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Abstract

Weak ampholytes are ubiquitous in nature and commonly found in artificial pH-

responsive systems. However, our limited understanding of their ionisation response

and the lack of predictive capabilities hinder the bottom-up design of such systems.

Here, we used a coarse-grained model of a flexible polymer with weakly ionisable

monomer units to quantitatively analyse the ionisation behaviour of two oligopeptides.

Differences in ionisation response between oligopeptides and monomeric amino acids

showed that electrostatic interactions between weak acid and base side chains play a

key role in oligopeptide ionisation, as predicted by our model. Moreover, by comparing

our simulations with experimental results from potentiometric titration, capillary zone

electrophoresis and NMR, we demonstrated that our model reliably predicts the ionisa-

tion response and electrophoretic mobilities of various peptide sequences. Ultimately,

our model is the first step towards using predictive bottom-up design of responsive

ampholytes to tailor their properties as a function of charge and pH.
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Introduction

The ionisation behaviour of molecules with multiple titratable groups is very different from

that of low-molecular weak acids or bases. For acids with few titratable groups (e.g., oxalic

acid or phosphoric acid), different pKA values can be assigned to each ionisation state because

the titration curve contains several distinct inflection points. In contrast, titration curves

of synthetic polymers, such as poly(acrylic) acid, vary smoothly across a broad range of

pH, thus making it impossible to assign a specific pKA to each state. A molecule with n

different ionisable groups has 2n distinct ionisation states. At a rather small n, this number

of states becomes too large. In addition, electrostatic interactions between ionised groups

affect the overall ionisation response in a complicated manner.1–6 The general notion is

that repulsion between like-charged groups suppresses ionisation, while attraction between

oppositely charged groups enhances ionisation. The net result depends on the pKA of each

individual group and on their distribution in space. This electrostatic effect on the ionisation

should be distinguished from the effect of replacing local substituents upon formation of the

peptide bond, which conditions the pKA by affecting the electron density in neighbouring

chemical bonds.

Changes in pH can be used to control enzyme activity or protein aggregation,7,8 to trigger

the release of anti-cancer drugs9 or to control protein sequestration in polyelectrolyte brushes,

gels and complexes,10–12 as shown by the rapid development of pH-responsive materials,

and their applications.13 However, the ionisation behaviour of these systems remains poorly

understood and therefore is often interpreted only qualitatively, based on the pKA of their

parent monomers. Accordingly, quantitative studies or predictions are either very scarce or

nonexistent.

Computational models based on the Poisson-Boltzmann approach have explained the

effect of these interactions on charge regulation in various proteins and peptides with rigid

secondary and tertiary structures.14–19 However, their conformational flexibility has been

neglected because it does not significantly affect the ionisation of these rigid proteins and
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peptides. In addition, their ionisation has been rarely studied in a broad range of pH, far

from the isoelectric point, because it is usually not relevant for their biological function.

Nevertheless, recent advances in the synthesis of polyampholytes, polyzwitterions20–23 and

polyampholyte gels24,25 have underscored the need to further understand their behaviour in

the whole range of pH and ionisation states, particularly for peptide-based pH-responsive

materials26,27 and for therapeutic peptides used in biomedical applications.28

Computer simulations using coarse-grained models can account for ionisation-conformation

coupling, which plays a key role in long flexible polymers. Similar models have helped us

understand the ionisation of synthetic polymers.3,29–32 Yet, despite the simplicity of these

models, comparisons with experimental results have been surprisingly quantitative,29,33–35

thus suggesting that they correctly capture the most important effects. The challenge is to

assess whether such simulations, using suitably designed coarse-grained models, are able to

predict the ionisation of molecules more complex than long homopolymer chains.

To answer this question, we used two short oligopeptides with weak acid and weak base

side-chains as a model system with a complex ionisation response in which acid and base

groups mutually influence each other. The importance of coupling charge distribution and

conformation in intrinsically disordered proteins has been previously demonstrated in both

simulations and experiments,36–39 albeit disregarding their ionisation response. Conversely,

our model considers the ionisation response of short oligopeptides and its relation to molec-

ular geometry and conformation, presumably for the first time. By using similar but simpler

peptides as a model system, we can easily design ampholytes with a well-defined sequence

and with sufficient purity, which allows us to choose suitable combinations of pKA values.40

Ultimately, modeling short peptides paves the way towards more complex biomolecules,

such as intrinsically disordered proteins, and engineering pH-responsive materials, including

therapeutic peptides, for a wide range of applications.28,36,40,41

The ionisation response of acid and base groups can be described by the following reac-
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tions:

HA −−⇀↽−− A− + H+ (1)

BH+ −−⇀↽−− B + H+ (2)

where A and B stands for the weak acid or base group, while A– and BH+ represent their

ionised forms. In the ideal case (in the absence of interactions), the degree of ionisation, α, of

each ionisable group depends only on the difference pH−pKA via the Henderson-Hasselbalch

equation (ideal titration curve):

pH− pKacid
A = log10

α

1− α , pH− pKbase
A = log10

1− α
α

(3)

where pKacid
A and pKbase

A are the acidity constants of the acid and base groups, respectively.29

The total charge of the peptide at a given pH is then given by

z(pH) =
∑
i

niαi(pH)zi (4)

where ni is the number of groups of type i in the peptide, αi is their average degree of

ionisation, and zi = ±1 is their charge in the ionised state. If ∆pKA = pKbase
A − pKacid

A is

large, then the peptide responds to a change in pH by varying the charge of one group or the

other. If the ∆pKA is small, then the peptide responds to a change in pH by simultaneously

varying the charge of both groups.

To assess the effect of ∆pKA, we composed model peptides consisting of two blocks: Five

amino acids with weak acid side chains and five with weak base side chains (see Fig. 1). The

Glu5 − His5 peptide has pKacid
A = 4.25, pKbase

A = 6.00 and a small ∆pKA = 1.75. The

Lys5 − Asp5 peptide has pKacid
A = 3.65, pKbase

A = 10.53, and a large ∆pKA = 6.88. Both

termini on each peptide were protected to ensure that the ionisation response is not affected

by free carboxyl and amino groups. The reported pKA values correspond to side-chains of
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free amino acids, with slightly different values reported in the literature.42,43 Furthermore,

these values can also change when the amino acid is incorporated into the peptide bond.
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Figure 1: Chemical structure of the real peptides and a schematic representation of the
coarse-grained bead-spring model consisting of A, B and C beads.

Results and discussion

To represent the peptides in a simulation, we created a simple bead-spring model, shown

in Fig. 1, derived from the well established Kremer-Grest polymer model.29,44 Each amino

acid is represented by one central bead C for the backbone and one side-chain bead A or

B for the acid or base group. All beads have the same size and are connected by harmonic

springs. Distances between ionisable groups are crucial to quantify the ionisation response.

Therefore, we used all-atom simulations to determine the distances rAC, rBC, rCC in our

model. The beads are neutral in the non-ionised state and carry an elementary charge in

the ionised state (±1e for acid or base, respectively). To account for the ionisation response,

we simulated the ionisation reactions (Eq. 1 and 2) in the constant-pH ensemble, using the

pKA of side-chains of the corresponding free amino acids.

The simulations predict a significantly lower charge of the model peptides, in comparison

to the free amino acids, as shown in Fig. 2. The weak acid and weak base groups in our

model have identical interaction parameters, except for pKA and geometry (bond lengths
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Figure 2: Simulation predictions of the total charge of the Glu5 − His5 and Lys5 − Asp5
peptides (data points), Compared with the respective ideal titration curves obtained from
Eq. 3 using pKA values of free amino acids (solid lines).

rAC, rBC). Therefore, the isoelectric point derived from simulations is very close to the

ideal value pIsim ≈ pIideal = (pKacid
A + pKbase

A )/2. The two distinct inflection points in the

ionisation of Lys5−Asp5 indicate that the two blocks change their ionisation in different pH

ranges because of the large ∆pKA. Conversely, the ionisation of Glu5 − His5 lacks a clear

inflection point and is nearly linear across a broad range of pH, indicating that the ionisation

of the acid and base blocks varies simultaneously because the ∆pKA is much smaller. Thus,

the following question emerges: To what extent does such a simple simulation model predict

the behaviour of real ampholytes if it accounts only for the pKA values of the amino acids,

disregarding all chemical complexity, which should be essential for biological functions?

To answer this question, we followed the charge of the peptides using several indepen-

dent experiments: capillary zone electrophoresis (CZE), potentiometric titration and NMR.

In principle, these measurements yield quantities proportional to the charge or degree of

ionisation. In practice, each method has its own limitations and pitfalls, which hinder quan-

titative analysis.
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In CZE, we directly measure the effective electrophoretic mobility

µ(pH) = v(pH)
E

≈ ez(pH)
6πηRH

(5)

where v is the velocity of charged particle moving in an electric field E. The relation

between µ, charge on the peptide z, its hydrodynamic radius, RH, and solvent viscosity, η, is

only approximate because electrophoretic mobility yields the effective charge, which is lower

than the bare charge.45–47 Nevertheless, CZE yields the exact isoelectric point, defined by

µ(pI) = 0. We estimated the bare charge on the peptides by observing that RH of both

peptides was virtually independent of pH and then renormalising the mobility µ(pH) by the

maximum absolute mobility µmax(pHmax), and by the charge zsim(pHmax) determined from

the simulations (see ESI, Section 2.2.2).

To complement the CZE with an independent experiment, we performed potentiometric

titration of peptides in 10 mM HCl titrated by 10 mM NaOH. Using the electroneutrality

condition, we determined the charge on the peptide from the known volume of HCl and

amount of added NaOH and from the measured pH. In principle, the potentiometric titration

should yield the absolute value of z. In practice, each peptide sample contained a slight

excess of TFA counterions that shifted the apparent z(pH) to lower values. To correct

for the unknown amount of TFA, we used it as an adjustable parameter to match the pI

determined from CZE (see ESI, Section 2.3.2).

Lastly, we used the NMR chemical shifts to determine the degree of ionisation of each

type of amino acid, averaged over amino acids of the same type in the peptide, and calculated

charge on the peptide using Eq. 4 (see ESI, Section 2.4.2). Unlike the other two methods,

determination of the degree of ionisation from NMR did not require additional independent

inputs.

Despite the simplicity of the model, the simulations agree with all experiments (NMR,

CZE and potentiometric titration) in a broad range of pH, as shown in Fig. 3(a,b). All ap-
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Figure 3: Panels (a) and (b): Total charge on the peptides as a function of pH from
ideal titration curve, simulations, NMR, potentiometric titration and capillary zone elec-
trophoresis (CZE). The gray vertical line indicates the ideal isoelectric point whereas the
red vertical line indicates the isoelectric point determined from CZE. Panels (c) and (d):
Differences between the determined charge on the peptide and the ideal titration curve as
a function of pH− pI.

proaches yield titration curves with similar shapes, clearly deviating from the ideal titration

curve. To better visualise these deviations, we plotted the difference from the ideal curve

as a function of pH− pI, using pIideal for the ideal curve, pIsim ≈ pIideal for the simulations,

and pIcze for all experimental data. The use of different pI values eliminates the uncertainty

in choosing the right pKA values as input parameters for the ideal titration curve and for

the simulations. Generally, the NMR results almost coincide with CZE. For Glu5 − His5

the simulations quantitatively match CZE at pH < pI, while the titration data deviate

slightly more from the ideal curve, as shown in Fig. 3c. At pH > pI, the difference between
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simulation and CZE is slightly larger than between CZE and titration. Nevertheless, the

deviations of all three curves from the ideal curve have the same trend and a similar magni-

tude. Eventually, at high pH, the titration yields nonphysical values of ztitration < −|zmax|,

caused by the numerical instability of the calculation of ztitration(pH) using Eq. 8 due to its

sensitivity to temperature and to the precision of the pH measurement, as indicated by the

broad error band. For Lys5−Asp5, the simulation results very closely follow the CZE in the

whole pH range, except pH ≈ pI, as shown in Fig. 3d. Around pI, both CZE and titration

exhibit an undulation that is not captured by the simulation. The titration agrees well with

both simulation and CZE at pH < 10 but then follows a different trend from the other

two methods. This difference can also be ascribed to numerical difficulties in calculating

ztitration(pH & 10) using Eq. 8. Considering the whole pH range, we conclude that, despite

some minor discrepancies, all three methods consistently depict the ionisation response of

both peptides. This demonstrates that the dominant contribution to non-ideal ionisation of

weak ampholytes originates from electrostatic interactions.

2 4 6 8 10 12
pH

0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 o

f i
on

iza
tio

n

Glu: Ideal
Glu: Simulation
Glu: NMR

His: Ideal
His: Simulation
His: NMR

(a) Glu5 −His5

2 4 6 8 10 12
pH

0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 o

f i
on

iza
tio

n

Lys: Ideal
Lys: Simulation
Lys: NMR

Asp: Ideal
Asp: Simulation
Asp: NMR

(b) Lys5 −Asp5

Figure 4: The degree of ionisation of acid and base groups on the Glu5 −His5 and Lys5 −
Asp5 peptides from simulations, NMR measurements and ideal titration curves. Red
and grey vertical lines represent the isoelectric point determined from CZE and from
the simulations. Shaded areas indicate the spread of 5 NMR signals corresponding to 5
amino acids of the same type.
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It is tempting to explain the lower charge on the peptide in Fig. 2 by the like-charge

repulsion within the weak acid and weak base block, in analogy to the ionisation response

of polyacid or polybase homopolymers.48 However, a closer look at ionisation of acid and

base blocks in Fig. 4 suggests otherwise. In both cases, the peptide is fully ionised at the

isoelectric point, although its total charge is zero. In Lys5−Asp5 (Fig. 4b), ionisation within

each block is higher than the expected ideal behaviour. The fully ionised oppositely charged

block enhances the ionisation and overrides the effect of like-charge repulsion within the

partly ionised block. Thus, even though the ionisation of each block of Lys5 − Asp5 varies

in a different pH range, the two blocks strongly affect each other. In Glu5 − His5 (Fig. 4a),

ionisation within the base block is suppressed at pH < pI but enhanced at pH > pI, and

the opposite holds true for the acid block. This demonstrates that the small ∆pKA enables

both blocks to interact strongly, whilst simultaneously affecting each other’s ionisation. The

simulated average degree of ionisation of individual amino acids in Fig. 4 matches the degree

of ionisation determined by NMR. Generally, the NMR curves adopt the same shape as

the simulated curves, but some of them are shifted towards higher pH. These shifts can be

attributed to using pKA of free amino acids in the model, which does not account for the

change in pKA when the amino acid is incorporated into the peptide. The values of these

shifts are not known a priori but can be qualitatively assessed based on the amino acid

structure, that is, the shift should decrease with the increase in the distance between the

charged group on the side chain and the peptide bond. More specifically, we expect a small

shift in Lys, larger shifts in Glu and His and the largest shift in Asp. Accordingly, both

NMR curves of Glu5 − His5 are shifted towards higher pH in comparison to simulations,

suggesting a similar shift in the pKA values of Glu and His. In the case of Lys5−Asp5, only

the Asp curve is shifted, while the Lys curves almost overlap, suggesting that the pKA of

Asp is affected by its incorporation into the peptide, while Lys remains almost unaffected.

These effects may also explain the difference between pI calculated from simulations and

CZE. To test this hypothesis, we ran a new set of simulations, increasing the pKA of Glu
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and His by ∆pI of Glu5−His5 and the pKA of Asp by 2∆pI of Lys5−Asp5 so that the pI of

the new simulations would match the pI of CZE. Simulations using the modified pKA values

almost perfectly match the NMR results for each individual amino acid, as shown in Fig. S18.

Thus, the NMR results confirm that the simulations quantitatively capture the deformation

of titration curves and support the hypothesis that this deformation is primarily caused by

electrostatic interactions between charged groups, while the incorporation of amino acids

into the peptide slightly increases their pKA values in comparison to free amino acids.

NMR spectroscopy provides local information on the atomic structure and, in principle,

on the degree of ionisation of each individual amino acid, as long as its signal can be resolved

in the spectrum. Thus, NMR chemical shifts reflect not only the degree of ionisation but

also other changes in the local environment, e.g., due to conformational changes. Specific

carbon atoms have been selected according to the literature as good reporters of ionisation,

based on previous studies on proteins.49 However, we did not always observe 5 peaks, as

expected for 5 amino acids (see ESI, Section 2.4.2). Therefore, we used the centre of mass of

the NMR peaks corresponding to the same carbon atoms within the amino acid to determine

the average degree of ionisation of amino acids of the same type. Thus, NMR appears to be

the best method for determining local ionisation because its only limitation is the need to

resolve individual peaks in the spectrum of a peptide composed of nearly equivalent amino

acids.

Conclusion

By combining coarse-grained simulations with several experimental methods, we were able

to quantitatively analyse the pH-controlled ionisation of two model peptides. The large

∆pKA of the Lys5 − Asp5 peptide results in a titration curve with two inflection points,

each corresponding to ionisation changes within one of the blocks. In contrast, the small

∆pKA of the Glu5 − His5 peptide results in an almost linear titration curve in a broad pH
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range around the isoelectric point, indicating simultaneous changes in the ionisation of both

blocks. We predicted the ionisation response of both peptides using a simple coarse-grained

model which only accounts for basic aspects of molecular geometry and for electrostatic in-

teractions, using pKA of free amino acids as input parameters. Our simulation predictions

agreed with the experimentally determined charge of the peptides, thus suggesting that their

ionisation response is predominantly controlled by electrostatic interactions. Capillary zone

electrophoresis yielded the isoelectric point but required renormalisation using the simula-

tion results as the input. Potentiometric titration yielded a systematically shifted absolute

charge due to the presence of other ions, thus requiring independently determining the iso-

electric point to yield the actual charge of the peptide, and even then the determination

was unreliable at high pH. Lastly, NMR provided detailed information about the ionisation

of individual acid and base groups and allowed us to estimate how the pKA of each amino

acid was affected by its incorporation into the peptide. Thus, our results suggest a novel

route to bottom-up engineering the ionisation response of peptides and weak ampholytes

by choosing suitable pKA values of the side-chains and by optimising the sequence using

numerical simulations. These simulations can be completed within a few hours of computer

time (see ESI, Section 1.4). As a result, this modeling is considerably less expensive than

experiments. Although a more refined model would be needed for modeling more compli-

cated peptide sequences or disordered proteins, such models have been previously designed,

accounting for hydrophobicity, hydrogen bonding and other effects. Therefore, our results

provide the missing piece of the puzzle by showing that the ionisation-conformation coupling

can be modeled quantitatively. Thanks to these developments, our coarse-grained modeling

may become a key predictive tool in the design of peptides and ampholytes with tunable

ionisation.
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Methods

Full details of all simulations and experiments, including the data analysis and simula-

tion/experimental protocol are provided in supporting information (ESI).

Simulations

Coarse-grained simulations

The simulation contained 10 peptide chains and 100 additional salt ion pairs to keep the

ionic strength approximately constant. The box length L = 25.513 nm was chosen to match

the concentrations used in the titration experiments. We used the full Coulomb potential to

account for electrostatic interactions, the WCA potential for steric interactions, the harmonic

potential for connections between particles, with no restrictions on bond angles or dihedrals.

We performed a Langevin dynamics simulation in implicit solvent, using the constant-pH

ensemble to account for the ionisation reactions (Eq. 1 and 2).29,50 pKA and pH were input

parameters, while degree of ionisation was the output of the simulation. The reaction was

implemented as a Monte Carlo procedure, changing the state from non-ionised to ionised

in the forward direction of the reaction, or vice versa in the reverse direction.29,50 In both

reactions, H+ was inserted or deleted at a random position in the system, and the new state

was accepted with the probability29,50

P ξ
acc = min[1, exp(−β∆Uon + ξ(pH− pKA) ln(10))] (6)

where β = 1/kBT , ∆Uon = Un − Uo is the energy difference between the new state (n) and

the old state (o), and ξ = ±1 for the forward or reverse direction of the reaction.
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All-atom simulations

Equilibrium bond lengths for the CG model, rCC, rAC and rBC were determined using all-

atom (AA) molecular dynamics (MD) simulations of amino acid tetramers Glu4, His4, Lys4

and Asp4, with fully ionised side chains and protective groups on the C and N -ends. They

were solvated by water and neutralised by Cl– and Na+ ions, with additional Na+ and

Cl– ions to fix the ionic strength. The use of tetramers allowed us to assess whether these

distances were affected by position of the amino acid in the sequence: N -terminus, middle,

C-terminus.

Experiments

Capillary zone electrophoresis (CZE)

Samples for CZE with the concentration of the peptide chains c = 0.1 mM, equivalent to

the concentration of the monomeric units [Glu] = [His] = [Asp] = [Lys] = 0.5 mM, were

prepared by dissolving the peptide directly in running buffers, specified in ESI, Table S5. We

determined RH using the Diffusion Ordered spectroscopy (DOSY) NMR (ESI, Section 2.4.3),

showing that RH is almost constant throughout the pH range in both peptides. This allowed

us to eliminate RH from the function µ(pH) and to determine the charge on the peptides

using the maximum mobility, µmax, measured at pHmax. If the peptide was fully ionized at

pHmax, this approach should re-scale the electrophoretic mobilities to yield the bare charge

because the factors relating bare and effective charge cancel each other. Unfortunately, we

were able to measure CZE only in a limited range, preventing us from reliably assuming full

ionisation at pHmax. We corrected for this limitation by renormalising µmax(pHmax) by the

peptide charge determined from our simulations, zsim(pHmax + ∆pI) (ESI Section 2.2.2 for

full details of data analysis)

zcze(pH) = µ(pH− pIcze)
µmax(pHmax) zsim(pHmax + ∆pI) (7)
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where ∆pI = pIcze − pIsim is the difference between isoelectric points determined from CZE

and from the simulations.

Potentiometric titration

The peptides were dissolved in 0.01 M standardised HCl to prepare solutions to a final

concentrations of monomeric units: [Glu] = [His] = [Asp] = [Lys] = 5 mM. Sample volumes

of approximately 2 ml were weighed to determine the precise amount and then titrated with

standardised 0.01 M NaOH. The charge on the peptide was calculated from the pH and from

the known volumes of HCl and NaOH

ztitration = (VHCl((cH − cOH) + cHCl)− VNaOH(cH − cOH + cNaOH))
(cpeptideVNaOH) − xTFA (8)

where c is the concentration, z is the charge on the peptide, and xTFA & 1 is the mole

fraction of trifluoroacetate (TFA) counterions contained in the peptide sample, relative to

the basic side chains on the peptide. To correct for the unknown value of xTFA, we used

it as an adjustable parameter to match the isoelectric point determined from CZE (ESI,

Section 2.3.2). The concentrations of H+ and OH– ions, used in Equation 8, were calculated

from the measured pH and pKw. Because pKw is sensitive to temperature, ztitration(pH)

from Eq. 8 was also sensitive to temperature and to the precision of the pH measurement,

yielding reliable results only at intermediate pH, 3 & pH & 11. We quantified the reliability

of ztitration(pH) by comparing titrations of peptide samples with blank titrations of HCl stock

solutions.

NMR

Samples for NMR were prepared by dissolving each peptide in 0.01 M HCl to a final concen-

tration of 15 gL−1 and by titrating the solutions with NaOH to adjust the pH to the desired

value. 2D NMR spectra, COSY and 1H-13C HSQC, (Fig. S16 and S17) at pH 2 were used
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for peak assignment. The degrees of ionisation were determined from the chemical shift of

specific atoms, which were identified in the literature as good reporters of ionisation

αbase(pH) = δmax − δ(pH)
δmax − δmin

, αacid(pH) = δ(pH)− δmin
δmax − δmin

(9)
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1 Simulations

1.1 Coarse Grained (CG) Simulations

1.1.1 Interaction Potentials

Bonds in the coarse-grained model were represented by the harmonic potential

Uh(r) = −kh

2 (r − b)2 (1)

with the stiffness constant kh = 400 kBTnm−1 common to all bonds. The bond stiffness

was chosen arbitrarily. We tested that different values of this parameter yield very similar

simulation results. The parameter b determines the equilibrium bond length. The bond

length between central beads was bCC = 0.382 nm for the all amino acid pairs. The bond

length between central and side chain beads was bAC = 0.435 nm for Glutamic acid, bAC =

0.329 nm for Aspartic acid, bBC = 0.452 nm for Histidine, and bBC = 0.558 nm for Lysine.

These values were determined from all-atom simulations described in Section1.2.

The short-range excluded volume interaction was modeled using the fully-repulsive Weeks-

Chandler-Andersen (WCA) potential between all bead pairs

UWCA(r) =


4ε
[(

σ
r

)12
−
(
σ
r

)6]
+ ε r ≤ rcut

0 r > rcut

(2)

where ε = 1 kBT , σ = 0.35 nm and rcut = 0.4 nm , which defines the effective particle size.

Electrostatic interaction between point charges i and j were represented by the Coulomb

potential:

Uij(r) = zizjkBT
lB
r

= 1
4πε0εr

zizje
2

r
(3)

where z is the valency, e is the elementary charge, ε0 is the permittivity of free space and εr

is the relative permittivity. We set the Bjerrum length to its approximate value in aqueous
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solutions at ambient temperature, lB ≈ 0.71 nm. Electrostatic interactions were calculated

using the P3M method, tuned to relative accuracy 0.001 using the tuning algorithm im-

plemented in the ESPResSo simulation software that we used for simulations of the CG

model.S1

1.1.2 Simulation Protocol and data analysis

All Simulations were performed using time step δt = 0.01τ , where τ = σ
√
m/ε. The particle

mass m is arbitrary and has no effect on the results. The system was kept at a constant

temperature T = 300 K via a Langevin thermostat with a damping constant γ = 1.0τ−1. The

duration of each simulation was 105 cycles, and each cycle consisted of 10 reaction moves

followed by 100 integration steps of the Langevin dynamics. First 20% of all cycles were

discarded as the equilibration. The remaining part was treated as production run and used

for analysis. The productive run typically produced approximately 103 uncorrelated samples

of peptide conformations measured by the autocorrelation time of the radius of gyration,

and twice the number of uncorrelated samples of the degree of ionisation. We used the

correlation-corrected error estimates to assess the statistical accuracy of our data.S2

1.2 All Atom (AA) Simulations

1.2.1 Simulation Model and Setup

We simulated the tetramers solvated with 4028 water molecules, neutralised by adding Cl−

and Na+ ions, with additional Na+ and Cl– ions to represent the added salt, which deter-

mined the ionic strength. In total, 11Cl− and 7Na+ ions were present for the Glu4 and Asp4,

while 7Cl− and 11Na+ ions were present for the His4 and Lys4. The system was simulated

in a cubic box with an edge length of L = 6.00 nm, yielding the salt concentration of 0.05 M.

Gromacs 2018.6 package was used for AA MD simulations.S3,S4
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(a) Glu4 (b) His4

(c) Asp4 (d) Lys4

Figure S1: Initial configurations of the peptides used in AA simulations. Labels mark the
atoms which we used to measure various intra-molecular distances.
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1.2.2 Interaction potentials

We used AMBER99sb-ILDN force filed for the peptide and TIP3P force field for the water

molecules. The LINCS algorithm was used to impose the constraints on the bond lengths.

The Particle Mesh Ewald (PME) method was used for long-range electrostatic interactions.

The Van der Waals interactions were truncated at 1.2 nm.

1.2.3 Simulation protocol and data analysis

We performed 5×104 energy minimisation steps using the steepest descent method to remove

high-energy contacts. After energy minimisation, we performed an [NV T ] run of 500 ps using

the velocity re-scaling algorithm at a temperature of T = 300 K with the thermostat coupling

constant τ = 0.1 ps. Last, we performed an [NPT ] run of 100 ns using Parrinello-Rahman

algorithm at pressure 1 bar with a pressure coupling constant τ = 2.0 ps. The integration

time step used was 2 fs for all simulations. The last 90 ns of the [NPT ] run were used for

production and data analysis.

1.3 Determination and validation of parameters for the CG model

To determine the bond lengths for the CG model of the peptides, we calculated the distribu-

tions of distances between the atoms of each tetramer from AA simulations. Furthermore,

we calculated additional distributions from AA simulations, which we compared to the cor-

responding distributions from CG simulations to verify the validity of our model. Lastly,

we determined the same set of distances from the peptide structures after simple energy

minimization using the Avogadro software.S5

Specifically, we calculated the distance distributions between CA atoms in the peptide

backbones from the AA simulations, which we then used to set the equilibrium bond length,

rCC between the C beads in the CG simulations. Subsequently, we calculated the distance

distributions between the CA atom in the peptide backbone and the charged atom in the

side chain. The charged atom was OE2 for Glu4, NE2 for His4, OD1 for Asp4 and NZ for
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Table S1: Average distance between the CA atoms on neighbouring amino acids in the AA
simulations; Distance between the same atoms determined using energy minimisation in the
Avogadro software; Average distance between the central beads in the CG simulations, rCC,
at the extreme pH values.

Peptide Acid distance [nm] Base distance [nm]
Amino acid Amino acid

Glu5 − His5 Glu (AA) 0.382± 0.004 His (AA) 0.382± 0.004
Glu (CG; pH = 1) 0.389± 0.016 His (CG; pH = 1) 0.388± 0.016
Glu (CG; pH = 13) 0.389± 0.016 His (CG; pH = 13) 0.388± 0.016
Glu (Avogadro) 0.388 His (Avogadro) 0.389

Lys5 − Asp5 Asp (AA) 0.382± 0.006 Lys (AA) 0.382± 0.006
Asp (CG; pH = 1) 0.389± 0.016 Lys (CG; pH = 1) 0.388± 0.016
Asp (CG; pH = 13) 0.389± 0.016 Lys (CG; pH = 13) 0.388± 0.016
Asp (Avogadro) 0.391 Lys (Avogadro) 0.389

Lys4, as indicated in Fig.S1. We used these distances to set the CG equilibrium bond lengths

between the C and A beads of the acidic side chains rAC, and between the C and B beads

of the basic side-chains, rBC. Furthermore, to verify the charge-charge distance predicted

from the CG simulations, we also calculated the distribution between the charged groups

on the nearest-neighbour and next-nearest-neighbour amino acid side chains, and compared

them between the AA and CG simulations. To verify whether any of the above distances

depend on pH, we used CG simulations at two extreme pH values: pH = 1 and pH = 13.

At pH = 1 the basic groups are fully charged, while the acidic groups are uncharged. These

results should match the AA simulations of the fully charged basic peptides. At pH = 13

this situation is reversed, and these results should match the AA simulations of the fully

charged acidic peptides.

1.3.1 Distances between the central beads.

Table S1 shows that the distances between CA atoms on the peptide backbone from AA

simulations were very well reproduced by the distances between the C beads in the CG
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(i) Lys (CG; pH = 13)

0.2 0.3 0.4 0.5 0.6 0.7
Distance [nm]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

C1-C2
C2-C3
C3-C4
Avarage

(j) Asp (AA)

0.2 0.3 0.4 0.5 0.6 0.7
Distance [nm]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

C1-C2
C2-C3
C3-C4
C4-C5
Avarage

(k) Asp (CG; pH = 1)
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Figure S2: Distribution of distances between CA atoms on neighbouring amino acids from
AA and CG simulations (the latter at the extreme pH values). The vertical line shows the
average distance after averaging over individual pairs. These average values are listed in
Table S1.
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models. The differences between AA and CG models within approx. 1% are well below the

statistical uncertainty. The distances measured using the Avogadro software agree very well

with all simulations. The distributions of distances in Fig. S2 reveal that all distributions

consist of a single peak. The AA distributions are very narrow, while the CG distributions

are slightly broader. However, the average distances from these distributions show no visible

dependence on the type of the amino acid, or on the pH.

1.3.2 Distances between central beads C and side-chain beads A or B.

Distances between the CA atoms on peptide backbone and the charged atoms on the re-

spective side chains show a similar trend to the distances between CA atoms. Table S2

reveals that the differences between the AA and CG simulations are slightly larger in Asp

and Lys, but they remain within the estimated statistical error; thus, we consider them

insignificant. Also the distances measured using the Avogadro software agree with all sim-

ulations, although the differences are slightly beyond the estimated statistical error of the

simulation data. Fig. S3 reveals that these differences could be attributed to a more complex

shape of the AA distributions, which was not fully reproduced by the CG simulations. This

could be attributed to cis-trans conformational transitions, hydrogen bonds, or other specific

interactions, which were not explicitly included in the CG model. Nevertheless, the average

values of the distances are reproduced within the statistical uncertainty of approx. 5%.
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Figure S3: Distribution of distances between the CA atoms and the charged group on
the amino acids from the AA and CG simulations (the latter at the extreme pH values).
The vertical line shows the average distance after averaging over individual pairs. These
average values are listed in Table S2.

S-10



Table S2: Average distance between the CA atoms and the charged group on the amino
acids in the AA simulations; Distance between the same atoms determined using energy
minimisation in the Avogadro software; Average distance between the central bead and the
A or B bead in the CG simulations, rAC and rBC, at the extreme pH values;

Peptide Acid distance [nm] Base distance [nm]
Amino acid Amino acid

Glu5 − His5 Glu (AA) 0.436± 0.044 His (AA) 0.453± 0.013
Glu (CG; pH = 1) 0.437± 0.018 His (CG; pH = 1) 0.454± 0.018
Glu (CG; pH = 13) 0.437± 0.018 His (CG; pH = 13) 0.454± 0.018
Glu (Avogadro) 0.453 His (Avogadro) 0.462

Lys5 − Asp5 Asp (AA) 0.327± 0.029 Lys (AA) 0.589± 0.042
Asp (CG; pH = 1) 0.356± 0.012 Lys (CG; pH = 1) 0.560± 0.018
Asp (CG; pH = 13) 0.356± 0.012 Lys (CG; pH = 13) 0.560± 0.018
Asp (Avogadro) 0.385 Lys (Avogadro) 0.639

1.3.3 Distances between the nearest-neighbour side-chain beads.

All previously discussed distances were used as inputs in constructing the CG model; there-

fore, as expected, the CG model reproduces well their values calculated from the AA simu-

lations. To verify the validity of the CG model, we compared the distributions of distances

between neighbouring charged groups on the peptides. The ability of the CG model to

reproduce these distances is crucial to quantitatively account for the effect of electrostatic

interactions within the peptide. Table S3 reveals that the average distances between the

nearest-neighbour charged groups are well reproduced, but the statistical uncertainty has

increased to approximately 10%. Interestingly, the distances determined from Avogadro rea-

sonably agree with the simulations. The average distances are weakly affected by the pH,

albeit still below the estimated statistical error. In contrast, the shape of the distributions

in Fig. S4 clearly depends on pH and on the type of the amino acid. For Glu and Lys, the

AA simulations yield a skewed distribution with a single peak; inc contrast, for His and Asp,

they yield a double-peak distribution. The CG simulations yield a single-peaked distribution
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Figure S4: Distribution of distances between charged group on neighbouring amino acids
from the AA and CG simulations (the latter at the extreme pH values). The vertical line
shows the average distance after averaging over individual pairs. These average values are
listed in Table S3.
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Table S3: Average distance between the charged group on the nearest-neighbour amino
acids in the AA simulations; Distance between the same atoms determined using energy
minimisation in the Avogadro software; Average distance between the A and the nearest-
neighbour A bead, or B and the nearest-neighbour B bead, in the CG simulations at the
extreme pH values.

Peptide Acid distance [nm] Base distance [nm]
Amino acid Amino acid

Glu5 − His5 Glu (AA) 0.92± 0.16 His (AA) 0.93± 0.18
Glu (CG; pH = 1) 0.80± 0.11 His (CG; pH = 1) 0.86± 0.11
Glu (CG; pH = 13) 0.84± 0.11 His (CG; pH = 13) 0.82± 0.12
Glu (Avogadro) 1.04 His (Avogadro) 0.91

Lys5 − Asp5 Asp (AA) 0.71± 0.14 Lys (AA) 1.19± 0.18
Asp (CG; pH = 1) 0.72± 0.09 Lys (CG; pH = 1) 0.97± 0.14
Asp (CG; pH = 13) 0.75± 0.16 Lys (CG; pH = 13) 0.92± 0.27
Asp (Avogadro) 0.93 Lys (Avogadro) 1.14

in all cases, but the width of this peak depends on the pH and on the type of the amino acid.

This difference between the CG and AA distributions can be again attributed to specific

details of the atomistic structure, which were not fully included in the CG simulations.

1.3.4 Distances between the next-nearest-neighbour side-chain beads.

Finally, we compared the distances between charged groups on next-nearest-neighbour amino

acids, measured in the AA and CG simulations. Table S4 reveals an even greater statistical

uncertainty of the average value, approx. 10–20%. Within the given uncertainty, the CG

and AA simulations still agree with each other. However, the distances depend on pH: the

distances measured in the uncharged state are systematically lower than those measure in

the charged state, although this difference is on the verge of the estimated statistical error.

The distances between from AA simulations are better matched by CG results at a pH which

corresponds to the charged state of the respective group.

This difference can be explained by the electrostatic repulsion between charged groups,
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Figure S5: Distribution of distances between charged group on next-nearest-neighbour
amino acids from the AA and CG simulations (the latter at the extreme pH values). The
vertical line shows the average distance after averaging over individual pairs. These average
values are listed in Table S4.
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Table S4: Average distance between the charged group on next-nearest-neighbour amino
acids in the AA simulations; Distance between the same atoms determined using energy
minimisation in the Avogadro software; Average distance between the A and next-nearest-
neighbour A beads, or B and next-nearest-neighbour B bead, in the CG simulations at the
extreme pH values.

Peptide Acid distance [nm] Base distance [nm]
Amino acid Amino acid

Glu5 − His5 Glu (AA) 1.03± 0.26 His (AA) 1.10± 0.24
Glu (CG; pH = 1) 0.97± 0.14 His (CG; pH = 1) 1.02± 0.14
Glu (CG; pH = 13) 1.03± 0.13 His (CG; pH = 13) 0.97± 0..14
Glu (Avogadro) 0.74 His (Avogadro) 0.73

Lys5 − Asp5 Asp (AA) 0.88± 0.21 Lys (AA) 1.21± 0.27
Asp (CG; pH = 1) 0.89± 0.12 Lys (CG; pH = 1) 1.09± 0.16
Asp (CG; pH = 13) 0.94± 0.12 Lys (CG; pH = 13) 1.04± 0.16
Asp (Avogadro) 0.74 Lys (Avogadro) 0.73

which is absent in the neutral state. Furthermore, we observe that the structures obtained

by energy minimisation using the Avogadro software yield significantly lower average dis-

tances than any of the simulation models. The distributions from AA simulations in Fig. S5

are all single-peaked and rather broad, while the distributions from CG simulations are

narrower and more symmetric. Moreover, the next-nearest-neighbour distances are only

slightly greater than the nearest-neighbour distances, demonstrating that the side chains

prefer the trans conformation. In turn, the role of chain flexibility is demonstrated by the

next-nearest-neighbour distances, which are significantly greater than the distances in all-

trans conformations determined from Avogadro. Earlier on, we tested a simpler model in

which each amino acid was represented by just one bead. This one-bead model was able to

reproduce the nearest-neighbour distances, while yielding next-nearest-neighbour distances

approximately twice as large as the nearest-neighbour distances. The two-bead model can

approximate well these two distances. They are crucial to account for the electrostatic ef-

fect on the ionization of peptides, which suggests that the two-bead model is suited for

S-15



quantitative predictions of this effect.

1.4 Computational demands and costs

Various simulations described above dramatically differ in computational demands. Our CG

simulations typically required approximately 5 hours of computer run time on a single CPU

core for each data point of the titration curve. Thus, one titration curve with 20 data points

could be obtained within approximately 100 CPU core-hours. Because all these simulations

were independent, they could be run simultaneously on different CPUs, thereby making it

possible to obtain the full titration curve within a few hours when run on a small computer

cluster.

In contrast, the AA simulations of 100 ns required approximately 5 days on 8 CPU cores,

equivalent to approximately 1000 CPU core-hours. However, running one simulation per

amino acid was enough to obtain the desired parameters of the CG model. When considering

more complicated peptide sequences, it may be necessary to perform such an AA simulation

for each pair of amino acids. Thus, running the AA simulations to parametrise the CG model

is much more demanding than obtaining the whole titration curve from CG simulations,

although the former can be considered a moderate computational demand. In addition,

energy minimisation provides a much cheaper and faster way of estimating bond lengths for

the CG model. This process is completed within several seconds on a desktop PC, providing

parameter values for the amino acids studied here similar to those determined by expensive

simulations. Because the energy minimisation could fail for other structures, its predictions

should always be verified using an all-atom simulation.

Thus, parametrisation of the model can be completed within one week and, once the

model parameters are available, titration curves of various peptide sequences can be ob-

tained within hours. The economic cost of the simulations could be estimated by noting

the commercial prices, approximately 0.05 EUR per CPU core-hour. Hence, we estimate

the cost of parameterising one amino acid for the CG model as 50 EUR, and the cost of
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predicting one titration curve from the CG model as 5 EUR. The above costs include direct

and indirect costs of computer time, but they do not include the cost of several person-hours

needed for running the simulations and analysing the results.

The cost of performing the simulations should be compared to the cost of purchasing

100 mg of one custom-synthesized peptide, approximately 400 EUR. Thus, merely purchas-

ing the sample to start the experiments is more costly than parametrising the model and

obtaining the CG simulation results. Thus, the experimental quantification of the ionisation

response is much more expensive than the simulations due to additional instrument time

and personnel costs required to perform the experiments.

Notably, the above cost estimation assumes that the required protocols for running the

simulations, performing the experiments and analysing the results are readily available and

that all steps can be performed routinely. It does not include the costs and effort needed to

establish these protocols.

2 Experiments

2.1 Materials

The following peptides with acetyl and amide terminal groups and trifluoroacetate (TFA)

as counterion were purchased from Biomatik LLC, Wilmington, Delaware, USA: Ac-E5-H5-

NH2 (Glu5−His5;M = 1390.33 g/mol; lot number P180808-DG671108 97.16% HPLC purity

for CZE and lot number P190902-LL671108 97.54% HPLC purity for potentiometric titra-

tions and NMR); Ac-K5-D5-NH2 (Lys5 − Asp5; M = 1275.36 g/mol; lot number P180711-

JQ665893 95.83% HPLC purity for CZE and lot number P190816-LC665893 96.99% HPLC

purity for titrations and NMR). All peptides were purified, and HPLC and MS spectra were

measured for all peptide sequences.

The buffers used for CZE experiments were prepared by mixing of weak acid with strong

base (pH less than 7) and by mixing of strong acid with weak base (pH more than 7).
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Compositions of the used buffers are specified in Table S5.

Standardised solutions of HCl and NaOH from Carl Roth GmbH (Karslruhe, Germany)

were used to prepare 0.1 M stock solutions, which were subsequently diluted to 0.01 M. To

prevent contamination by CO2, the standardised solutions were kept under soda lime at least

24 hours before the measurements.

Deuterium oxide 99.8 % purity with a trace of 3-(trimethylsilyl)-1-propanesulfonic acid

sodium salt (DSS) of 97 % purity from Sigma-Aldrich was used for field-frequency lock.

2.2 Capillary Zone Electrophoresis experiments (CZE)

2.2.1 Instrumentation and experimental protocol

All CZE experiments were performed using Agilent 7100 capillary electrophoresis equip-

ment operated under ChemStation software (Agilent Technologies, Waldbronn, Germany).

Detection was performed with the built-in diode array detector (DAD). Fused fluorocar-

bon capillaries (50 µm i.d., 375 µm o.d.) by Agilent Technologies with a total length

of 50 cm and effective length to the DAD detector of 41.5 cm were used to perform the

experiments. Before the first use, each new capillary was flushed with 0.1 M sodium hy-

droxide from Agilent Technologies and then with deionised water for 10 min. All CZE

measurements were performed in the running background electrolyte (BGE) with an ionic

strength of 10 mM. The samples of peptide solutions with a concentration of monomeric units

Table S5: The buffers prepared for CZE measurements (ionic strength is always 10 mM).

Acid Base pH range
Formic Lithium hydroxide 2.5 - 3.5
Acetic Lithium hydroxide 3.9 - 4.6

Cacodylic Lithium hydroxide 4.6 - 7.2
Hydrochloric Tris(hydroxymethyl)aminomethane 7.5 - 9.2
Hydrochloric Ammonium hydroxide 9.3 - 10.7
Hydrochloric Triethylamine 10.3 - 12.0
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Figure S6: Electrophoretic mobilities of the peptides determined from CZE experiments.
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Figure S7: Total charge on the peptides calculated from electrophoretic mobilities deter-
mined by CZE. Small squares represent the data re-normalised by |µmax(pH)|. Large
squares represent the data re-normalised using α(pH) obtained from simulations at
|µmax(pH)|. Filled squares show the data points which were fitted by the ideal titra-
tion (solid line), and by a line (dashed line). Isoelectric points determined by both fits
coincide at least within two significant figures.
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[Glu] = [His] = [Asp] = [Lys] =0.5 mM were prepared by dissolving the relevant amount of

peptide directly in the running buffer. The PeakMaster 5.3 was used to calculate the proper-

ties of all buffers used in CZE experiments.S6,S7 These buffers are listed in Table S5. We used

pure 10 mM HCl and LiOH only at the lowest and highest pH (pH = 2.0 and pH = 12.1, re-

spectively). All running buffers were filtered with 0.45µm PVDF membranes. The samples

were injected hydrodynamically using the pressure of 30 mbar for 5 s; the applied voltage

was always ± 10 kV. The solutions were thermostated at 25◦C. Capillary was flushed by

running buffer for 3 min before each measurement, and each run was repeated three times.

DAD detection was performed at a wavelength of 200 nm. The CEVal softwareS8 was used

to analyse the raw data and to determine the effective mobility.

2.2.2 Determination of charge on the peptide

From CZE, we obtained the absolute electrophoretic mobilities, as shown in Fig. S6. To

obtain the charge on the peptide from the mobilities, we first renormalized the absolute

mobilities by their maximum values for the given peptide, µmax = max(|µ(pH)|).

zcze(pH) = µ(pH− pIcze)
|µmax|

(4)

This renormalisation procedure is based on the assumption that diffusion coefficients of the

peptides do not significantly change with pH, as confirmed independently by DOSY NMR

(Fig. S20). Ideally, one should observe a plateau in the mobility at a high or low pH value,

indicating that the peptide is fully ionised. However, we were not always able to measure

the maximum mobility at a pH value, which would ensure that the peptide was fully ionised.

Therefore, such a normalisation could not yield a reliable value of the charge on the peptide.

To correct this deficiency, we renormalised the µmax(pHmax) by the peptide charge determined
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from the simulations, zsim(pHmax + ∆pI)

zcze(pH) = µ(pH− pIcze)
µmax(pHmax) zsim(pHmax + ∆pI) (5)

where ∆pI = pIcze − pIsim. The effect of different renormalisations is shown in Fig. S7. The

value of zcze(pH) of Glu5 − His5 is barely affected by the different normalisation because

the µmax(pHmax = 10) is well in the plateau region where the peptide is fully ionised. The

value of zcze(pH) of Lys5−Asp5 is visibly affected by the different normalisation because the

µmax(pHmax ≈ 2.5) is still in the region where the peptide should not be fully ionized.

We note that we also attempted to compute the charge on the peptides without renor-

malisation, using the diffusion coefficients determined from NMR (Fig. S20). However, this

attempt yielded a significantly lower peptide charge, which was not consistent with other

methods (simulations, NMR, and titrations). This observation is in line with the notion that

electrophoretic mobility yields the effective charge, rather than the bare charge of the ana-

lyte.S9–S11 The difference between the effective and bare charge increases with the increase

in the charge on the peptide, particularly affecting the result at high and low pH values.

2.2.3 Determination of the isoelectric point

To determine the isoelectric point from the CZE data, we determined the intersection of

zcze(pH) with z = 0 by fitting the date in the range z ∈ {−2, 2} for he Glu5 − His5 peptide,

and z ∈ {−1.5, 1.5} for he Lys5−Asp5 peptide. To ensure that our result was not affected by

the arbitrary choice of the fitting range, we tested various ranges and fitted the date using the

ideal titration curve and a straight line. Because both fit functions were symmetric around

the pI, and the data was approximately symmetric as well, all fits yielded consistent values

of pI within two significant figures. Additionally, the use of symmetric fit functions ensures

that the determined isoelectric point is not affected by the renormalisation of the effective

mobility. The curves obtained from the fits and the data points used in the fits are shown
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in Fig. S7. We avoided extending the range to higher values of z because the fit functions

were not appropriate approximations, and the fit results were significantly affected by a few

data points that were farther from the target value z = 0. The precise determination of pI

of Lys5−Asp5was particularly tricky because its charge is almost zero in a broad pH range.

2.3 Potentiometric Titration

2.3.1 Instrumentation and experimental protocol

Potentiometric titrations were performed using a Metrohm 888 Titrando Compact titrator

equipped with a Metrohm LL Biotrode 3 mm glass electrode, a Pt1000 temperature sensor,

a titration vessel for 1 ml, magnetic stirrer and Titrando Software. In order to prevent the

absorption of carbon dioxide from the air, standardised solutions of HCl and NaOH from Carl

Roth GmbH (Karslruhe, Germany) were used to prepare 0.1 M stock solutions, which were

subsequently diluted to 0.01 M. Moreover, the standardised solutions were kept under soda

lime at least 24 hours before the measurements. The solutions of the peptides were prepared

at concentrations of monomeric units [Glu] = [His] = [Asp] = [Lys] = 5 mM dissolved in

0.01 M standardised HCl. Sample volumes of approximately 2 ml were weighed to determine

the precise amount and then titrated by standardised 0.01 M NaOH using an automated

dynamic pH titration method with signal drift 1 mV and waiting time 10− 50 s. To prevent

excessive contamination by CO2, the stock solutions were kept under soda lime, and the

titration vessels were sealed during the titration, for 15–90 min, depending on the sample.

Blank titrations were performed under the same conditions, before and after each peptide

titration, to estimate the reproducibility and reliability of the procedure and to estimate the

concentration of CO2 in the stock solution.

2.3.2 Determination of the charge on the peptide

The primary output of titration is the solution pH as a function of the volume of the added

NaOH (VNaOH), as shown in Fig. S8. To calculate the charge on the peptide, we used the
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Figure S8: Potentiometric titration of the peptides.

electroneutrality condition ∑
i

zici = 0 (6)

where the summation runs over all ionic species in the system.

ztitration = (VHCl((cH − cOH) + cHCl)− VNaOH(cH − cOH + cNaOH))
(cpeptideVNaOH) − xTFA (7)

where c stands for concentration, V for volume, ztitration is the charge on the peptide deter-

mined from titration, xTFA = nTFA/nbase is the mole fraction of the trifluoroacetate coun-

terions contained in the peptide sample, relative to the number of basic side-chains on the

peptide, VHCl is the initial volume of HCl in which the peptide was dissolved. The concen-

trations cH and cOH were calculated from the measured pH and from the pKw, accounting

for the variation of both quantities with temperature and assuming that activity coefficients

are equal to one. When assuming that xTFA = 1, this procedure yielded the values of

ztitration(pH), which were similar to zcze(pH), albeit shifted to lower values of z. As shown in

Fig. S9, repeated runs of the same titration yielded highly reproducible ztitration(pH), except

for pH . 3 and pH & 10.

We used blank titrations, as shown in Fig. S9c, to assess the reliability and reproducibility
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of the calculation of ztitration(pH). These blank titrations were performed before and after

each set of titrations with a peptide sample. Ideally, they should yield ztitration(pH) = 0 in

the whole range. The example of a typical blank run shown in Fig. S9c highlights that the

yielded |ztitration(pH)| . 0.1, except for pH . 3 and pH & 11. In the high- and low-pH range,

the calculation of ztitration(pH) is very sensitive to the precision of the pH measurement and to

the value of pKw, as evidenced by the steep increase or decrease in ztitration(pH) in Fig. S9c.

The effect of CO2 is noticeable at pH & 10, and this effect was stronger in longer titrations.

Therefore, this effect was weak in the blank titration, which was quick, and stronger in the

titration of peptides, which were slower.

Because the blank titrations did not show the shift observed in the peptide titrations,

we attributed this shift to the unknown excess of TFA anions contained in the peptide

samples. Indeed, the excess TFA, commonly found in peptide samples after deprotection

from the BOC groups during solid-state synthesis, results in xTFA > 1. This assumption was

supported by the results from the titration of a different batch of the same peptide, which

yielded slightly shifted titration curves (not shown). Unfortunately, the amount of peptide

samples was too low to quantitatively analyse the TFA content. To correct for the unknown

amount of TFA, we first interpolated titration data from different runs and then used the

interpolated data to compute the average ztitration(pH) and to estimate the accuracy using

the standard deviation of different runs. Then, we used the isoelectric point determined

from CZE to adjust the value of xTFA, so that ztitration(pH = pIcze) = 0. The results of all

intermediate steps of the titration data processing are shown in Fig. S9.
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Figure S9: Total charge on the peptides and on the blank control, calculated from poten-
tiometric titrations. The Yellow line shows the interpolated average over different runs.
The green line show the average shifted by adjusting xTFA so that the curves matched the
isoelectric point determined from CZE.

S-25



2.4 NMR

2.4.1 NMR measurements and instrumentation

All NMR data were recorded using a Bruker AVANCE III spectrometer operating at the

proton Larmor frequency of 600 MHz equipped with a cryogenically cooled probe and sta-

bilising the temperature at 25 ◦C. The samples were prepared by dissolving the peptides

in 10 mM HCl to obtain 15 gL−1 peptide concentration. The pH was adjusted by adding

NaOH. A capillary insert containing deuterium oxide with a trace of sodium trimethylsilyl-

propanesulfonate (DSS) was used for field-frequency lock and chemical shift referencing. 1H

spectra were acquired with water suppression using the excitation sculpting method.S12 Mea-

surements of translational diffusion coefficients were performed with the double stimulated

echo experiment with bipolar pulse field gradients described by,S13 combined with water

suppression. The gradients were 1.5 ms long with 24 linearly spaced amplitudes spanning

the range 0− 60 Gcm−1, and the diffusion time was 300 ms. The calibration was performed

using a standard sample of 1% H2O in D2O (doped with GdCl3), for which the value of

the HDO diffusion coefficient at 25 ◦C is 1.9 × 10−9 m2s−1. All data processing and fitting

of the diffusion coefficients has been done using the MestReNova and GNAT software.S14

The chemical shifts were determined by referencing to the signal of DSS for 1H NMR and

of TFA for 13C NMR. At a very low pH the signals of TFA were affected by its ionization.

Therefore, the chemical shifts of peptides at low pH were referenced to the chemical shifts of

CH3 terminal groups of the peptides. The MestReNova Software was used to analyse both

1D and 2D spectra, including the determination centers of mass of multiplets and the ranges

of the peaks.

2.4.2 Degree of ionisation from the NMR spectra

Fig. S10 and S13 show 1H and 13C spectra for Glu-His and Lys-Asp, respectively, at pH

ranging from 1 to 13, with the chemical structure of the amino acids and the assignment of
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all peaks. 2D NMR spectra, COSY and 1H-13C HSQC, (Fig. S16 and S17) at pH 2 were used

for peak assignment. Specific atoms have been identified in literature as "good reporters"

of ionisation, that is, their chemical shifts predominantly reflect ionisation changes on the

nearby ionisable group.S15 Typically, good reporters are located far from the backbone and

as close as possible to the ionisable group. Following Ref.,S15 we used CB for Asp, CD and

CG for Glu, CG and CE1 for His, and CD and CE for Lys. We were able to identify two good

reporters for each amino acid except for Asp, for which we were able to identify only one

good reporter because the signal of CG overlaps with carbonyl signals from the backbone.

Details of the spectra, highlighting how the peaks shift with the pH, are shown in Fig.S11,

Fig.S12, Fig.S14 and Fig.S15.

The chemical shifts of the good reporters, which could be unambiguously identified in the

spectra, were used to calculate the degree of ionisation of each amino acid in the oligopeptide.

These peaks typically consisted of multiple sub-peaks, reflecting the fact that same amino

acids in different positions in the peptide chain were not equivalent. To determine the

average degree of ionisation of each type of amino acid, we use the centre of mass of the

corresponding peak, which should be equivalent to averaging the degree of ionisations of 5

amino acids of the same type. We calculated the degree of ionisation by normalising the

chemical shifts as follows:

αbase = δmax − δ
δmax − δmin

(8)

for bases (Lys and His) and

αacid = δ − δmin
δmax − δmin

(9)

for acids (Asp and Glu).
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(a) 1H

(b) 13C

Figure S10: NMR spectra of Glu5 − His5 at various pH.
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Figure S11: Details of NMR spectra of good reporters for Glu in Glu5 − His5 at various
pH.
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Figure S12: Details of NMR spectra of good reporters for His in Glu5 − His5 at various
pH.
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(a) 1H

(b) 13C

Figure S13: NMR spectra of Lys5 − Asp5 at various pH.
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Figure S14: Details of NMR spectra of good reporters for Lys in Lys5 − Asp5 at various
pH.

S-32



Figure S15: Details of NMR spectra of good reporters for Asp in Lys5 − Asp5 at various
pH.
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(a) COSY

(b) 1H-13C HSQC

Figure S16: 2D NMR spectra of Glu5 − His5 at pH=2.
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(a) COSY

(b) 1H-13C HSQC

Figure S17: 2D NMR spectra of Lys5 − Asp5 at pH=2.
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Figure S18: The degree of ionisation of acid and base groups on the peptides predicted
from simulations, determined from NMRmeasurements and from the ideal titration curves.
Individual reporter atoms are indicated in the legend. Shaded areas indicate the spread
of peaks in the NMR spectra. Red and grey vertical lines represent the isoelectric point
determined from CZE and the ideal isoelectric point. Panels in the top row show the ideal
and simulation data using the modified pKA values to correct for the effect of incorporating
amino acids into the peptide (see Table S6). Numbers in the legend indicate the reporter
atom id in NMR (see Fig. S10 and Fig. S13) and the amount by which the pKA values
were modified in the simulations. The bottom row shows the original uncorrected data for
comparison (denoted as "Lit1" in Table S6).
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Fig.S18 shows that the degree of ionisations determined using different good reporters

agree with each other. However, individual reporters may considerably differ in the spread

of the peaks due to the non-equivalence of amino acids of the same type. The panels in

the bottom row of Fig.S18a show that the degree of ionisations of both Glu and His exhibit

the same trend as that assessed in simulations, albeit shifted to higher pH values, in line

with the shift of the isoelectric point between the ideal and CZE results ∆pI. In contrast,

Fig.S18b shows that the degree of ionisation of Asp is shifted with respect to the simulation

results approximately twice as much as the difference in isoelectric points, while the degree of

ionisation of Lys matches the simulations. We attributed these differences to the uncertainty

in the pKA values caused by different substituents. To assess this hypothesis, we performed

a new set of CG simulations using a modified set of pKA values: In Glu5−His5, we increased

the pKA of both Glu and His by ∆pI; In Lys5−Asp5, we increased the pKA of Lys by 2∆pI

(see Table S6). Consequently, the isoelectric point from simulations using the modified pKA

values matches pIcze. With the modified pKA, we obtained an almost perfect match between

the simulation and the NMR results, as shown in the top row of the panels in Fig.S18b.

This observation supports our hypothesis that the previously observed differences between

the pI from simulations and experiments could be attributed to the uncertainty in choosing

the right pKA values for the simulation.

As an alternative hypothesis, one could claim that using different literature sources of

Table S6: Difference between the pKA values of free amino acids reported in the literature
and our estimates of the pKA values of the same amino acids incorporated in the peptides
Glu5 − His5 and Lys5 − Asp5.

Abbreviation Glu His Asp Lys Source

Original pKA (Lit1) 4.25 6.00 3.65 10.53 CRC Handbook 1991S16

Lit2 4.30 6.00 3.90 10.80 Concepts in Biochemistry 1988S17

Lit3 4.15 6.04 3.71 10.67 CRC Handbook 2015S18

Modified pKA 4.45 6.20 4.21 10.53 Our estimate from NMR, Fig. S18
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pKA values of free amino acids might have the same effect as the modifications proposed

above because the values reported in the literature are not entirely consistent. Table S6

outlines the pKA values from several literature sources and the modified pKA values obtained

as described in the previous paragraph. The source labeled "Lit1" was used for the original

pKA values in the manuscript, while the other sources were included only for comparison.

The reported pKA values for His and Glu are quite consistent among different sources and

do not vary by more than 0.1, while our estimation suggests that the modified pKA values

should be higher than the original values by ∆pI(Glu5 − His5) ≈ 0.2. The reported pKA

values for Lys and Asp are less consistent among different sources and do not vary by more

than 0.1. Our estimation suggests that the modified pKA values of Asp should be higher

than the original value by 2∆pI(Glu5 − His5) ≈ 0.56, while the pKA of Lys should remain

unchanged. Thus, the differences between the original and modified pKA values are greater

than the inconsistencies in pKA values reported in various literature sources.

To assess how different pKA values from the literature might affect our simulation results,

we performed a set of CG simulations using each literature source listed in Table S6. Fig. S19

shows that simulations performed with these sets of pKA values differ only marginally, with

much larger systematic differences between all simulation and CZE results. Thus, we con-

clude that the differences between simulations and NMR or CZE results cannot be attributed

to the uncertainty in choosing a literature source of pKA values of free amino acids. Instead,

they should be attributed to a systematic shift in pKA caused by the replacement of some

substituents on the amino acids upon their incorporation into the peptide.
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Figure S19: Simulation predictions of the total charge of the peptides, compared with
experimental data from capillary zone electrophoresis (CZE). The pKA values used in
individual simulations are listed in Table S6.

2.4.3 Diffusion coefficients from DOSY NMR

The DOSY experiment made it possible to calculate the diffusion coefficients, D, of the

oligopeptides as function of pH using GNAT software by integrating the peaks. Fig. S20

shows that the values of diffusion coefficients, D(pH), do not exhibit any visible trend, and

they do not deviate from the average value beyond the range of the estimated error. The

error bar was determined as a standard deviation of D determined from each individual

peak of the spectrum. Thus, we conclude that the diffusion coefficients are approximately

constant. In the whole pH range, they do not deviate from the average values by more than

10%.
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