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ABSTRACT: A remote C3–H activation of pyridine-containing 
substrates can be achieved with a directive Ni catalyst. The bi-
functional NHC ligand incorporates an Al-binding side-arm that 
recruits and orients the substrate leading to the assembly of the 
requisite macrocyclophane transition state through reversible 
coordination. This assembly not only induces the reactivity of the 
otherwise unreactive Ni catalyst, but also overrides the intrinsic 
C2/C4 electronic bias of the Al-bound pyridine substrate, allow-
ing for the first time, the C3 alkenylation of a variety of pyridine 
and heteroarene substrates as the limiting reagent. 

The ubiquity of C–H bonds in organic molecules and their of-
ten-marginal chemical differences renders the site-selective acti-
vation of C–H bonds an enduring challenge.1 The directing ap-
proach bearing a covalent bond between a directing group and a 
substrate has proved to be a particularly promising strategy for 
proximate and increasingly for remote C–H bond activations 
(Type I, Scheme 1a),2 In particular, the importance of distance 
and geometric considerations for tuning the macrocyclophane 
transition state has been demonstrated for predictable remote C–H 
activation.3,4 However, this covalent template strategy faces prac-
tical challenges that impede synthetic application, where stoichi-
ometric template use and separate template attachment and re-
moval steps are required. To address these challenges, a reversible 
template-substrate anchoring strategy has been developed (Type II, 
Scheme 1a).5 This strategy merges the role of template and ligand 
into a single bifunctional scaffold, renders the template catalytic 
and eliminates the extra steps required for template attach-
ment/removal. Though attractive, this strategy has seen limited 
applications in the ability to catalyze wide-ranging functionaliza-
tions; success has so far been restricted to Ir-catalyzed remote C‒
H borylation through reversible interactions such as H bonding,6 
ion pairing7 and Lewis acid coordination.8 In contrast, direct C‒C 
bond forming reactions of remote C‒H bonds has been scarcely 
explored, partly attributed to lower reactivity and  harsher condi-
tions required. Addressing this limitation,  our group has recently 
achieved the first example of remote C‒C bond forming reaction 
via Pd-Pd homobimetallic catalysis, furnishing remote C‒H 
alkenylation of relatively electron-rich arenes using the azine 
nitrogen as the template anchoring group (Scheme 1b).9 Despite a 
step forward, the requirements of high loadings of Pd, template, 
ligand, and super-stoichiometric amounts of metal oxidants for 
catalyst turnover offer much scope for practical improvement. 
Moreover, electron-deficient pyridine and related derivatives—
challenging substrates widely encountered in natural products and 

pharmaceuticals—remain incompatible in such a reaction. Herein, 
we report a Ni‒Al heterobimetallic catalyst for the C3‒H alkenyl-
ation of pyridines with alkynes, providing an atom-economical 
method for direct C‒C bond formation without the need for exter-
nal oxidants (Scheme 1c). Importantly, this manifold enables the 
use of pyridines as the limiting reagent for the first time, allowing 
the late-stage C3-H alkenylation of pyridine motifs in complex 
molecules. A bifunctional NHC was identified as the critical lig-
and, which recruits and positions the substrate via Al anchorage to 
the vicinity of the Ni catalyst. This directive ligand not only ena-
bles catalytic reactivity through substrate and ligand binding, but 
also reverses the conventional C2/C4 site-selectivity obtained in 
low-valent Ni-catalyzed C–H activation processes.  
Scheme 1. Remote C–H Activation via Macrocyclophane 
Transition State 
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a) Remote C–H activation via macrocyclophane transition State



 

   The C3-selective alkenylation of pyridine-containing hetero-
cycles represents a desirable transformation in the realm of medic-
inal chemistry due to both its prevalence in pharmaceutical agents 
and its facile entry point to a range of functionalities (Scheme 
2a).10,11 However, the strong s-coordinative ability of pyridines 
often poison metal catalysts, rendering the development of cata-
lytic processes a formidable challenge. In 2011, we reported a 
Pd(II)-catalyzed C3–H alkenylation of pyridines,12,13 which gave 
high C3 selectivity arising from an electrophilic palladation pro-
cess (Scheme 2b). However, a large excess of pyridine substrate 
(16 equivalents) was required to achieve reasonable reactivity. 
This drawback also rendered this reaction incompatible with the 
late-stage functionalization of complex pyridine-containing sub-
strates, where the large excesses required poses unfavorable re-
source, cost and solubility issues in a synthetic setting. In pioneer-
ing studies by Nakao and Hiyama,14,15 coordination with Al Lewis 
acids was demonstrated to mask the pyridyl nitrogen, and polar-
ized the pyridine ring to enhance the reactivity of C2/C4 positions 
towards nucleophilic low-valent Ni C–H oxidative addition. 
Prompted by this finding, we envisioned that a bifunctional car-
bene ligand could coordinate to both Ni and Al and form a het-
erobimetallic catalyst16 directed towards the C3(5) position, thus 
achieving the Type II template approach (Scheme 1) and revers-
ing the conventional C2/C4 selectivity (Scheme 2c). 
Scheme 2. C3-Alkenylation of Pyridinesa 

 

We selected non-substituted pyridine (1a) and oct-4-yne (2a) as 
the model substrate and coupling partner to explore the necessary 
ligands and reaction conditions for this transformation. Prelimi-
nary results showed that traditional phosphines and NHC ligands 
were poorly reactive and, as expected, delivered the alkenylated 
product at the C2 or C4 positions exclusively (Table S1). As ex-
pected, the in situ formation of NHCs from their precursors led to 
significant decrease in reactivity, attributed to the generation and 
deleterious coordination of tBuOH to the Al Lewis acid. To our 
delight, we found that ligand L1 bearing a coordinating alkoxy 
group provided the desired mono-C3-alkenylated pyridine in 
moderate yields (33%, Table S1), overruling the intrinsic C2/C4 
selectivity of the substrate. Notably, the observed reactivity for L1 
could be obtained through the use of the imidazolium halide pre-
cursor, obviating the need for carbene pre-generation required in 
previous reports.15a,b Then we systematically surveyed a range of 
Al Lewis acids and varied the linker length on the ligand (Table 

S3 and S6). We found that best results were obtained by using 
AliBu3 as the anchoring Lewis acid, in conjunction with a two-
carbon alkoxy side-arm (L1), improving the combined yield to 61% 
(Scheme 3). The importance of linker length was affirmed by the 
use of a homologated side-arm (L3), which resulted in both a re-
duction in yield and selectivity. Notably, the use of unsubstituted 
aryl NHC ligand (L4) was ineffective, inferring that the assembly 
of the putative macrocyclophane intermediate may be facilitated 
by conformational restriction. This observation was reinforced by 
the further incorporation of methyl groups onto the imidazolium 
backbone (L6, Table S6), which elevated the yield to 64% (10:1, 
C3:others). Additional tuning of the NHC aryl group revealed that 
the para-methoxy substitution was optimal (L10, 87%, ca. 16:1, 
C3:others, Scheme 3). Importantly, methylation of the coordinat-
ing alkoxy group completely shut down the reaction (L12, Scheme 
3),17 demonstrating that Al coordination by the ligand side arm 
was crucial for both the reactivity and the selectivity of this pro-
cess. Further mechanistic evidence validating such a three-
component assembly process was obtained by 1H NMR studies, 
which showed that 3-phenylpyridine, AlMe3 and ligand (L10) 
formed a new complex demonstrated by marked downfield shifts 
of H2, H3, and H6 of 3-phenylpyridine (Page S13 and S14). In 
addition, heating the aforementioned three-component complex 
under the reaction conditions led to the C3-alkenylation product in 
34% (Page S15), supporting the productive role this ternary com-
plex plays in this reaction. 
Scheme 3. Ligand Optimizationa 

 
aReaction conditions: 1a (0.20 mmol), 2a (0.6 mmol), toluene (0.5 
mL); Ni(cod)2, Ligand, tBuONa and toluene at 80 °C for 30 min, 
then pyridine, AliBu3 and alkyne substrate at 100 °C under N2 for 
12 h; yield of isolated mixed isomers; ratio of isomers determined 
by 1H NMR. bL10 (10 mol%).  

With the optimized conditions in hand, we proceeded to exam-
ine the scope of pyridines and other heteroarenes for this reaction 
(Scheme 4). Electron-donating substituents at C3 positions such 
as alkyls (3b, 3c, 3d), alkoxyl (3e) and amino groups (3f and 3g) 
were compatible with the reaction, providing the corresponding 
products in 49% to 64% yield with the desired C5 selectivity (up 
to 30:1). It was pleasing to observe that increasing the electron 
density of the pyridine ring system tends to inhibit oxidative addi-
tion of the Ni(0) catalyst with C–H bonds. As expected, electron-
withdrawing groups such as F (3h) and CF3 (3i) significantly 
elevated the yield to 91% (44:1, C5:C4) and 99% (4:1, C5:C4), 
respectively. Though highly reactive, decreased C5 selectivity 
was observed for 3i containing the CF3 group, attributed to poorer 
binding between the pyridyl group and the Al Lewis acid resultant 
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of its strongly electron-withdrawing nature. A wide range of func-
tionalities were well-tolerated in this reaction; 3j and 3k contain-
ing ester or amide groups both gave good yields and high C5 se-
lectivity. In addition, aryl groups (3l-3p) bearing a range of func-
tional groups such as methoxy (3n), silyl (3o) and boryl groups 
(3p) are tolerated, giving the desired products in 72–92% yields 
and excellent C5 selectivity (16:1 to 33:1). The presence of a C4-
phenyl group (3q) led to decreased reactivity and C3 selectivity, 
presumably owing to both its electron-donating effect as well as 
heightened steric hindrance. On the other hand, the smaller C4 
fluoro group (3r) provided near-quantitative yield and high C5 
selectivity (9:1). Consistent with the proposed coordination of 
pyridine with Al as a crucial mechanistic component, the presence 
of C2 substituents gave poorer reactivity and selectivity (3s and 
3t). Notably, other azaheteroarenes were also compatible (3u to 
3x): alkenylation of diazaheteroarenes such as pyridazine (3u) and 
pyrimidines (3v and 3w) afforded the desired products in 63-86% 
yields (6:1–25:1, C5:others); quinoline gave the alkenylated prod-
uct in 72% yield, albeit with a lower selectivity (1:1, 3x) owing to 
poorer coordination with Al Lewis acid. 
Scheme 4. Scope of Pyridines a 

 
aReaction conditions: 1 (0.40 mmol), 2a (1.20 mmol), toluene (1.0 
mL); Ni(cod)2, L10, tBuONa and toluene at 80 °C for 30 min, then 
pyridine, AliBu3 and alkyne substrate at 100 °C under N2 for 12 h; 
yield of isolated mixed isomers; ratio of isomers determined by 

1H NMR. bNi(cod)2 (20 mol% ), L10 (20 mol%), AliBu3 (20 
mol%), and tBuONa (25 mol%). c140 °C. dAliBu3 instead of Al-
Me3.  

The scope of alkyne coupling partners was next surveyed using 
3-fluoropyridine (1h) as a model substrate. Considering the syn-
thetic versatility of the olefin motif, it was pleasing to observe that 
a broad range of alkylalkynes was well-tolerated, affording the 
trisubstituted alkenylated products with excellent C5 selectivity 
(Scheme 5, >40:1 C5:others). Both symmetrical dialkylalkynes 
(4a to 4e) and non-symmetrical alkylalkynes (4f to 4h) afforded 
the corresponding products in 82–93% yields. For non-
symmetrical alkynes, the regiochemical outcomes were governed 
by the relative steric hindrance between the two alkyne substitu-
ents, with larger size differences giving higher alkene regioselec-
tivity. As well, alkylalkynes bearing potentially acid and Lewis 
acid sensitive groups such as silanes (4i and 4j) and silyl ethers 
(4k to 4o) were all compatible substrates in this reaction. 
Scheme 5. Scope of Alkynesa 

 
aReaction conditions: 1h (0.40 mmol), 2 (1.20 mmol), toluene 

(1.0 mL); Ni(cod)2, L10, tBuONa and toluene at 80 °C for 30 min, 
then pyridine, AliBu3 and alkyne substrate at 100 °C under N2 for 
12 h; yield of isolated products; bRegioisomer ratio of alkenes 
determined by 1H NMR. 

In contrast to previously reported C–H olefination of pyri-
dines,12 this newly-developed catalyst allows for the use of pyri-
dine substrates as the limiting agent, thus opening new avenues 
for the efficient late-stage modification of heterocycle-containing 
bioactive molecules (Scheme 6). To demonstrate this, we applied 
our C–H alkenylation reaction to a range of nicotinic acid-derived 
complex molecules, such as (–)-menthol (5a), (–)-borneol (5b), 
diacetonefructose (5c), (–)-Corey lactone diol (5d), and cholester-
ol (5e). Gratifyingly, the reactions proceeded smoothly, providing 
the desired products in 43–79% yield and with high C5 selectivity 
(11:1–32:1). Medicinally relevant compounds were also compe-
tent in this process; azabicyclic compound (5f), representing an 
important class of agent active in the central nervous system, was 
alkenylated in 60% yield (26:1 C5:others). Abiraterone (5g), an 
anticancer drug, was alkenylated in 65% yield (34:1 C5:others). In 



 

addition, bioactive steroid hormones such as estrone (5h) and 
estradiol (5i) were also suitable substrates, providing the corre-
sponding alkenylated products in 88% and 89% yield, respective-
ly, both with high C5 selectivity (15:1–30:1). 

In conclusion, we have developed a bifunctional Ni catalyst 
that allows, for the first time, the C3(5)-selective C–H alkenyla-
tion of pyridine-containing hetereocycles as the limiting reagent. 
As the alkene functionality could be readily derivatized, the broad 
scope and synthetic practicality of this reaction could enable the 
facile access of diverse C3(5)-functionalized motifs bearing a 
range of carbon oxidation states. We determined that the assembly 
of a putative macrocyclophane intermediate through reversible Al 
coordination was crucial to enable both catalyst reactivity and 
site-selectivity. As a testament to the strength of the directing 
effect, the ligand allows for the Ni catalyst to override the intrin-
sic electronic activation of the C2 and C4 and achieve the selec-
tive metalation at the C3–H bond of pyridines. This process fur-
ther validates the applicability of a merged ligand-template strate-
gy in C–H activation, where we anticipate these design principles 
applied to a wider range of remote functionalization processes. 
Scheme 6. Late-Stage Alkenylation of Pyridine-Containing 
Bioactive Moleculesa 

 
aReaction conditions: 1 (0.40 mmol), 2a (1.20 mmol), toluene 

(1.0 mL); Ni(cod)2, L10, tBuONa and toluene at 80 °C for 30 min, 
then pyridine, AliBu3 and alkyne substrate at 100 °C under N2 for 
12 h; yield of isolated mixed isomers; ratio of C5/C6/C4 deter-
mined by 1H NMR. bNi(cod)2 (20 mol%), L10 (20 mol%), AliBu3 
(20 mol%), tBuONa (25 mol%).  
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