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Abstract 

1-Methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium 
(MNEI) salts show various photochemical phenomena 
depending on the guest anion. We used machine learning 
techniques to extract decisive factors that dominate the fate 
of MNEI salts after UV irradiation and prepared a decision 
tree diagram to deduce their photochemical phenomena 
before experiments. 
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1. Introduction 
1-Methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium1 

(MNEI; Fig. 1A), a 1,8-naphthalimide derivative, is designed as 
a versatile molecular sensor that exhibits a high affinity for 
anions due to the positive charge on the imidazolium group, 
allowing the detection of the electronegativity of a guest anion 
by fluorescence intensity.1-3 While showing a potential as the 
fluorescent molecular sensor, MNEI shows yellow coloration 
with anionic polysaccharides upon irradiation.4 Although MNEI 
can interact with various anions, its photo-induced phenomena 
are different depending on the guest anions. Hence, to use MNEI 
as a molecular sensor, we need to elucidate the applicable limit 
of MNEI, that is, the factors that cause the MNEI–anion complex 
to show fluorescence or coloration. 

Conventional experimental and computational approaches 
show that complex chemical phenomena, such as non-adiabatic 
transition and excimer formation, are involved in the photo-
induced process of MNEI complexes. 1-4 Hence, much time is 
required to detect and identify the physical characteristics that 
allow MNEI to act as an anion sensor. Furthermore, because the 
number of experimentally available MNEI salt is only a degree 
of countable, predicting the properties of unidentified chemical 
compounds is impossible. Therefore, machine learning 
techniques that require considerable data may not be applicable. 

Recently, the application of machine learning techniques 
has been attracting considerable attention in the field of 
chemistry. Representative research includes physical property 

prediction, chemical reactivities, and design of de novo 
compounds5-9, which require a large amount of training data. On 
the other hands, one of authors reported a practical method to 
estimate oxygen-K edges of the ELNES/XANES spectra of 
oxide compounds with a small amount of training data10.  

In this study, we employed machine learning techniques to 
extract the factors that dominate the photo-induced phenomena 
to MNEI complexes and made the estimation model to deduce 
the phenomena of MNEI complexes. 
 
 
 
 
 
 

 
Figure 1. Chemical structure of MNEI (A), input model 
structures of MNEI–acetate (B) and anions (C). The anions 
have a net charge of -1. The difference in the ionic valence is 
considered as the feature value. AG (alginate), CS 
(chondroitin sulfate C), PAA (poly acrylate), and PSS 
(polystyrene sulfonate) are the simplified unit structures of 
the anionic polymer. To distinguish these polymer species, we 
used a binary feature value. 



 
 

2. Experimental and computational details  
Fluorescence spectra of 1.50 mM MNEl–Cl aqueous 

solutions containing 0.5 wt% anionic molecules were recorded 
on an RF-6000 (Shimadzu, Kyoto, Japan). UV-Vis spectra were 
recorded on a Multiskan GO (Thermo Fischer Scientific, 
Waltham, MA). 1.50 mM MNEI aqueous solution containing 0.5 
wt% anionic molecules placed in a quartz cell (path length: 1 
mm) was UV irradiated by an SP-7 spot cure (Ushio, Tokyo) 
equipped with a deep UV lamp (main wavelength: 365 nm) at 
room temperature. The length between the quartz cell and the 
UV lamp was 19.2 cm. After irradiation, the irradiated solution 
was immediately subjected to UV-Vis measurement. 

Computational data are prepared through the density 
functional theory11 (DFT) by using GAUSSIAN 0912. The effect 
of aqueous solution is included by IEFPCM13. The extended 
hybrid functional combined with Lee-Yang-Parr parameters 
(X3LYP14) were used with 6-31G* basis set except for Red-Ox 
potential calculations and iodine atom. The Red-Ox potentials 
were calculated at the X3LYP/6-31++G** level. For the iodine 
atom, DGDZVP15 basis set was adopted. In single point energy 
calculations of MNEI salt, the basis set superposition error 
(BSSE16) is corrected by counterpoise (CP17) method. 
 

3. Results and Discussion 
We employed applicable machine learning techniques even 

for a small amount data to extract the physical values that 
dominate the photo-induced phenomena of MNEI salts from 
computationally prepared data in contrast to recent applications 
in which a large amount of data was needed. Based on the 
extracted values, we prepared a decision tree diagram to predict 
the photo-induced phenomena of MNEI salts (and vice versa, i.e., 
to predict the physical properties of unidentified anions). To 
validate this diagram, we compared the deduced phenomena 
with the experimentally ones for two MNEI salts whose 
phenomena had not been observed. 

We prepared 15 species (four halides, four anionic 
polymers, and seven carboxylates) whose experimental 

phenomena were already known as a training data set. To prepare 
the computational data, we performed quantum chemistry 
calculations based on DFT. The structures of a representative 
MNEI salt and anions are shown in Fig. 1B and 1C, respectively. 

We used physical values that were computed or obtained 
from a database18 as the feature values (explanatory variables). 
The integrated values of the experimental fluorescence 
(integration section: 370–550 nm) and UV-vis spectra 
(integration section: 390–500 nm) were used as scores (objective 
variables). All feature values and scores are tabulated in the 
Supporting information. Machine learning analyses were 
performed using these feature values and scores through the 
following procedures. (1) We performed the feature selection by 
lasso regression19 with “leave-one-out” cross-validation. The 
features that minimized the root mean squared error (RMSE) 
between the experimental scores and the regression results were 
selected. (2) We classified 15 anions into five clusters using the 
hierarchical cluster analysis20 to divide the scores into tree-
shaped clusters called a “dendrogram.” (3) We prepared a 
“decision tree21” diagram to estimate the photo-induced 
phenomena of unspecified anions based on the selected features 
and the generated clusters. We utilized the scikit-learn22 library 
to implement the machine learning algorithms. 

The selected features and their contribution ratios through 
lasso regression are shown in Fig. 2. For the regression of the 
fluorescence intensity, the RMSE was 0.215 (Fig. 2A). The 
interaction energy between MNEI and the anion had the largest 
contribution ratio of 37% to the fluorescence intensity followed 
by pKa, the ionic valence, and Mulliken charge of an anion (Fig. 
2B). Thus, we can quantitatively guess the anion that strongly 
interacts with MNEI to induce fluorescence emission. This result 
also agrees with the suggestion that MNEI could be a sensor to 
detect anions whose electronegativities are high.3 For the 
regression of the coloration intensity, the RMSE was 0.283 (Fig. 
2C). Although this error is slightly large, the differentiation 
between the colored group and the uncolored group is relatively 
clear. A conjugation extension had the largest contribution ratio 
of 35%. The extended π-conjugated system tends to quench the 
coloration reaction (see the Supporting information for more 
details). Additionally, the molecular weight and pKa had the 
same contribution ratio of 28%. A heavy anion with a weak 
acidity induced the coloration. This means that molecular 
bulkiness induces coloration because the correlation coefficient 
between the molecular volume and the molecular weight was 
0.940. Therefore, we guess the features reflect a non-
electrostatic interaction, such as a CH-π interaction and London 
dispersion force. Consequently, the feature selection suggests 
that the magnitude of electrostatic correlation contributes to the 
fluorescence intensity and that of the non-electrostatic 
interaction contributes to the yellow coloration. 
     Figure 3 shows the dendrogram obtained based on the data 
from the experimental scores. The vertical axis represents the 
similarity between experimental photochemical behaviors. 
Anions that are clustered with lower values have higher 
similarity. Upon setting the depth to 0.50 as the classification 

 
Figure 2. Results of lasso regression, selected features, and 
their contribution ratios for fluorescence (A, B) and 
coloration (C, D). The numbers in A and C correspond to Fig. 
1C. The vertical axis of A and C is the experimental score, 
and the horizontal axis is the regression value. The 
experimental and regression values are equivalent on the 
dotted line. 

 

 
Figure 3. Dendrogram by hierarchical cluster analysis. The 
numbers correspond to Fig. 1C. Anions that are clustered 
with lower values having a higher similarity. 



 
 

threshold, five clusters (shown in Table 1) were obtained. These 
clusters were used as labels in the decision tree diagram. Anions 
belonging to Cluster Ⅰ are multivalent ions and bulky. Anions 
in Cluster Ⅱ are also bulky but have small electrostatic 
interactions. Anions in Cluster Ⅲ have a large interaction energy. 
Surprisingly, the fluorine anion was classified into Cluster Ⅲ 
along with the carboxylate. This is due to its high fluorescence 
intensity caused by strong electrostatic interactions. Although 
both anions in Cluster Ⅳ and Ⅴ are common from the viewpoint 
of their strong acidity and small interaction energy, they are 
classified into different clusters because of their low numerical 
similarity. 
     The decision tree diagram based on the selected features 
is shown in Fig. 4. This is a top-down type of estimation flow 
chart used to deduce the photochemical phenomena of the 
MNEI–anion complex. If a condition in a square is true, the 
target goes along the direction that the outlined arrow indicates. 
If the condition is false, the target goes along the direction that 
the black arrow indicates. Any features used in the model can be 
easily obtained through simple quantum chemical calculations 
and the literature database1. Furthermore, when interpreting this 
diagram as a bottom-up type, we can evaluate the properties of 
unidentified anions by measuring the fluorescence/UV-vis 
spectra. 
     To ascertain the validity of the decision tree, two species 
of anions were prepared whose photo-induced phenomena as 
MNEI salts had not been observed, namely, trifluoroacetate 
(TFA; A) and laurate (B); see Fig. 5. TFA has a structure similar 
to acetate; however, its acidity and electrostatic properties are 
very different from those of acetate. Laurate is a kind of higher 
bulky carboxylate. We predicted the phenomena of MNEI with 
these anions using the decision tree. The feature values were 
calculated in the same way as the training data (see the 
Supporting information also). According to the decision tree and 
using the feature values in Table 2, TFA was classified into 
Cluster Ⅲ, and laurate was classified into Cluster Ⅱ. Therefore, 
it was predicted that MNEI–TFA emits an intense fluorescence 
without coloration and MNEI–laurate emits a weak fluorescence 
with coloration. 
     To confirm the estimation results, fluorescence/UV-vis 
spectra of both MNEI salts were measured. Figure 6 shows the 
fluorescence (A) and UV-vis (B) spectra of these MNEI salts. A 
comparison with experimental results of the estimated 
phenomena is summarized in Table 3. MNEI–TFA showed 
intense fluorescence, and there was no absorption peak at 

approximately 430 nm, resulting in a yellow coloration. 
Therefore, TFA was classified into Cluster Ⅲ, which agrees with 
the estimation result. On the other hand, the coloration of 
MNEI–laurate was consistent with the estimated result, and the 
fluorescence intensity was moderate, which was weaker than 
TFA. Based on the experimental score, MNEI–laurate was 
numerically classified into Cluster I, which is different from the 
estimation in agreement with the decision tree diagram. This 
error occurred because all anions in Cluster I are multivalent ions. 
However, this can be improved by adding laurate and other 
higher bulky carboxylate into the training data. Likewise, we 
will investigate anions not included in the current data, such as 
polycyclic aromatic carboxylates and inorganic acids, and we 
will robustly improve the decision tree diagram. 
 

 
 
 
 
Table 1. Characteristics of each cluster and anions belonging to 
the clusters 

Cluster Ⅰ:  Strong fluorescence, Yellow 
coloration 

Citrate, Adipate, Succinate, AG, CS 
Cluster Ⅱ:  Weak fluorescence, Yellow coloration 

Phenylacetate, PAA 
Cluster Ⅲ:  Strong fluorescence, No coloration 

Fluoride, Acetate, Benzoate 
Cluster Ⅳ:  Faint fluorescence, No coloration 

Bromide, Iodide 
Cluster Ⅴ:  Weak fluorescence, No coloration 

Chloride, Phthalate, PSS 
 
 
 
Table 2. Features of TFA and laurate used in the decision tree 
Feature TFA Laurate 

Ionic valence 1 1 

Mulliken charge -0.610 -0.647 

Conjugate extension 0 0 

pKa 0.23 5.30 

Interaction energy 
(eV) 

3.805 4.189 

 

 
 
 
 
 
 
 

 
Figure 4. Decision tree diagram based on selected 
features. If the condition in the square is true, the target 
branches to the “True” side (white arrow). If the 
condition is false, the target branches to the “False” side 
(black arrow) 

 
Figure 5. Chemical structures of trifluoroacetate (A) and 
laurate (B). 



 
 

 
 
Table 3. Characteristics deduced (Ded.) using the decision tree 
diagram based on the features tabulated in Table 2 and the 
experimental (Exp.) result 
 

 Fluorescence Coloration 

 Ded. Exp. Ded. Exp. 

TFA Strong Strong No No 

Laurate Weak Strong Yes Yes 

 
 

4. Conclusion 
In this study, we successfully demonstrated that a machine 

learning approach can extract decisive factors that dominate the 
photo-induced phenomena of MNEI salts. The magnitude of 
interaction energy between MNEI and a guest anion contributes 
to the fluorescence emission. The magnitude of the non-
electrostatic interaction, which is characterized by the molecular 
weight and the molecular volume, contributes to the yellow 
coloration. Therefore, MNEI and its derivatives have potential 
as an anion sensor that distinguishes electrostatic properties by 
fluorescence and non-electrostatic properties by coloration. We 
also prepared a decision tree diagram to deduce the photo-
induced phenomena of the MNEI salts. The feature values used 
in the diagram can be obtained from simple theoretical 
calculations and literature data. Using the decision tree diagram, 
we can easily evaluate the properties of unidentified anions by 
measuring the fluorescence/UV-vis spectra. During the 
validation of the decision tree diagram, we succeeded in 
estimating the phenomena of MNEI-TFA. Although there was 
an error for the laurate system, its accuracy could be improved 

with an increased amount of training data. In addition, the 
spectrum estimation method of Kiyohara et al10. can be applied 
to interpret any type of spectrum. Therefore, we expect to 
increase the accuracy of estimation of the fluorescence/UV-vis 
spectra of the MNEI salt with increasing the amount of training 
data. Simultaneously, we will approach the cause of the 
photochemical phenomena and expand the application range of 
MNEI. 
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Figure 6. Fluorescence spectra excited at 380 nm in 1.5 mM 
MNEI–TFA and MNEI–laurate aqueous solutions (A). UV-vis 
spectra in 1.5 mM MNEI–TFA and MNEI–laurate aqueous 
solutions (B). The UV-vis spectra were measured immediately 
after (0 min) and five minutes after (5 min) UV irradiation. 

 


