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Abstract

This work examines methods for predicting the partition coefficient (logP ) for a
dataset of small molecules. Here, we use atomic attributes such as radius and partial
charge, which are typically used as force field parameters in classical molecular dynam-
ics simulations. These atomic features are transformed into index-invariant molecular
features using a recently developed method called Geometric Scattering for Graphs
(GSG). We call this approach “ClassicalGSG” and examine its performance under a
broad range of conditions and hyperparameters. We train a ClassicalGSG logP pre-
dictor with neural networks using 10, 722 molecules from the ChEMBL21 dataset and
apply it to predict the logP values from four independent test sets. The ClassicalGSG
method’s performance is compared to a baseline model that employs graph convolu-
tional neural networks (GCNNs). Our results show that the best prediction accuracies
are obtained using atomic attributes generated with the CHARMM generalized Force
Field (CGenFF) and 2D molecular structures.
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The ClassicalGSG method utilizes neural networks (NNs) to predict the logP values from
molecular features generated using a method called Geometric Scattering for Graphs (GSG).
The GSG method creates molecular features from the graph representation of the molecule,
where each atom has a set of atomic attributes. These atomic attributes are typically used
as force field parameters in classical molecular dynamics simulations and include partial
charges, Lennard-Jones well depth, Lennard-Jones radius, and atomic type.

1 INTRODUCTION

The partition coefficient (P ) measures the relative solubility of a compound between two

solvents. It is defined as the ratio of the concentration of an uncharged compound dissolved

in an organic solvent (e.g. octanol) in comparison to water. The logarithm of this ratio

(logP ) is considered to be one of the main factors in determining the drug-likeness of a

chemical compound. The logP determines the lipophilicity, which affects bioavailability,

solubility, and membrane permeability of a drug compound in the body. Moreover, an orally

active drug should have a logP value of less than 5 according to one of the criteria of the

famous Lipinski’s Rule of Five.1 Thus, predicting logP plays an essential role in the drug

discovery process and is our main focus in this study. The prediction of logP is also used as

a stepping stone to calculate other molecular properties such as the distribution coefficient

(logD),2 drug solubility (logS),3,4 and Lipophilic efficiency (LiPE).5 All of these properties

have been used in drug discovery and design: logD is an effective descriptor for lipophilicity

of an ionized compound,6 LiPE combines the potency and lipophilicity of a drug compound

to estimate its quality, and logS is important to model the solubility of a compound in the

human body.
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The partition coefficient is widely used in cheminformatics and generally there are diverse

experimental methods to measure it.7 However, these methods are time-consuming and

expensive for large databases of compounds and not feasible for compounds that are not

synthesized.8 Therefore, a large number of computational methods have been developed to

predict accurate values of logP . These methods have a long history and can be classified

by both their input features (atomic/fragment, molecular and hybrid) and their models or

algorithms (parameteric models vs. machine learning methods) (Table 1).

Table 1: logP prediction models classifications

Mathematical models

Parametric Models Machine Learning Methods

F
eatu

res

Atomic/Fragment
XlogP3,9 AlogP,10 ClogP,11

KowWIN,12 JPlogP13
László et al,14 Huuskonen et al15

Molecular MlogP,16 iLogP,17 Manhold18 AlogPS,19,20 S+logP,21 CSLogP

Hybrid Silicos-IT LogP22 TopP-S,23 OpenChem24

In atomic-based or fragment-based methods, which is based on atomic or fragment con-

tributions, a set of atomic or fragment based descriptors is used as input to the model, while

“molecular” methods use descriptors of the whole molecule, such as topology or molecular

fingerprints.16,17,19 “Hybrid” models combine atomic and molecular descriptors as input to

the model.23,24 In general, there are challenges with both atomic and molecular descrip-

tors. In Atomic-based or fragment-based methods, the accuracy of the atomic contributions

depends on the similarity of the atomic environments of the atoms in the group. Unfortu-

nately, more training data is need as the number of groups grows larger. Fragment-based

methods can struggle with defining the optimal size of fragments that participate in pre-

dictions. On the other hand, the accuracy of property-based methods heavily depends on

the choice of molecular descriptors. Common descriptors include: 3D molecular structure,17

molecular volume and surface area25, solvation free energies,25 number of carbon atoms and

heteroatoms.16 Furthermore, these molecular descriptors can be difficult or computationally

costly to generate.

A second way of categorizing logP predictors is by the types of mathematical model
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used to process the input data. Parameteric models use methods such as least squares esti-

mation or multiple linear regression to fit parameters that govern the relative contributions

of the different input features. Machine learning based methods such as Support Vector

Machines (SVM),26–28 Neural Networks (NNs),23,26,27,29 and Graph convolutional neural net-

works (GCNN)24 have been used to predict logP values.

Recently, some methods have been described that create their own custom molecular

features from atomic features, which go beyond simple additive models. The TopP-S23

predictor was developed by Wu et al and uses the atomic positions to create topological

descriptors called Betti barcodes. These Betti barcodes are used as molecular features that

are input into deep neural networks, along with atomic features such as atom type. Results

were shown to further improve upon the addition of 633 “molecular fingerprints” calculated

from ChemoPy.30–32 TopP-S has shown success in predicting logP over other methods like

XlogP3, ClogP and KowWIN using a group of independent test sets.

Graph representations of molecules have also shown success in various applications includ-

ing predicting molecular properties,24,33–35 virtual screening36 and molecular force field cal-

culations.37 In particular, OpenChem (https://mariewelt.github.io/OpenChem/html/

index.html) uses a graph representation of the molecules. Each atom represents a node

in a graph and has a vector of atomic features including element type, valence, charge, hy-

bridization, and aromaticity; bonded atoms are connected by an edge in the graph. GCNNs

are then trained on the graph representations created using these atomic features and the

2D structure – or, “graph structure” – of the molecules.

Graph representations are beneficial in that they are invariant to translation, rotation,

and reflection symmetries. Another molecular symmetry that should be respected is invari-

ance to the re-indexation of atoms: changing the order in which atoms are input to the

model should not affect the computed molecular features. Summation operations respect re-

indexation symmetry but it is not straightforward how to capture more detailed information

about molecular structure while maintaining re-indexation symmetry. A recently-described

method, Geometric Scattering for Graphs (GSG),38 provides a solution to this problem.

GSG, which is analogous to GCNNs, creates molecular features by scattering atomic fea-

tures across a graph using lazy random walks. GSG is fast in creating re-indexation invariant
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features and also its feature vectors have the same length allowing us to easily measure the

similarity of molecules, even those with different numbers of atoms. It has shown promising

results in the classification of social network data and predicting Enzyme Commission (EC)

numbers.38

Given this abundance of algorithms for creating molecular features, we seek to com-

pare some different methods based on molecular graph representations and their ability to

predict logP . Here we use GSG in combination with a set of atomic descriptors that are

generated for use with classical molecular dynamics force fields: partial charges, atom type,

and Lennard-Jones interaction parameters. We call this method “ClassicalGSG” and exam-

ine its performance as a function of different atomic/molecular features. We compare the

ClassicalGSG results with GCNNs trained on the same data and using a variety of atomic

features, including those from previous work.24 We then evaluate the performance of Clas-

sicalGSG on several independent test sets and study the properties of features generated in

the pipeline of GSGNN models. In addition, we investigate the properties of molecules with

high logP prediction error. We conclude with a discussion about the GSG method generated

features, the computational cost of generating atomic attributes with CGenFF and GAFF,

and the relative performance of 2D versus 3D structure in predicting logP values.

2 METHODS

Datasets and generation of atomic attributes

The dataset used in this work is generated by Popova et al.24 from the ChEMBL21 drug

database (https://www.ebi.ac.uk/chembl). This dataset consists of 14176 molecules in

SMILES format and their corresponding logP values.

The molecules are converted from SMILES format to mol2 format and their 3D structure

is created by OpenBabel (https://github.com/openbabel/openbabel). Then CHARMM

General Force Field (CGenFF)39,40 CGenFF and General AMBER Force Field (GAFF)41

parameter files are generated for each molecule. These force field parameter files are ei-

ther created by CGenFF using the CGenFF tool of the SilcsBio software package (http:
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//silcsbio.com) or by the Antichamber tool implemented in the Ambertools1842 pack-

age. The process of generating CGenFF parameter files fails for 175 molecules, and GAFF

for 681 molecules. These 774 molecules are removed from the ChEMBL21 dataset, re-

sulting in a dataset of 13402 molecules. Then 80% of the molecules are used for train-

ing and the rest for testing. In addition, we evaluate our trained model on four indepen-

dent test sets shown in Table 2. Star and NonStar18 test sets are publicly available on

https://ochem.eu/article/17434 and the Husskonen15 test set can be found on https:

//ochem.eu/article/164. The FDA dataset contains drug molecules that are approved by

the Food and Drug Administration (FDA) of the United Sates and originally prepared by

Chen et al.9

Table 2: Independent test sets used for evaluating ClassicalGSG models.

Test set name Number of molecules

FDA9 406

Huuskonen15 348

Star18 223

NonStar18 43

As mentioned above, we use atomic attributes including partial charges, atom type, and

Lennard-Jones interaction parameters. Below, we explain how we generate these atomic

attributes.

Atomic partial charges for each atom are extracted from the parameter files generated

by either the CGenFF39,40 or GAFF41 force field generator tools. To determine atom type

classifications, we compared a number of different schemes. In one scheme, we classify atom

types in one of five categories as shown in Table 3. This is referred to below as “AC5”.

Alternatively, we directly use the atom types as generated by either CGenFF or GAFF;

referred to below as “ACall.” In the third classification scheme, we manually sorted CGenFF

atom types into 36 groups (AC36; Table S1) and GAFF atom types into 31 groups (AC31;

Table S2) based on chemical knowledge. Specifically, efforts were made to make new groups

for atom types with different elements and hybridization values and to separately identify

atoms that are members of ring structures. Finally, a forth classification scheme simply uses
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a uniform atom type for all atoms, referred to as “AC1”.

Table 3: Classifying atoms in 5 categories (AC5).

Atom type Category number

Hydrogen 1

Oxygen and Nitrogen 2

Carbon with hybridization value < 3 3

Carbon with hybridization value = 3 4

Others 5

The two Lennard-Jones parameters – radius (r) and well-depth (ε) – are extracted from

either CHARMM or AMBER parameter files for each atom type. In summary the atomic

attributes are defined by both the force field generation tool (CGENFF or GAFF) and the

atom classification scheme AC1, AC5, AC36, AC31 or ACall and we generally refer to these

as “FF” atomic attributes.

For comparison, we also examine a different set of atomic attributes, following previous

work for the logP predictor from the OpenChem toolkit (https://github.com/Mariewelt/

OpenChem.git).24 These atomic attributes are defined as: atom element type, valence,

charge, hybridization, and aromaticity. The 3D structure is generated from SMILES strings

by RDkit (https://www.rdkit.org), then again using RDkit the atomic features are pro-

duced for each molecule and represented in one-hot encoding format as node features in

OpenChem. These are referred to below as ”OPENCHEM” atomic attributes.

Log P predictions using GSG

Geometric Scattering for graphs

The Geometric scattering for graphs (GSG) method, which has been introduced in Ref.38 is

a feature extraction method for graph data types and uses a geometric transform defined on

the graph. In the GSG method, molecules are represented by a graph of atoms where each

atom has a vector of attributes; a single attribute evaluated at each vertex is also referred

to as a “graph signal”. GSG combines the molecular structure (defined using an adjacency

7

https://github.com/Mariewelt/OpenChem.git
https://github.com/Mariewelt/OpenChem.git
https://www.rdkit.org


matrix) and atomic signal vectors to construct invariant, stable, and informative features as

shown in Figure 1.
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Figure 1: Architecture of the GSG method. The adjacency matrix describes the graph

structure of the molecule. Each atom has a set of attributes that are shown as colored bars.

Wavelet matrices Ψ are built at different logarithmic scales, j, using the adjacency matrix as

described in the text. Finally, the scattering transform is applied to get the graph features

using both the wavelet matrices and the signal vectors. Modified from figure made by Feng

et al.38

Now we briefly explain the mathematics behind this method. Let G = (V,E,W ) be a

weighted graph and x(vl), 1 < l <= n be the signal function defined on each node where n is

the number of nodes in the graph and vl represents node l. A graph random walk operator

is defined as P = 1
2
(I+AD−1), where A is the adjacency matrix and D is the degree matrix.

P t describes the probability distribution of a lazy random walk after t steps and hence the

term lazy random walk for P . In fact, graph random walks are low-pass filters that act like

convolution filters to capture graph features at different scales. Graph wavelet operators

– also known as “signal transform operators for graphs” – are defined at the scale 2j as

Ψj = P 2j−1 −P 2j . Finally, a set of scattering transform operators S0, S1 and S2, are defined

using the graph signals and wavelets to compute the molecular-level features. Unique S0, S1

and S2 vectors are created using different moments (q) of x and their wavelet coefficients Ψ,
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as well as different wavelet scales indexed by j:

(S0)q =
n∑
l=1

x(vl)
q, 1 ≤ q ≤ Q

(S1)j,q =
n∑
l=1

|Ψjx(vl)|q, 1 ≤ j ≤ J 1 ≤ q ≤ Q (1)

(S2)j,j′,q =
n∑
l=1

|Ψj′|Ψjx(vl)||q, 1 ≤ j < j′ ≤ J 1 ≤ q ≤ Q

The scattering operators are named based on the number of times the wavelets Ψ are used to

transform the signal x. For example, S0 features do not use the wavelet operators, and are

simply different moments of the atomic signals. These are called the “Zero order scattering

moments.” Accordingly, the S1 operators with one wavelet transformation are called “First

order scattering moments” and S2 with two wavelet transformations are called the “Second

order scattering moments.” Note that these allow mixing between different wavelet scales

as j and j′ are set independently.

We define the set S as the concatenation of all S0,S1 and S2 vectors using all possible

values of q, j and j′ as specified by the ranges in Eq. 1. The set of graph features is

generated deterministically from the atomic signals and adjacency matrix. The size of this

set of features is equal to NsQ(1 + J + J(J − 1)/2), where Ns is the number of attributes

per vertex, although this is lower if not all zeroth, first and second order features are used.

As mentioned above, one of the inputs to GSG is the adjacency matrix of the graph and we

consider two distinct ways to represent it. One is to use the 2D connectivity of the molecule,

where Aij = 1 indicates a bond between atoms i and j, and Aij = 0 otherwise. Alternatively,

the adjacency matrix can be calculated using the 3D structure, where Aij = f(Rij), where

f(R)43 is a smooth and differentiable function that is equal to 1 at low R and decreases to

0 as R exceeds some cutoff value Rc:

f(Rij) =

0.5(cos (
πRij

Rc
) + 1) for Rij ≤ Rc

0.0 for Rij > Rc

(2)

where Rc is the radial cutoff and Rij is the Euclidean distance between atoms i and j. If

f(Rij) is non-zero, nodes i and j are considered connected and disconnected otherwise. The
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wavelet operators in GSG can be defined using either discrete (2D) or continuous (3D) values

in the adjacency matrix.

Neural networks architecture and training

To predict the logP values from the GSG features (S), we develop a feedforward neural

network using PyTorch44 with a nonlinear activation function such as Rectified Linear Unit

(ReLU). To determine the best performing network, we consider three important hyper-

paramters including the number of hidden layers, the number of neurons in a hidden layer,

and the dropout rate whose ranges are shown in Table 4. We perform cross validation using

the PyTorch wrapper Skorch https://skorch.readthedocs.io/en/stable/ to tune the

hyperparameters. The loss function of our NN model is MSELOSS (Mean Squared Error)

and we use the Adam (adaptive momentum estimation)45 for optimizing the parameters.

We use MultiStepLR, which has an adjustable learning rate set to the initial value of 0.005

and dynamically decreases during training every 15 steps by a factor of 0.5. In training our

GSGNN models, we used two data regularization methods: L1 norm and standardization us-

ing the StandardScaler function from sci-kit learn. For GSG features with maximum wavelet

scales of J = 4, 5 and 6 we mostly benefit from using the standardization method. Other

settings can be found in Table 4.

Table 4: Neural network settings. Square brackets denote possible parameter values used

in the grid search method.

Parameter Values

Number of hidden layers [2, 3, 4, 5]

Size of hidden layers [300, 400, 500]

Dropout rate [0.2, 0.4]

Initial learning rate 0.005

Learning coefficient 0.5

Batch size 256

Max epoch size 400
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Log P predictions using GCNNs

Graph convolutional neural network

Graph convolutional neural networks (GCNNs) extend the application of convolutional neu-

ral networks to graph data. The goal of GCNNs is to take a graph and generate features

according to node attributes and graph structure. The heart of the GCNN method is the

convolution operator, which aggregates the features of neighboring nodes within the graph.

Recently, various implementations of GCNNs46–51 have been developed to increase the speed

and accuracy of the GCNN models. In this paper, we employ the GCNN model that was

developed in OpenChem based on the method introduced by Kipf and Welling .49 Similar

to the GSG model above, this model takes a graph G = (V,E) as the input where each node

has a vector of attributes x. The model processes the graph by passing it through multiple

hidden layers performing convolution operations (Figure 2).

Adjacency matrix

Atomic features

Atom index
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GCNN layer

Max-pooling layer

Graph gathering layer

Figure 2: Architecture of the GCNN method. The adjacency matrix describes the graph

structure of the molecule. Each atom has a set of attributes and are shown as colored bars.

GCNN layers are shown by gray color and are followed a max-pooling layer which is shown

in purple. The graph gathering layer is shown in green color adds features on all nodes to

generate the molecular feature vector.

The GCNN method works by propagating a feature matrix H – originally set to the value
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of the attribute vector x for all nodes – through a set of convolution operators as follows:

H(0) = X

H(l+1) = σ(ÃH(l)W (l))
(3)

where Ã = A + I, is the adjacency matrix of the input graph with self-connections, I is

the identity matrix, W (l) is the trainable weight matrix of layer l and σ is a non-linearity

function such as ReLU. H(l) denotes the value of the feature matrix on layer l.

Each convolution layer is followed by a graph max-pooling layer introduced in.50 Following

these convolution and max-polling operations , the final set of graph features is obtained by

a graph gather layer, where the values of each feature are summed over nodes. This last

layer gives GCNNs their index-invariance property.

GCNN architecture and training

We predict logP using GCNNs using the model implemented in the Openchem toolkit

https://mariewelt.github.io/OpenChem/html/index.html. This model contains 5 lay-

ers of graph convolutions with a hidden layer size of 128. The GCNN layers are followed

by max-pooling and a graph gather layer. A 2-layer neural network with ReLU as the ac-

tivation function is added after the graph gather layer. The PyTorch Adam optimizer and

the MSELOSS (Mean Squared Error) are used as the parameter optimizer and training loss

function, respectively. We use the MultiStepLR learning scheduler, implemented in PyTorch,

with an initial value of 0.001, a step size of 15 and a learning coefficient of 0.5 are used for

training the model. Parameters used for the GCNN training are summarized in Table 5.
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Table 5: Neural network settings

Parameter Values

Number of GCNN hidden layers 5

Number of NN hidden layers 2

Size of hidden layers 128

Dropout rate 0

Initial learning rate 0.01

Learning coefficient 0.5

Batch size 128

Max epoch size 200

3 RESULTS

Evaluation of molecular representations

For our set of atomic attributes (ClassicalMD), we use parameters from classical MD force

fields: the partial charge σ, and the Lennard-Jones radii and well-depth. We first compare

the performance of atomic attributes generated using two different algorithms: GAFF and

CGenFF. Both algorithms are used to automatically generate force field parameters for small

molecule ligands, by matching atomic environments with atoms that are part of existing force

fields; GAFF uses the Amber41 force field, while CGenFF uses the CHARMM39,40 force field.

Here we generate molecular features from atomic features using GSG (see Section 2). We

examine the four different atom type classification schemes discussed above: AC1, AC5,

AC36/AC31 and ACall. The GSG parameters used to construct the molecular features are

shown in Table 6.
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Table 6: Parameters for the Geometric Scattering for Graphs algorithm. The square

brackets show all of the values examined for each parameter. For “Scattering operators”, ‘z’

represents the zero order operator, ‘f’ is first order, and ‘s’ is second order.

Parameter Values

Adjacency matrix (A) [2D, 3D]

Wavelet maximum scale index (J) [4, 5, 6, 7, 8]

Scattering operators (z, f, s)
Four combinations

(z, f), (z, s), (f, s), (z, f, s)

Atom classification [AC1, AC5, AC36/AC31, ACall]

We trained 160 models for each of the CGenFF and GAFF atomic feature sets, each

trained using a 3-fold cross-validation method. After training, we ran tests on subsets of

the full database using an 80:20 train:test split. We then calculated evaluation metrics such

as the correlation coefficient (r2), Root Mean squared errors (RMSE) and Mean Unsigned

Errors (MUE) between the predicted and experimental logP values. In Figure 3, r2 and

RMSE values are shown for predictions using 2D and 3D molecular structures. Each r2

and RMSE is averaged on 20 NN models that are created with all combinations of the 4

geometric scattering operator sets and the 5 wavelet step numbers as shown in Table 6.
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Figure 3: Average r2 (A) and RMSE (B) for the ChEMBL21 test set using GSGNN models.

Each average is calculated over 20 individual parameter values and the error bars show the

best and worst performing models. The atomic features are generated with either CGenFF

or GAFF force fields and using one of three atom type classification schemes (”AC1”, ”AC5”,

”AC36/AC31” or ”ACall”).

We find that models with 2D structure universally have higher accuracy in prediction of

logP values. Additionally, it demonstrates that CGENFF atomic features on average are

more accurate in predicting logP values compared to GAFF atomic features, although this

is not true for ACall. We find that good results on average are obtained by classifying atom

types using AC36 categories; the best performing individual models are also found in this

category. We thus use CGenFF, 2D structure and AC36 for all models going forward.
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Wavelet maximum scale index (J)

0.0
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0.6
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1.0
r2
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z,s

z,f
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Figure 4: The r2 for the OpenChem test set using GSGNN models. The atomic features

are all generated with CGenFF force fields, AC36 atom type classification scheme, and 2D

molecular structure.

We next investigate different scattering moment sets and wavelet scales in Figure 4. We

find that for each examined wavelet number (4, 5, 6, 7 and 8) there is at least one model with

an r2 value of 0.9. The model also performs well for all combinations of scattering moments,

making it difficult to determine an optimal set of parameters.

To further evaluate the accuracy of our method, we examine four different independent

test sets: FDA, Huuskonen, Star and NonStar which are explained in Section 2. To avoid

any accidental overlap, we identified shared molecules and removed them from our train-

ing dataset. The training dataset contains 10, 722 randomly selected molecules from the

ChEMB21 dataset that successfully are processed by CGenFF. The trained models are eval-

uated using these test sets and the r2 between the actual and predicted logP values are

calculated. The results are shown in Figure 5. For the Huuskonen and FDA data sets we

find that there is at least one GSGNN model with r2 = 0.92 and r2 = 0.90, respectively.
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The best performing models for the Star test set is a maximum wavelet scale of J = 4 and

zero- and second-order scattering operators, while the best model for NonStar is a maximum

wavelet scale of J = 7 and zero-, first- and second-order scattering operators.

4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

r2

A FDA

4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

r2

B Huuskonen

4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

r2

C Star

4 5 6 7 8
Wavelet maximum scale index (J)

0.0

0.2

0.4

0.6

0.8

1.0

r2

D NonStar
f,s
z,s

z,f
z,f,s

Figure 5: The r2 for different test sets using GSGNN models. A) shows r2 for the FDA

test set. B) represent r2 for the Huuskonen test set. C) and D) show r2 for the Star and

NonStar test sets, respectively. The horizontal axis indicates the maximum wavelet scale J .

The atomic features are generated with 2D molecular structure, CGenFF force fields and

using AC36 atom type classification scheme.

The r2, RMSE and MUE of best-performing GSGNN model for each test set are shown

in Table 7. In paper23 the logP values for the FDA, Star, NonStar test sets are predicted

using their topology-based models (TopP-S) and the different established methods such as

ALOGPS, XLOGP3 and KowWIN. We find that our results do not outperform the TopP-

S method but we do achieve higher accuracy compared to other known methods such as

ALOGPS, KowWIN and XLOGP3 for FDA test set (Table S3), methods like XLOGP3 and

ALOGP for Star test set (Table S4) and XLOGP3 method for NonStar test set (Table S5).
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Table 7: The logP prediction performance results for four independent test sets.

Dataset r2 RMSE MUE

FDA 0.91 0.56 0.35

Star 0.90 0.49 0.35

NonStar 0.72 1.02 0.81

Huuskonen 0.93 0.37 0.23

Geometric scattering vs graph convolution

To compare the performance of geometric scattering (GSGNN) models to the graph con-

volution (GCNN) models, we trained models using these two methods with two different

sets of atomic attributes ”CLASSICALMD” and ”OPENCHEM” as described in Section 2.

To rule out the influence of the training/test split, we trained 5 models for each method

where the data is randomly divided into test and training sets with 80/20 ratio, respectively.

Each of the five GSGNN models is trained using 5-fold cross validation. The RMSE and r2

are determined for each model and are shown in Table 8. Note that the atomic attributes

for these GSGNN models are generated by 2D molecular structure, CGenFF force fields,

and AC36 atom type classification scheme. The GSG parameters that used to generate the

molecular features are from one of the best performing models (a wavelet maximum scale of

J = 4 and all three of the zero-, first- and second-order scattering operators) from Figure

4. Our results suggest that the ClassicalGSG method, which is a GSGNN model trained on

FF atomic attributes, has the most accurate prediction of logP values.

Table 8: The logP prediction results using different set of features and models

Method name Atomic attributes Model r2 (STD) RMSE (STD)

ClassicalGSG FF GSGNN 0.91 (0.003) 0.52 (0.009)

- OPENCHEM GSGNN 0.89 (0.003) 0.57 (0.005)

- FF GCNN 0.75 (0.091) 0.91 (0.18)

OpenChem OPENCHEM GCNN 0.79 (0.052) 0.83 (0.122)
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Features visualization

To examine the molecular features that are generated in the pipeline of the ClassicalGSG

method, we visualize the features generated by the GSG method and the last layer of NN

model using t-distributed stochastic neighbor embedding (t-SNE)52 plots. The t-SNE plots

are intended for projecting high dimensional data into the low dimensional space so it can be

visualized readily. Figure 6 shows the GSG and NN features for molecules in the ChEMBL21

test set visualized in a 2D space. Here each point shows a molecule in the ChEMBL21 test

set and is colored by its logP value. The initial dimension of GSG features is 1716 while NN

features have size of 400. These GSG features are generated from CGENFF atomic charges,

2D molecular structure, AC36 type classification scheme and all three scattering moment

operators with wavelet step number of 4.

We can observe from Figure 6 that features extracted from NN are more discriminative

with respect to logP values. More specifically, in the last layer of the NN model, molecules

with similar logP value tend to be near each other and form distinct clusters. In contrast,

GSG features are less discriminative where nearby molecules have different logP values. To

further verify this, five nearest neighbors are determined for each point in the GSG and NN

reduced feature space. Then, the difference between the actual logP value of each point and

its five neighbors are calculated and averaged. This value averaged over all the molecules

and is shown by 〈∆ logP 〉N inside the figure. The 〈∆ logP 〉N in the reduced GSG features

space is 0.81 while this value for the reduced NN features space is only 0.17. The average

logP difference between two random points is 2.00. This shows that molecules with similar

logP values are closer in the NN features space.

This is noteworthy, as the GSG features are task independent and therefore are not

adapted to any particular prediction task, including logP prediction. On the other hand,

the NN model, which takes as input the GSG features, is a supervised model that is trained

for the specific task of logP prediction. The results in Figure 6, in addition to the results in

Tables 7 and 8, illustrate that the GSG features provide not only a translation, rotation, and

permutation invariant representation of the molecules, but one that is also sufficiently rich

so that, when combined with a downstream supervised NN, the resulting model provides
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accurate estimates of logP values for molecules.
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Figure 6: The t-SNE plots with GSG and NN features of the ChEMBL21 test set molecules.

Each represents a molecule and is colored by its actual logP value. 〈∆ logP 〉N shows the

mean logP difference value calculated over the nearest neighbors in the t-SNE plot. A) The

GSG features of size 1716 are projected into 2-dimensional space. B) The NN features from

the last hidden layer with size of 400 are projected into 2-dimensional space.

Distinguishing features of failed molecules

To investigate the common characteristics of failed molecules during the prediction of their

logP value, we created molecular fingerprints, which have been used extensively in cheminfor-

matics, QSAR/QSPR predictions, and drug design .23 Here we employ ChemoPy30(https:

//github.com/dlc62/pychem) to create a set of constitutional fingerprints. To specify the

failed molecules we define a failure cutoff value (here, 0.5) where if the difference between

the actual and predicted logP values is larger than the cutoff, we consider the molecule as

a failed prediction. We determine the failed molecules from ClassicalGSG models we de-

scribed in Section 3. These models are trained on features constructed by CGenFF force

fields, 2D structure and AC36 atom type classification method. The probability distribution

of 30 constitutional fingerprints are calculated for all molecules in the ChEMBL21 dataset
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and for failed molecules in each of the 5 GSGNN models. KullbackLeibler divergence (KL-

divergence)53 values are determined by comparing probability distributions of all data with

distributions of the failed molecules from each model. The KL-divergence values are aver-

aged over five models and their standard error (STE) is shown in Table 9. We note that the

PCX descriptors count the number of shortest paths of length X. The attributes with the

highest KL-divergence values are: PC counts with lengths of 2, 1, 3 and 4; molecular weight

(Weight); the number of carbon atoms (ncarb); and the number of heavy atoms (nhev). In

other words, the distributions of failed molecules are enriched in particular values of these

attributes.

Table 9: The averaged KL-divergence between fingerprint distributions of all data versus

failed molecules averaged over 5 GCGNN models.

Fingerprint Average KL STE Fingerprint Average KL STE

PC2 0.048 0.005 nhet 0.028 0.003

PC1 0.047 0.006 noxy 0.026 0.003

PC3 0.046 0.007 nrot 0.026 0.004

Weight 0.045 0.004 nsulph 0.026 0.003

PC4 0.044 0.004 ndb 0.017 0.002

ncarb 0.043 0.005 ndonr 0.012 0.004

nhev 0.043 0.007 ncof 0.011 0.001

nta 0.043 0.007 AWeight 0.011 0.002

PC5 0.04 0.005 nnitro 0.01 0.001

naro 0.04 0.003 ncocl 0.009 0.002

PC6 0.039 0.005 nhal 0.008 0.001

nsb 0.038 0.004 nphos 0.007 0.003

naccr 0.036 0.002 ncobr 0.006 0

nring 0.035 0.004 ncoi 0.005 0.002

nhyd 0.031 0.003 ntb 0.001 0

The probability distributions of fingerprints with the highest KL-divergence values are

shown in Figure 7. The distributions for the failed molecules largely follow the complete
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dataset distribution, but are enriched towards higher values, suggesting that the logP pre-

dictions are more likely to fail for larger molecules. Interestingly the distributions for at-

tributes that count rare element types (e.g. number of Phosphorus (nphos), number of iodine

atoms (ncoi) and number of bromine atoms (ncobr)) do not show large KL-divergence val-

ues, although this might have been expected given that they are poorly represented in the

training set. The atom element types and their count in our dataset is shown in Figure S1.

All molecules
Model 1, failed
Model 2, failed
Model 3, failed
Model 4, failed
Model 5, failed

Figure 7: Probability distributions of molecular fingerprints. The histograms show the

distribution of fingerprints of all data and failed molecules of 5 GCGNN models. The distri-

bution of all data is shown in thick black line. A) The number of shortest paths of length 2,

B) the atomic weight, C) the number of carbon atoms (ncarb) and D) the number of heavy

atoms.

4 DISCUSSION AND CONCLUSIONS

In this paper, we introduced a method called ”ClassicalGSG” for predicting the partition

coefficient. Our method uses atomic attributes that are usually utilized as parameters for
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classical MD simulations. These parameters include partial charges, Lennard-Jones well

depth, Lennard-Jones radius and atomic type. The pipeline for generating these parameters

includes: creating 3D structure from SMILES, creating PDB and Mol2 formatted files, and

generating atomic parameters using either Antechamber (GAFF) or CGenFF tools. We note

that, in our implementation, the Antechamber tool is about 200 times slower than CGenFF,

requiring a couple of days to process 10,000 molecules.

We employ the geometric scattering for graphs (GSG) method to transform the atomic

features into molecular features that satisfy re-indexation symmetry. Our results indicate

that GSG is powerful enough to capture the universal molecular features, as the average

logP difference for all pairs of adjacent molecules in a t-SNE plot (〈∆ logP 〉N) is 0.81,

which is a low value compared to the random pair logP difference (2.00). As these features

are general to the molecule and not specific to logP , this suggests that they can be used

in multi-task NNs to predict other molecular properties, such as solubility (logS), melting

point, pKa, and intestinal permeability (e.g. Caco2).54

Our results show that employing a 2D molecular structure in ClassicalGSG yields ac-

curate logP predictions compared to 3D structures, and this confirms the same conclu-

sion achieved previously.55,56 This could be due to difficulties in generating appropriate 3D

structures, or that a single 3D structure is insufficient to capture the high probability con-

formations of a given molecule. Additionally, our 3D adjacency matrix did not explicitly

distinguish between bonded and non-bonded interactions, where the former are much more

important to determine molecular properties.

The results reported here for four independent external test sets show that our logP

ClassicalGSG method is generalizable to new molecules. However, we do not expect this

model to perform well for molecules with new elements or functional groups that are not

covered in the training set. Like other empirical methods, we expect the accuracy will

improve as the availability of training data grows.

To facilitate the use of the ClassicalGSG method we made code available on GitHub

https://github.com/ADicksonLab/ClassicalGSG. This repository contains modules for

training and testing NN models using the ClassicalGSG method explained in this paper as

well as a trained model that was used to make predictions presented here. A command-line
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executable is also included for predicting logP values that takes the mol2 and the CGenFF

parameter files of the molecule as input.
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