
Segment Descriptor Enabling Prediction of Electronic 

Properties and Photocatalytic Hydrogen Evolution Rate of 

Alternating Conjugated Copolymers Based on Machine 

Learning 

Yuzhi Xu&a), Cheng-Wei Ju&b)*, Bo Lic), Qiu-Shi Mad), Lianjie Zhanga)*, Junwu Chena) 

a) Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent 

Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China 

b) College of Chemistry, Nankai University, Tianjin 300071, China. 

c) Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.  

d) School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, 

Anhui Province, China. 

&These authors have contributed equally to this work and should be considered co-first authors 

* corresponding: Cheng-Wei Ju (E-mail: nkuchemjcw@mail.nankai.edu.cn) 

              Lianjie Zhang (E-mail: lianjiezhang@scut.edu.cn) 

 

Abstract: 

  Alternating conjugated copolymers have been regarded as promising candidates for 

photocatalytic hydrogen evolution due to the adjustability of their molecular structures 

and electronic properties. In this work, machine learning (ML) models with molecular 

fingerprint of segment descriptors (SD) have been successfully constructed to promote 

the accurate and universal prediction of electronic properties such as electron affinity, 

ionization potential and optical bandgap. Moreover, without any experimental values, 

a high-performance prediction classifier model toward photocatalytic hydrogen 

production of alternating copolymers has been developed with high accuracy (real-test 

accuracy = 0.91). Consequently, our results demonstrate accurate regression and 

classification models to disclose valuable influencing factors concerning hydrogen 

evolution rate (HER) of alternating copolymers. 

 



Introduction: 

Alternating conjugated copolymers incorporating different electronic units have 

attracted considerable attention over a wide range of opto-electronic and energy 

transformation applications, such as polymer light-emitting diodes1-4, organic solar 

cells5-8, organic field-effect transistors9-11, photocatalytic hydrogen production12-16. 

Many efforts have been devoted to understanding fundamental electronic properties of 

alternating conjugated copolymers, including ionization potential (IP), electron affinity 

(EA), optical bandgap17-19. Specifically, the optimized electronic properties are highly 

conductive to promote the performance of polymeric hydrogen photocatalysts20. To 

avoid the tedious and iterative synthesis-characterization, numerous theoretical 

calculation methods comprising the density functional theory (DFT) have been adopted 

to predict the basic polymer properties approaching the experimental parameters21, 22. 

However, it is very challenging to achieve desirable predictions rapidly and accurately.  

Machine learning (ML) as a wonderful approach has been explored to investigate 

the structure-property relationship of copolymer and then seek for the suitable material 

candidates in organic solar cells23-26. However, it should be noted that the ML method 

has not been addressed well for the prediction of polymeric hydrogen photocatalysts. 

Very recently, Cooper et al. navigated the available structure-property space via the 

integration of robotic experimentation and electronic properties of high-throughput 

computation27. Nonetheless, the experimentally measured light transmittance was 

needed to enhance the correlation with hydrogen evolution rate (HER). In a report by 

Nagasawa et al., a huge gap between the predicted PCE (5%) and experimental 

measurement (0.5%) cannot be avoided even with the introduction of experimental 

parameters28. Towards high-throughput computation without any experimental data, 

advanced machine learning is deemed the desirable approach.  



 

Scheme 1. The motivation for Segment Descriptor. 

 

Herein, a new class of segment descriptor (SD) inspired by the divide and conquer 

algorithm is proposed to describe the smallest segment of A-B alternating copolymers, 

which can avoid the confusion of the repeating unit's directionality (Scheme 1). Our 

approach can be directly applied to A-B alternating polymers even if the disorder 

connection of repeated units (isomers) exists. Firstly, we put forward a ML model to 

rapidly predict electronic properties with molecular fingerprints-based SD, which 

possesses a fantastic generalization ability and can be a wonderful tool contributing to 

practical research due to the impressive accuracy. Moreover, our approach shows a 

higher correlation in the prediction of hydrogen evolution rate (HER) compared to the 

basic electronic-property strategy. Based on the ML model, we adopted five 

classification models of high accuracy to predict the performance of polymeric 

hydrogen photocatalysts (testing set accuracy = 0.8). Furthermore, the relationship 

between the structure-property and high HER was first time to predict the design of 

high-performance hydrogen photocatalytic materials. With the decision tree 

classification models, relevant guidance has been demonstrated. In addition, we used 

the testing set from different works to ensure the practicability of our model, which 



shows an excellent result (accuracy = 0.91). To our best knowledge, it is the first time 

to combines the electronic features of the segments of copolymers in machine-learning 

models without experiment parameters to virtually predict the performance of hydrogen 

photocatalysts, which can greatly help the practicing researchers to explore the potential 

hydrogen photocatalytic candidates in the future. Besides, we are convinced that this 

segment inception can also offer a thinking path to address the more difficult problems 

about copolymers. 

 

  



Experiments and results: 

To resolve the disorder structure and gain more information from the copolymer, 

a fantastic strategy, segment descriptor (SD), is brought forward in this work. In the 

previous work about the ML, the alternating copolymer often adopted the A-B units as 

input28. However, this method seems to gain the limited information from the 

copolymer units, leading to the poor generality for further virtual screening. In contrast, 

SD have been regarded a potential strategy to face the confusion and missing features. 

In order to prove the feasibility of segment descriptor, we first attempt to construct a 

rapid prediction model for the electronic properties of the alternation copolymers. To 

achieve quantum-mechanical-free electronic properties ML models of copolymers, 

molecular fingerprints, which can be inferred directly from structures of polymer units, 

is one of the best candidate description methods (Figure S1a) and have been widely 

applied in ML-based virtual screening. Molecular fingerprints have proven feasible for 

homopolymers. Regretfully, alternating polymers cannot be simply represented in this 

way (only describe A-B units) due to the confusion of non-order structure, which also 

decreases the generality of ML models. Therefore, fingerprints-based SD combined 

with the fingerprints of each segment to describe alternating polymers can avoid this 

problem and give an opportunity to fulfill the handsome prediction of electronic 

properties.  

The database includes 6,354 simulated copolymers with more than 700 monomers 

(containing 9 A units and 700 B units), which is reported in previous work27. We hope 

to develop the ML model with the generalization capabilities of the prediction of 

electronic properties (IP, EA, Bandgap). Thus, the database was randomly split into two 

units, 80% segments of B in the database were regarded as the training set and the 20% 

remaining was the test set (Figure S2). In the process of adjusting the model, 50% of 

the data in the total training set (about 5,000 data) have been used as the validation set 

and the rest as the training set. The test set is only used when the model generalization 

ability is ultimately checked.  

Exploring a suitable combination of fingerprints is important. Three types of 

descriptors have been proposed to express each unit at this time – Random, MACCS, 



and Morgan (their lengths increase in the same order, 1 num, 166 bits, 2048 bits). In 

our system, the number of A unit only includes 9 monomers, which is much less than 

that of the B unit. Therefore, we should use longer fingerprints for B to express more 

features. Six combinations can be generated (Figure S1b). LightGBM (Light Gradient 

Boosting Machine), a tree-based algorithm featuring high-speed training, has been 

opted for preliminary exploration. MAE is used to evaluate the accuracy of the model, 

and the determination coefficient is also provided as a reference. From the result of the 

prediction of test set shown in Figure S1b, two conclusions can be drawn: 1) The 

accuracy of the prediction is mainly determined by the description of B; 2) The 

combination of MACCS and Morgan manifests the best accuracy, this may attribute to 

its suitable length, while an over-long length will lead to overfitting. Therefore, 

MACCS/Morgan can be regarded as the optimal fingerprint combination for this 

copolymer system, as it displays a satisfactory accuracy with fewer characters.  

 

Table 1. Performance of different models measured using mean absolute error (MAE) 

and coefficient of determination (R2) metrics, measured on the test set and validation 

set. 

Machine-

learning 

techniques 

IP EA Bandgap 

R2 MAE(eV) R2 MAE(eV) R2 MAE(eV) 

k-NN 0.767 0.150 0.840 0.164 0.794 0.130 

SVR 0.915 0.090 0.899 0.131 0.807 0.119 

KRR 0.932 0.075 0.900 0.121 0.819 0.113 

LightGBM 0.932 0.073 0.880 0.123 0.822 0.111 

GBRT 0.932 0.073 0.906 0.118 0.824 0.108 

DNN 0.919 0.081 0.889 0.134 0.790 0.125 

 

Algorithms have a large influence on the accuracy and generality of ML models. 

Several ML algorithms have been evaluated, including Support Vector Machine (SVM), 

Kernel Ridge Regression (KRR), Deep Neutral Network (DNN), k-Nearest Neighbors 

(k-NN), LightGBM and Gradient Boost Regression Tree (GBRT). Most of these models 

show acceptable results (Table 1), except for k-NN owing to the high dimension of 



molecular fingerprints. Due to the limitation of the database size, although DNN shows 

high accuracy in the validation set (Table S1), its generalization ability is mediocre, 

which only shows the shockingly general results in the test set. Note that kernel 

function-based models such as KRR and SVR show satisfactory results in both 

validation set and test set. Figure 1 shows that GBRT, a tree-based ensemble model, 

gives the best prediction with a wonderful performance in the face of unseen segments 

(test set). Therefore, we can conclude that tree-based algorithms and kernel function-

based algorithms can make full use of the information of the copolymer, we have 

constructed a ML model (GBRT/MACCS_Morgan) with generalization capabilities to 

predict the electronic properties of the copolymers. With the result observed above, we 

can confirm that SD is a feasible strategy for the representation of AB alternating 

copolymers. 

 

 

Figure 1. The linear correlation between the true (calculated) and predicted (a) IP, (b) 

EA and (c) gap in GBRT model with MACSS for segment A and Morgan for segment 

B. The red points and the blue points show the predicted result in the validation set and 

test set, respectively. The gray line indicates the perfect positive correlation. 

 

Furthermore, we proposed that more characteristics of the segments can increase the 

prediction accuracy of ML model. One important thing to note about our desired 

methodology is that it does not employ inputs from experiment, which allows it to be 

extended to a large data set and partially applied into virtual screening. Here, a valuable 

library containing 157 copolymers was selected because all their HER values have been 

reported in a previous work27. The dataset was randomly split into a training set 

(including 109 data) and test set (including 48 data). Two segments in the copolymers 



(A and B) have been re-defined as Electronic Acceptor Segments (abbreviated as 

Acceptor) and Electronic Donor Segments (abbreviated as Donor) according to the 

LUMO level of the monomers (Figure 2a). Four classes of electronic properties (22 

types in total) have been chosen to compose electronic properties-based SD at this time 

(Figure 2b, detailed information can be found in Supporting Information). Three 

parameters (IP, EA, Bandgap) have been adopted to describe the basic electronic 

properties of the copolymer. Twelve were used to describe about the electronic structure 

of each segments, while another four inputs came from the difference between the 

energy level of two segments. The last three parameters are responsible to the dipole of 

the D-A unit in ground state and excited state, which can be reflected to the electronic 

transfer process. The Pearson correlation coefficients of the HER with these features 

have been demonstrated (Figure S3), indicating that all parameters have no significant 

linear correlation with HER. The main reason for such result is due to the large 

influence of the experiment parameters on the performance of the copolymer and the 

complex mechanism, which cannot link to a single factor.  

 

 

Figure 2. (a) Redefine the segment of A-B alternating copolymers into Electronic 

Acceptor Segments (abbreviated as Acceptor) and Electronic Donor Segments 

(abbreviated as Donor). (b) 22 selected microscopic properties of the redefined segment 

and copolymer selected as descriptors. Among these parameters, VIP means vertical 

ionization potential, VEA means vertical electron affinity. AIP and AEA means 



adiabatic ionization potential and adiabatic electron affinity, respectively.  

 

In order to validate the stunning effectiveness of our strategy, we attempted to 

compare our segment descriptor (SD) method with the previous studies, where Copper 

adopted several electronic properties as well as the experimental parameter into the 

construction of ML model, used a sub-dataset among mentioned copolymers (fixed A 

unit)27. Based on it the without any experimental data was also developed and then 

applied to evaluate the HER values in the used library selected from the previous work27 

(abbreviated as Electronic Properties). Here, a suitable ML algorithm, Gradient 

Boosting Regressor, have been adopted in this comparable section. We took the 

logarithm of the value to gain a more reasonable distribution of the data, this is because 

the magnitude is more important than a real value. Table 2 and Figure S4 demonstrates 

the prediction result of the Electronic Properties and Segment Descriptors. We can see 

only employing the electronic properties (IP, EA, bandgap) as the inputs leads to a low 

accurate result (Pearson’s correlation coefficient is only 0.47), which cannot fulfill the 

needs of materials prediction. Delightedly, when the Segment Descriptors been applied, 

an impressive correlation coefficient can be achieved (PCCs = 0.77). Therefore, we can 

conclude that since the SD contains more information, higher accuracy can be achieved 

than regular input, which makes it show greater potential in the application of virtual 

screening. 

 

Table 2. Prediction result with different descriptors. 

Descriptors PCCs a) R2 MAE b) RMSE b) 

Electronic Properties 0.47 0.18 0.52 0.68 

Segment descriptors 0.78 0.50 0.42 0.53 

a) PCCs is the abbreviation of Pearson’s correlation coefficient b) The unit is index 

number. 

 

Moreover, classifier model toward high-performing PC polymer was further 

developed to realize a high accurate prediction for hydrogen evolution. In literature a 



copolymer with HER less than 1000 μmol/(hg) was considered as low active material 

candidate27, which is used as a suitable judgement threshold. Five machine-learning 

classifier algorithms are adopted to address this problem (Table 3). All the machine-

learning classifiers achieved satisfying results in test set (accuracy from 0.75 to 0.80). 

Notably, the Extra Trees Classifier regarded, as the most efficient one among these 

algorithms, obtained the highest average test accuracy (0.80), which may meet the 

requirement of HER prediction.  

 

Table 3. The performance of five machine-learning classifier algorithms. 

Machine-Learning techniques a) Testing accuracy Testing AUC b) 

Extra Trees Classifier 0.80(± 0.02) 0.78(± 0.02) 

AdaBoost Classifier 0.77 0.75 

Gradient Boosting Classifier 0.77(± 0.03) 0.74(± 0.03) 

Ridge Classifier 0.77 0.77 

K-Neighbors Classifier 0.75 0.73 

a) Classification accuracy was measured on the test set and training set, using the 

constant training dataset and the accuracy value with the standard deviation, was 

reported via using the average of 10 times. b) Area Under Curve of the testing set 

 

With the tree-based classifier models (GBRT, AdaBoost and Extra Trees), 10 of 

the most important features among the 22 features were selected. As shown in Figure 

3a, the most important feature is optical band gap of copolymer, which is consistent to 

the previous work29. Besides, difference between the LUMO of donor segment and 

acceptor segment (LUMO_D  LUMO_A) and the LUMO of acceptor segment 

(LUMO_A) working as the second and third most important features, respectively, are 

also observed, implying that the electronic transfer plays an important role in the 

photocatalysis (Figure 3b). It should not be ignored that the electron and hole 

reorganization energy (λe and λh) also regarded as important features, indicating 

structural changes in the electron transfer process have effect to the performance of 

polymers. In addition, the EA, IP of copolymers and difference between LUMO 

(Acceptor) with HOMO (Donor) are also considerable elements as well.  



 

Figure 3. (a) Sum of top 10 important descriptors selected by three DT-based classifier 

models. (b) Schematic of the energy level of the segments in A-B alternating co-

polymers and selected energy level difference. 

 

As mentioned by Liu et al., the fundamentals of photocatalytic process and 

structure-activity relationship remain to have a better exploration19. Therefore, to 

explore the relationship between the electronic properties and HER performance and 

help us design the high-performance hydrogen production photocatalysts, a decision 

tree (DT) model had been constructed with top 10 important descriptors mentioned 

above. The logical flowchart diagram of the best DT model has been shown in Figure 

4. As a result, the decision tree algorithm selects the calculated bandgap as the top node 

in the discrimination process with a threshold of 3.31 eV. It should be noted that the 

bandgap applied here is only calculated, and there is a certain difference between the 

experimental bandgap and the calculated bandgap. The calculated 3.3 eV approximately 

corresponds to the experimental value of 2.6 eV according to the previous comparison27. 

Such conclusion is consistent with the previous work, though a precise range have not 

been provided before19, 30. The process of electron flowing from LUMO of donor 

segment to LUMO of acceptor segment in the excited states can be demonstrated, 

because the difference between two energy level (LUMO_D  LUMO_A) plays as 

several nodes in the DT. Besides, the λe of the acceptor segments and the λh of the donor 



segments have been selected by DT, which means the structure change in electronic 

process seems to be important, can also prove the rationality of our model.  

 

  

Figure 4. Best decision tree (DT) model trained with top 10 important descriptors to 

access different types of A-B alternating co-polymers. Categories of “High 

Performance” (HER>1000) and “Low Performance” (HER<1000) are colored green 

and red, respectively. Those that cannot be classified by a single decision tree are 

marked as “Moderate” in yellow color. 

  

Although the ML models perform well in our dataset, we expect that the HER 

prediction model can make sense in the real test environment instead of a toy. Therefore, 

22 molecules with reasonable selecting approach (Figure S5) have been used as external 

test set to examine the universality of our ML model. The missing data of calculated 

electronic properties (IP, EA, gap) were filled with the prediction result of fingerprint-

based ML models mentioned above. To our surprise, an awesome result has been 



achieved (Figure 5 and Table S5), the accuracy can achieve 0.91. One of the failed 

example was due to the lack of acetylene bond in our data set (8 in Figure S5), so 

description of segment may be not suitable. Another failed example can be responsible 

to the lack of boron-embedded segment in our dataset. Although such result may be 

caused by data bias probability, it can completely prove that Segment Descriptor-based 

ML model can be used in practical applications. 

 

 

Figure 5. Prediction results versus experimental data for the predicted hydrogen 

photocatalysis materials with the Segment Descriptor and Extra Tree algorithm. 

 

Hence, after choosing from the 5 decent model, we have established an impressive 

high-performance HER model used in the real prediction environment with a high-

accuracy result (0.91), from which we can sure our model reach a good achievement. 

This high-accuracy also reveals that the HER ML model has huge promising potential 

for application in pre-screening of hydrogen production materials and avoid the costly 

experiment attempt. With this model, we also analyzed the 10 most important features 

and put forward possible mechanisms for this machine-selecting features. Besides, a 

logic process with details was exported to help the researchers have a better 

understanding of how to design high-performance materials. 

Conclusion 

In summary, we have built a stunning descriptor strategy, segment descriptor, to 

resolve the complicated description of alternating copolymers and several novel models, 



including the electronic prosperities prediction model, HER regressor model, and high-

performance HER classifier model. Besides, we tried to use the other molecules for 

other works to have a measurement. Two descriptors based on this strategy, molecular 

fingerprint-based Segment Descriptor and electronic properties-based Segment 

Descriptor, have been demonstrated to be feasible solutions in facing real-world 

problems, which provide an effective tool. This is the first time to demonstrate HER 

prediction model in the absence of any experimental parameter, which makes virtual 

high-throughput screening possible. We also provide insights on discussing the 

importance order about the co-polymer properities and how to construct high-

performance hydrogen-producing materials. With the continuous studies of novel 

hydrogen-producing materials, more and more data will make it possible to introduce 

light and sacrificial agents into ML models, higher accuracy and stronger generalization 

capabilities will also be achieved accordingly. 
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