2, 4b, and 6b. Here, a restriction to covalent spin structures only leads

to concerted two-electron movements. All four investigated paths (same/opposite direction, restricted
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a b

c

Figure 4: Maximum probability paths for the π system of benzene: without restrictions (green) and
restricted to covalent DCPs (purple). Spin-up and spin-down electrons rotate in a the same direction,
b opposite directions. c Probabilistic barriers.

to covalent SCPs/no restriction) are compared regarding the probabilistic barrier (Fig. 4c).

In agreement with the previously discussed qualitative picture (two-times 2n + 1 rule), none of

these paths crosses a node, i.e. there is no infinitely large barrier. In contrast to the prevalent picture

of diamagnetic ring currents, the opposite direction paths are more likely, having a lower probabilistic

barrier. Yet, it is easily imaginable, that an external magnetic field inverts this relation. These results

contradict an earlier comparison[23], which however only took concerted six-electron movements in

account. The importance of ionic structures is in good agreement with the results by Shurki et al.[24]

for the same direction movement. In general, the role of the ionic spin structures is, however, not

qualitatively different from the role of the ionic structure in H2, since the dominant opposite direction

movement is much less affected by the restriction to covalent structures.

For singlet CBD—again in agreement with the qualitative picture—the movement between the

two alternating spin structures is not possible: there is a node crossing independent of any ionic

8



contribution. As Shurki et al. already stressed, the ionic structures thus have a low weight and

their mixing is only slightly stabilizing, since they do not enhance delocalization between covalent

structures.

For the D4h symmetric triplet CBD (which is aromatic according to the Baird rule), MPPs can be

calculated like for benzene (Fig. 5). As for benzene, the opposite direction movement is preferred

over the same direction movement.

a b

Figure 5: Maximum probability paths analysis for the π system of triplet CBD with MS = +1 ~:
without restrictions (green) and restricted to covalent DCPs (purple). a Spin-up and spin-down elec-
trons rotate in opposite directions. b Probabilistic barriers.

The freedom of movement for electrons is restricted by borders of low or even zero all-electron

probability density |Ψ|2.

Due to antisymmetry, in the HF wave function, delocalization is only possible for an odd number

of same-spin electrons. For correlated wave functions, impossibility of delocalization becomes low

possibility, but odd numbers of same-spin electrons are still favored. This leads directly to the Hückel

and Baird rules of aromaticity (4n+ 2 and 4n respectively) as well as to the electron pair.

In H2, the kinetic nature of resonance has been demonstrated. For H2 and the π systems in benzene

and triplet cyclobutadiene, the ionic structures act as an intermediate analogue and play an important

role in the broad phenomenon of delocalization.

A Ruedenberg analysis (i.e. step-wise morphing) has shown, that this connection between the sad-

dle points of |Ψ|2 and bonding can explain the nature of resonance: the mixing of ionic contributions

is essentially a kinetic stabilization.

The in-depth analysis of aromaticity in benzene and triplet cyclobutadiene revealed that the oppo-

site direction movement of spin-up and spin-down electrons is more important than the same direction

movement. This leads us to reject the notion of diamagnetic current in absence of a magnetic field.
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[17] Randić, M. Conjugated curcuits and resonance energies of benzoid hydrocarbons. Chem. Phys.

Lett. 38, 68–70 (1976).

[18] Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 8ππ∗

state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

[19] Lonsdale, K. Diamagnetic and paramagnetic anisotropy of crystals. Rep. Prog. Phys. 4, 368–389

(1937).

[20] Elvidge, J. A. & Jackman, L. M. Studies of aromaticity by nuclear magnetic resonance spec-

troscopy. Part I. 2-Pyridones and related systems. J. Chem. Soc. 859 (1961).

[21] Brooks, H. Diamagnetic anisotropy and electronic structure of aromatic molecules. J. Chem.

Phys. 8, 939–949 (1940).

[22] McWeeny, R. The diamagnetic anisotropy of large aromatic systems V: interpretation of the

results. Proc. Phys. Soc. A 66, 714–720 (1953).

[23] Maynau, D. & Malrieu, J. P. A valence bond effective Hamiltonian for the neutral states of π

systems. 2. Results. J. Am. Chem. Soc. 104, 3029–3034 (1982).

[24] Shurki, A., Hiberty, P. C., Dijkstra, F. & Shaik, S. Aromaticity and antiaromaticity: what role

do ionic configurations play in delocalization and induction of magnetic properties? J. Phys.

Org. Chem. 16, 731–745 (2003).

11



[25] Bader, R. F. W., Streitwieser, A., Neuhaus, A., Laidig, K. E. & Speers, P. Electron delocalization

and the Fermi hole. J. Am. Chem. Soc. 118, 4959–4965 (1996).

[26] Fradera, X., Austen, M. A. & Bader, R. F. W. The Lewis model and beyond. J. Phys. Chem. A

103, 304–314 (1999).

[27] Bader, R. F. W. & Beddall, P. M. Virial field relationship for molecular charge distributions and

the spatial partitioning of molecular properties. J. Chem. Phys. 56, 3320–3329 (1972).

[28] Bader, R. F. W. & Nguyen-Dang, T. Quantum theory of atoms in molecules–Dalton revisited.

In Advances in Quantum Chemistry, 63–124 (Academic Press, Inc., 1981), 14 edn.
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Methods

Hydrogen molecules

The equilibrium distances for H +
2 and H2 are taken from Ruedenberg and Schmidt[37] and Huber and

Herzberg[38], respectively. The wave functions for the two states (2Σ+
g and 2Σ−

g ) of H +
2 is built from

the 1s orbitals of Eq. 2:

Ψ2Σ±
g

(r) =
1√

2± 2S
[ϕA(r)± ϕB(r)] , S = 〈ϕA|ϕB〉 (3)

The covalent and ionic VB structures of H2 are defined as

ψcov.(r1, r2) =
1√

2 + 2S2
[ϕA(r1)ϕB(r2) + ϕB(r1)ϕA(r2)] ,

ψion.(r1, r2) =
1√

2 + 2S2
[ϕA(r1)ϕA(r2) + ϕB(r1)ϕB(r2)] .

(4)

The VB calculations were performed with XMVB[39, 40], all integrals were computed with Gaussian16[41].

Benzene and cyclobutadiene

Complete active space self-consistent field (CASSCF) geometry optimizations with an active space

of all π orbitals have been performed with Molpro[42] for benzene and triplet CBD. Each function of

the Slater-type TZPae[43] basis has been expanded into 14 primitive Gaussian-type functions[44, 45].

The investigated multi-reference, π-only wave functions have been obtained from the CASSCF expan-

sion: the determinants are reduced to the π orbitals, while spin coupling and configuration interaction

coefficients are left untouched. This way, the π system is optimized in full presence of the σ and core

electrons, which is more accurate than any effective π Hamiltonian. Note, that there is no need to

calculate energies from these π-only wave functions while performing PDA.

Probability density analysis

The probability density analysis was performed with the quantum Monte Carlo code Amolqc. The

saddle points of |Ψ|2 (DCPs) were identified by applying the Newton method to Φ. The maxima of

|Ψ|2 (SCPs) were identified with the steepest descent and L-BFGS[46] methods.
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Data availability

All relevant data are available in the supporting information file.

Code availability

The algorithms used for the findings are described in the methods section. The code Amolqc as well

as any program used for evaluating data, starting other programs or making figures are available upon

reasonable request.
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