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Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes.
With the use of experimental melting temperatures, its parametrization can provide important insights
into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations.
However, the RNA parametrization for lower salt concentrations is still missing due to the limited
amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization
was found to be largely independent of strand concentrations, it requires that all temperatures are
provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand
concentrations and in this way we were able to make use of an experimental set of temperatures to
model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations.
For the parametrizations we make a distinction between terminal and internal base pairs, and the
resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference
from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU)
which is stronger than d(AT), suggesting higher hydrogen bond strength.

1 Introduction
RNA plays an essential role in many cellular processes such as
transcription, translation, and conservation of genetic informa-
tion. Double stranded (ds) RNAs are present in cells and perform
a variety of biological functions.1,2 For instance, small non-coding
dsRNA that mediate neuronal differentiation,3 dsRNA segments
of special lengths, known as siRNA, can inhibit the translation of
mRNA molecules into proteins through attaching to mRNAs,4,5

and RNAs of more than 30 base pairs of length can be key activa-
tors of the innate immune response against viral infections.6

Similarly to dsDNA, the interchain interactions stabilizing the
structure of dsRNA are very sensitive to environmental conditions
such as temperature and salt concentration.7–10 For example, a
reduction in salt concentration increases the binding affinity be-
tween the protein kinase R (PKR) and the dsRNA, improving the
recognition pathway.11

dsRNA form helices in an A-form which has a much
deeper/narrower major groove and a wider minor groove than
the B-form of dsDNA, which concedes a very different sur-
face electrostatic potential for dsDNA and dsRNA.12 These dif-
ferent ion binding modes for dsDNA and dsRNA have been
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suggested to be responsible for the different multivalent ion-
dependent condensation behaviours13 and flexibilities for dsDNA
and dsRNA.14,15 Therefore, the presence of mono and divalent
cations plays a fundamental role in the stabilization of RNA sec-
ondary and tertiary structures by neutralizing the negative charge
and reducing the repulsion of the phosphates.16,17 Although mag-
nesium ions are much more stabilizing,18–20 monovalent ions like
sodium are important and the general conclusion is that sodium
ions are essential as they mediate the long-range interactions
that are crucial for folding and assembly of RNA tertiary struc-
tures.21,22

There is some NMR evidence that group I monovalent ions,
Na+ and K+ in particular, remain well hydrated in the presence
of RNA23 interacting with it on a diffuse way24,25 or may even
be chelated by irregular RNA structures.26,27 Those factors may
relate the sensibility of RNA tertiary structure to the size of the
monovalent cations that are present, in contrast to the weak dis-
crimination shown by DNA helices in their interaction with differ-
ent group I ions.28 Another aspect that affects the thermodynamic
stability of the double stranded duplex is a process known as
"base fraying", which is the breaking of base-pairing interactions
at the termini of a RNA or DNA. Frayed states are intermediaries
in zipping and unzipping processes and have been suggested to
be important for the interactions of RNA with proteins,29,30 are
required for secondary structure rearrangements for riboswitch
function,31 and may be relevant for strand migration.32

The effect of monovalent ions in RNA has been investigated
with several theoretical methods, such as molecular dynam-
ics (MD),14,33–36, coarse-grained models,37 Debye-Hückel mod-
els,38 and tightly-bound ion theory.16,39 For instance, MD sim-
ulations such as made by Beššeová et al. 33 33,34 concluded that
the force field and salt effects are sequence-dependent and the
helix compactness is sensitive to the salt and water conditions.
Salt effects and stability on the tridimensional structure of RNA
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were also explored by Monte-Carlo simulations and an increase
in Na+ concentration tend to improve the folding of RNA hair-
pins, suggesting that the base-pair adjacent to the terminal is not
stable due to the reduction of stacking.40 Debye-Hückel models
concluded that a decrease in salt concentration generally desta-
bilize the folding of RNA and lowers its denaturation tempera-
tures.37,38 Mesoscopic modelling, based on the Peyrard-Bishop
(PB) description, using experimental melting temperatures as in-
put data, have been restricted to high sodium concentrations.41

Existing RNA melting temperature data at lower sodium con-
centrations exists at varying strand concentrations, however the
mesoscopic approach requires all temperatures to be at a single
strand concentration.42 Here, we extend this mesoscopic model
to handle multiple strand concentration, thus overcoming the cur-
rent limitations of this approach.

Base fraying is an important, yet still poorly understood aspect
of RNA stability, in particular it is unclear how fraying depen-
dents on salt concentration. Melting temperature measurements
indicate that the 5′ ends are substantially more stable when the
purine is positioned at the 3′ end, which determine the stabil-
ity of sequential mismatches as well.43 NMR measurements con-
cluded that the opening and closing rates of r(AU) base-pairs are
much larger than those observed for d(AT), despite comparable
stability.44 MD simulations have had difficulties to deal with base
fraying as existing force fields were inadequate for terminal AU
bases.45 However, more recently this limitation seems to have
been resolved and Pinamonti et al. 46 concluded that 5′ ends con-
taining UApCG or AUpGC have a slower fraying due to a larger
stability assigned to stacking interactions. This suggests that ter-
minal adenine base pairs have stronger stacking interaction when
compared with uracils.46 In contrast to MD, for mesoscopic PB
models47 and coarse-grained models,48 end-fraying is well rep-
resented and they have in principle no difficulty in dealing with
AU terminal pairs.41,49 Nearest-neighbour (NN) models are typ-
ically limited to temperature prediction, and terminal effects are
included as an energy penalty.50 The salt dependence of these
terminal factors were studied by us recently,51 and we observed
a marked quadratic dependence in the enthalpies and entropies
with salt concentration which are compensated to form almost
linear Gibbs free energies.51

Here, we adapt the mesoscopic PB model to RNA with varying
salt dependence, multiple strand concentrations and including
terminal effects. In part we applied a similar approach as from
our previous work on DNA salt-dependent terminal effects,52

which enables us to compare RNA and DNA terminal effects and
discuss their differences. However, for RNA the available melting
temperatures are scattered into a non-uniform range of strand
concentrations, see Fig. 1.51 This represents a challenge for the
mesoscopic model which usually requires that all temperatures
are at the same concentration.53 The reason for this is that the
PB model is a single molecule calculation, and the melting tem-
peratures are correlated to experimental values at a single strand
concentration.54 To work with the existing set of temperatures
we adapted the model to handle multiple strand concentrations
simultaneously. To achieve this we grouped the strand concen-
trations into logarithmic groups and then worked out the corre-
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Fig. 1 Experimental melting temperatures from Ref. 51 as logarithmic
function of total strand concentration ln(Ct). Each colour represents a
specific sequence.

sponding model parameters. We tested various levels of group-
ing and, surprisingly, the model parameters had very little depen-
dence on the grouping factors. Once we established the best level
of grouping we were able to compare the new salt-dependent pa-
rameters to our previous DNA parameters. In general, we found
that the Morse potential representing the hydrogen bonds of RNA
followed very closely that of DNA, except for low salt concentra-
tions where d(AT) had an important reduction which we did not
observe for r(AU).

2 Methods

2.1 Model

The configurational part of the PB Hamiltonian is written as47,55

Ui,i+1 =
kα,β

2
(yi− yi+1)

2 +Dα

(
e−y/λα −1

)2
, (1)

which describes the interaction of a base pair of type α, at se-
quence position i, with its nearest-neighbour of type β at position
i+1. The Morse potential, which describe the hydrogen bond be-
tween the base pairs, uses two more parameters to characterize
its depth and width of the ith base pair of type α, Dα , λα , re-
spectively. The stacking interaction between adjacent base-pairs
or the nearest-neighbours is represented by an elastic constant
kα,β , and the coordinate y represents the relative displacements
between the bases.

Therefore the sum for the Eq. (1) over all N base-pairs is carried
out using its partition function:

Zy =
∫ ymax

ymin

dy1

∫ ymax

ymin

dy2 · · ·
∫ ymax

ymin

dyN

∫ N

∏
n=1

e−βU(yi,yi+1) (2)
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where β = 1/kBT , kB is the Boltzmann constant and T the ab-
solute temperature. Subsequently, the integral over all possible
configurations of base pair displacements, yi is performed. Thus,
all possible Morse potentials and stacking interactions are con-
sidered simultaneously during the evaluation. From the partition
function, Eq. (2) an adimensional index τ is calculated and it is
directly correlated to the experimental melting temperatures as
we will see in the next sections.42

Furthermore, the average base pair displacement, 〈ym〉, at the
mth position in the sequence can be obtained from

〈ym〉=
1
Zy

∫ ymax

ymin

dy1

∫ ymax

ymin

dy2 · · ·
∫ ymax

ymin

dyNym

∫ N

∏
n=1

e−βU(yi,yi+1) (3)

2.2 Notation

To reliably distinguish terminal base pairs from internal base pairs
we need to establish an unambiguous notation. Consider the fol-
lowing example sequence

5′-AGAUAUCU-3′

3′-UCUAUAGA-5′

where we separate the terminal and internal base pairs

A
U︸︷︷︸

terminal

· GCAAGU
CGUUCA︸ ︷︷ ︸

internal

· U
A︸︷︷︸

terminal

For the terminal base pairs we will use a superscript *, in our
example this would be AU∗ at the 5′-side and UA∗ at the 3′-side.
For Morse potentials, AU∗ is equivalent to UA∗ , as well as CG∗ is
to GC∗, and will share the same parameters D and λ , see Eq. (1).

For the nearest-neighbour (NN) stacking parameter k there will
be a mixed notation of terminal and internal base pairs. The first
NN pair of our example sequence would be AU∗pGC, that is a
terminal AU∗ followed by an internal GC. The AU∗pGC pair is
symmetric to CGpUA∗:

5′-AGAUAUCU-3′

3′-UCUAUAGA -5′
↔ 5′-AGAUAUCU-3′

3′-UCUAUAGA-5′

As both can be described by the same stacking parameter k,
we keep just the one that precedes alphabetically, in this case
AU∗pGC. Therefore, as stated above, the stacking parameter for
AUpGC NN pairs will be divided into three separate parameters,
namely AU∗pGC for terminal AU∗, AUpGC∗ for terminal CG∗ and
the internals which we maintain the original notation AUpGC.

Some base pairs will have only one additional terminal-related
parameter as a result of the NN pair symmetry. Such as CGpGC
which has only one terminal related NN CGpGC∗ since it is sym-
metric to CG∗pGC.

2.3 Melting temperature sets

The melting temperatures used here fall into two very different
categories: four are at lower sodium concentrations where all
sequences are self-complementary and of the same length; and
a single one at high sodium concentrations with a mix of self-
complementary and non-self-complementary sequences and vari-

able lengths. This requires different theoretical approaches de-
pending on the type of temperature set, and therefore we will
distinguish them by low salt (LS) and high salt (HS).

2.3.1 (LS) 71 to 621 mM [Na+]

We used the set of RNA melting temperatures from Ferreira
et al. 51 , consisting of 18 RNA duplexes at four different [Na+]
concentrations (71, 121, 221, 621 mM). For each sequence and
salt concentrations there are at least 9 measurements at different
strand concentrations Ct in the range of 5 µM to 700 µM, see
Fig. 1. All sequences are self-complementary and either are 6 or
8 base-pairs (bp) in length.

2.3.2 (HS) 1021 mM [Na+]

For the higher salt concentration we used the melting tempera-
ture set from Xia et al. 50 which was complemented by two se-
quences from Chen and Znosko 56 . Unlike the LS data, they have
varying lengths, include non-self-complementary sequences, are
at the same strand concentration and from various sources.

2.4 Temperature correlation with melting index

The PB model describes the thermodynamics via a coefficient τi,
obtained from the partition function Eq. (2), for the ith duplex in
the data set which provides temperature prediction T ′i

T ′i (P) = a0 +a1τi(P) (4)

where the coefficients a0,1 are calculated via a linear regression
of the experimental melting temperatures Ti at a single strand
concentration Ct , and P is a set of tentative model parameters.
The regression of the coefficients used in Eq. (4) is typically car-
ried out at a single strand concentration Ct . However, for the LS
dataset, there are multiple strand concentrations which require a
different approach as we will discuss next.

2.4.1 LS temperature regression

Previous studies have confirmed that the resulting model param-
eters are independent on the strand concentration.41,53 However,
when the melting temperature set involves multiple strand con-
centrations the regression of Eq. (4) needs to be carried separately
for each concentration Ct , that is

T ′i (P) = a0(Ct)+a1(Ct)τi(P) (5)

where the coefficients a0,1 are now functions of Ct , which requires
a minimum amount of melting temperatures for each value of Ct

as otherwise the regression calculation cannot be carried out. In
other words, there needs to be subsets of melting temperatures
grouped to the same Ct . However, here the dataset has measure-
ments scattered over a wide range of Ct and there is no single
subset was measured at the same Ct , see Fig. 1. This does not
represent a problem for the nearest-neighbour model,51 but for
the PB model it becomes necessary to group the melting temper-
atures together to the closest value of Ct .
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Table 1 Summary of logarithmic grouping for coarseness f . Shown are
the number of groups n f , total number of grouped elements N f , and total
number of ungrouped elements U f for [Na+] 71mM.

f n f N f U f
5.0 22 179 6
4.0 18 180 5
3.0 14 182 3
2.0 10 184 1
1.5 8 184 1
1.4 7 184 1
1.3 7 183 2
1.2 7 184 1
1.1 6 184 1
1.0 5 182 3
0.9 5 184 1
0.8 5 182 3
0.7 4 184 1
0.6 4 184 1
0.5 3 184 1
0.4 3 185 0

2.4.2 Strand concentration grouping

Since the melting temperatures scale with ln(Ct),57 it makes sense
to introduce a logarithmic group index

L f =
round[ f ln(Ct/C0)]

f
(6)

where f is a factor that controls the coarseness of groups, and C0

is a fixed reference concentration taken as 1 µM to ensure that L f

is adimensional. As we will perform a linear regression for each
group, we only consider groups with at least 3 elements. For each
available melting temperature we work out to which group L f it
belongs depending on its Ct and the coarseness factor f which
results in n f groups with a total of N f members. A small f will
create a small number of groups n f with many elements, while a
large f results in many groups with few elements. The upper limit
of f is when there are too few melting temperatures per group
to perform a meaningful linear regression (at least 3 elements),
and the lower limit of f is when there is only a single group that
contains all temperatures. Table 1 shows the summary of the
logarithmic grouping L f that is considered in this work for [Na+]
71 mM. See supplementary tables S6, S7 and S8 for a summary of
the remaining LS salt concentrations, and a detailed breakdown
in supplementary tables S9–S12.

Using the logarithmic grouping, we now replace Eq. (5) with

T ′i (P) = a0(L f )+a1(L f )τi(P). (7)

and the regression coefficients are obtained independently for
each group L f .

2.5 HS temperature regression
For the HS data, which are all given at the same strand concentra-
tion and are available at varying sequence lengths N, the linear
regression is performed separately for each group of base pair
length N 54

T ′i (P) = a0(N)+a1(N)τi(P), (8)

similarly as used in our previous work,41 and gives better results
than the single regression Eq. (4).

2.6 Optimization

The parameter sets P needed for the calculation of the melting
index τi(P), Eqs. (7) and (8), contains the model parameters used
in the Hamiltonian Eq. (1) for each type of base pair and nearest-
neighbour present in the sequence set. Therefore, we will need to
find the optimal set of L parameters, Pj = {p1, p2, . . . , pL} that will
provide the temperature predictions T ′i (P) that are closest to the
experimental temperatures Ti. The P parameters are varied until
we minimize the squared difference

χ
2
j =

M

∑
i=1

[
T ′i (Pj)−Ti

]2
. (9)

where Pj is the jth tentative set of parameters and M is the
number of experimental melting temperatures. Each parameter
within the Pj is sampled between 0.1pu and 1.1pu, where pu is
the uniform parameter calculated previously for high salt con-
centration53. For LS we use M = N f which is the total number of
grouped temperatures for a given coarseness factor f . The numer-
ical parameter optimization is performed by a downhill simplex
multidimensional minimization algorithm.58 We will also refer to
another quality parameter which is average melting temperature
deviation

〈∆T 〉= 1
M

M

∑
i=1

∣∣T ′i (Pj)−Ti
∣∣ . (10)

As a result of the terminal/internal (T/I) notation, we will be
dealing with 4 Morse potentials (2 internal, 2 terminal) and 26
NN stacking potentials (10 internal and 16 terminal), represent-
ing L = 30 parameters. For comparison, we will also perform
all calculations without the distinction between terminal/internal
which we will call uniform (UN) parameters and represents L= 12
variables. Next, we will detail the optimization steps used here.

2.6.1 MR1 (LS and HS)

The first minimization round (MR1) of the parameter optimiza-
tion was performed by varying the initial Morse and stacking po-
tentials41,53 randomly over an interval which averages to the ini-
tial values. For the T/I scheme, initial parameters are assumed to
have same values, although designated by different variables (AU
and AU∗), so they can vary separately. The minimization proce-
dure was repeated 100 times for each f . The same procedure was
carried out for HS, the only difference being the use of Eq. (8),
applied during the minimization.

2.6.2 MR2 (LS and HS)

For the next round, we calculate the average of those parameters
with lowest χ2 from MR1 to be used as a new fixed initial set of
parameters for a second round of minimizations (MR2), following
the same procedure described for MR1. Here, that is a way to
refine the parameters and reduce the difference between each
minimization and consequently reduce the parameter standard
deviation. Once more, this was repeated 100 times for HS and
for each f (LS).

2.6.3 EU-HS

The last step is to evaluate the impact of the experimental uncer-
tainty (EU) by changing the temperatures of the dataset by small
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amounts, such that the standard deviation between the original
set and the optimized set approaches the declared experimental
uncertainty. We then run again the minimization procedure, how-
ever, unlike for MR1/2 we keep the initial parameters fixed and
only disturb the melting temperatures. A standard deviation of
0.5◦C was considered and the minimization carried out for 100
rounds for each f .

2.6.4 EU-LS

For the LS-type datasets, in addition to the impact of the melt-
ing temperature uncertainty, we also need to evaluate the impact
of the strand concentration grouping procedure described in sec-
tion 2.4.2. For this, we proceeded in a very similar way as for
the temperature perturbation described in the previous section:
we disturb the Ct by small amounts and rerun the minimization
again. The estimated uncertainty for Ct was reported as 5%, us-
ing absorbance reading at 260 nm at 80 ◦C.56 Again, this was
repeated 100 times for each f and gives us an estimate of the
uncertainty over the calculated parameters. Therefore, the final
results shown here are the averages over these minimizations. All
those steps were carried out independently for each LS salt con-
centration.

2.7 Validation

For a validation set we collected 25 sequences and their melting
temperatures at low and medium salt concentrations and various
species concentrations from Refs. 43,59–65, which are shown in
supplementary Tab. S13.

3 Results

3.1 Logarithmic groups

The available LS melting temperatures are scattered over a wide
range of strand concentrations Ct . Here, we will attempt to group
these temperatures according to a logarithmic grouping scheme
described in section 2.4.2. The first question we need to address
is how this logarithmic grouping impacts the parameter optimiza-
tion and what is best the coarseness factor f . If f is too small, the
melting temperatures are separated into very few large groups, if
it is too large they end up scattered into many sparsely populated
groups. To answer this question, we performed all minimization
independently for f ranging between 0.4 and 5.0, see Tab. 1 and
supplementary tables S9–S12.

In Fig. 2 we show the final merit function χ2 that was min-
imized during rounds MR1, MR2 and LS-EU for the UN (blue
circles) and T/I minimization (red boxes). Both show the same
behaviour as function of f . χ2 levels off after f = 2 and there is
little difference between 3 and 5. The regression coefficients, a0,1,
Eq. (7), for f = 1 and 5 are shown in Fig. 3. See Figs. S1— S14. At
f = 1, both a0 and a1 show a relatively uniform behaviour for all
salt concentrations, with a1 increasing slightly with L f . However,
for the larger f = 5 this uniformity is lost due to the low number
of melting temperatures in some L f groups. This is especially ev-
ident for the lowest salt concentration 71 mM, see also the first
column in supplementary table S9.

In Fig. 4 we show the Morse potentials for three f factors,
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Fig. 2 Final merit function χ2/N f as a function of the grouping coarseness
factor f for [Na+] 121 mM. Red boxes and blue circles represent T/I and
UN optimizations, respectively.
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(blue diamonds) and 621 mM (black triangles).
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Fig. 4 Morse potentials averaged over all f (black squares) for (a) in-
ternal and (b) terminal base pairs. The error bars represent the standard
deviation within the f sets. Specific results for f = 0.4,1,5 are shown in
green, red and blue, respectively.

namely 0.4 (3 groups), 1.0 (5 groups) and 5.0 (21 to 24 groups,
depending on salt concentration). Comparatively we also show
the Morse average over the results for all calculated f factors.
The standard deviation within the sets is marginally small with
f = 5 showing the most pronounced deviation from the average
(5 meV). Moreover, for the stacking parameters the higher devia-
tion occurs for the nearest-neighbour UApAU and the rest remain
nearly equal within the average. We also compute the average
for the stacking potentials which is shown in the Fig. 5. Even dis-
playing more unstable regression parameters, higher values of f
still derive parameters consistent within the set and with previous
works51 and on the average producing similar results.

Finally, to answer the question of the most adequate coarseness
factor f , it would seem that balancing a low merit factor χ2 with
uniform regression coefficients a0,1 points toward an f around 1.
It is desirable to deal with monotonic regression coefficients as
they allow us to interpolate new coefficient for missing salt con-
centrations which is not possible for large f . On the other hand,
for the optimized parameters shown in Figs. 4 and 5, the actual
value of the coarseness factor f appears to be of little importance.
Therefore, for the remainder of this article we will discuss the re-
sults for f = 1, unless noted otherwise.

Since the T/I minimization has a substantially lower merit fac-
tor χ2 than the UN parameters, Fig. 2, there is a possibility of
overfitting for the T/I minimization due to the larger number of
parameters. To verify if overfitting may have occurred we apply
these parameters to the prediction of melting temperatures of an
independent validation set of sequences that was not used for the
optimization, see supplementary table S13. Using UN parame-
ters, for f = 1, we obtain 〈∆T 〉 = 2.04 ◦C and a χ2 = 217.76
◦C2. However, using the parameters derived from T/I minimiza-
tion, also for f = 1, we obtain an important reduction, 〈∆T 〉 =
1.68 ◦C and a χ2 = 143.68 ◦C2, which gives us confidence that
no overfitting occurred for T/I minimization.

3.2 Parameters at f = 1
In Fig. 6 we show the final average Morse potentials for f = 1.
For comparison, we also show previous salt-dependent results for
DNA from Ref. 52. The internal base pair Morse potentials are
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Fig. 5 Stacking potentials averaged over all f . Panels (a,b) show the
symmetric NN and panels (c,d) the non-symmetric NN. The error bars
represent the standard deviation within the f sets. Dashed lines are for
NNs with terminal base pairs.

always larger than for the internal base pairs, which is consistent
with our previous calculations for DNA which were calculated at
a very low strand concentration (2 µM). The major difference to
the DNA results is that we do not observe a reduced Morse po-
tential for terminal r(AU∗) at very low salt concentrations. There-
fore, it would seem that the hydrogen bonding of r(AU∗) is less
susceptible to the sodium concentration. However, there is still
a considerable difference between internal r(AU) and terminal
r(AU∗) Morse potentials which makes the terminal base pairs
even more vulnerable to end-fraying. The Morse potentials of
internal r(AU) base pairs are consistently higher than their d(AT)
counterparts, confirming our previous findings for high sodium
concentrations41.

For r(CG∗) Morse potentials we found similar values to r(CG)
which at very low and low salt concentrations which is not ob-
served for their DNA analogs. In other words, RNA appears to
be less susceptible to end-fraying than DNA at low salt concentra-
tions. We attribute the shift towards higher Morse potentials for
HS in Fig. 6 to the substantial difference between the LS and HS
datasets, as described in the methods sections.

The calculated stacking parameters are shown in Fig. 7,
grouped into symmetric and asymmetric NNs. Note that not all
combinations of NNs with terminal base pairs were present in
the dataset, therefore not all terminal analogues of internal NNs
could be calculated. Except for UApAU NNs, most stacking inter-
actions show little change with salt concentrations. Similarly, our
previous results for DNA have shown little dependence of stack-
ing with sodium except for AT∗pAT, TApAT∗ and ATpGC∗.52
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4 Discussion
Due to the non-linear Hamiltonian, Eq. (1), it is not straightfor-
ward to visualize how the Morse and stacking potentials will af-
fect the opening of the base pairs. For this, we use the average
displacement profiles using Eq. (3), that is the 〈ym〉 where m is
the base pair index. The average displacements indicates which
base pairs are likely open first at a given temperature and can
be qualitatively related to the to the root-mean-squared distance
(RMSD) or root-mean-squared fluctuation (RMSF) used in MD
and coarse-grained simulations.66

In Fig. 8a we show the average opening for the sequence used
in coarse-grained calculations reported in Refs. 37,67. Similarly
to the coarse-grained calculations37 we observe larger fluctua-
tions at the terminal base pairs which increase up to intermedi-
ate salt concentrations. However, for higher salt concentrations
we observe a saturation and even a substantial drop in 〈ym〉 at
1021 mM [Na+]. This saturation between 121 and 621 mM is
better seen in Fig. 8b where we show 〈ym〉 as a function of sodium
concentration for three locations in the sequence. It is unclear if
the reduction of 〈ym〉 at HS is due to the large difference between
the melting temperature datasets, but nevertheless it does not
support the continuous increase in RMSF with salt concentration
calculated by Jin et al. 37 . The terminal 5′ shows a considerable
wider opening than the 3′ end, see Fig. 8b. This is dissimilar to
the calculations by Jin et al. 37 , yet consistent with results from
O’Toole et al. 68 .

In Fig. 9 we show an example for sequence II from Ref. 44,
comparing RNA to the equivalent DNA sequence at 121 mM
[Na+]. The calculation temperature in this case was 180 K, which
has no relation to the melting temperature correlation of Eqs. (7)
and (8). Fig. 9 shows that for internal base pairs, 〈ym〉 is some-
what larger at the r(AU) tract than the equivalent d(AT) tract,
despite the larger r(AU) Morse potential. The reason for this is
that the internal 〈ym〉 is pushed up by the terminal r(CG*), which
illustrates the cooperativity of the base pairs at the termini affects
the internal base pairs as well. In the specific case of sequence II
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from Snoussi and Leroy 44 , their NMR measurements indicated a
shorter r(AU) lifetime than for d(AT), which would be consistent
with a larger displacement for r(AU) seen in Fig. 9. On the other
hand, contrary to their results, we observe larger base-fraying for
r(CG*) which can be understood from the larger difference be-
tween internal and terminal Morse potentials for CG at this salt
concentration.

5 Conclusions
We introduce a new technique to parametrise the PB model at
multiple strand concentrations by the use of a logarithmic groups.
The resulting parameters show little dependence on the coarse-
ness of the grouping which evidences that this technique is ro-
bust, and enabled us to make use of a large salt dependent RNA
melting temperature dataset. We calculated new salt dependent
PB parameters, including specific parameters for the sequence ter-
minals. Unlike d(AT), the Morse potentials for r(AU), which are
related to hydrogen bonding, showed no important reduction at
low sodium concentrations. Most stacking interactions show lit-
tle change with salt concentration, however for some terminal
contexts stronger stacking interactions were found, similar to our
previous study for DNA.52
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