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SYNOPSIS 

 

 

BRIEFS: Machine learning has for the first time overcome the holistic and rapid prediction of 

PLQY of solvated organic molecules in various solvents with a mean absolute error of 0.13. Multi-

faceted investigations with TD-DFT have proved that machine learning can achieve comparable 

accuracy and far superior speed. Retraining makes learning on-the-fly become possible, prove the 

generalizability of the model. 
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Abstract 

The development of functional organic fluorescent materials calls for fast and accurate predictions 

of photophysical parameters for processes such as high-throughput virtual screening, while the 

task is challenged by the limitations of quantum mechanical calculations. We establish a database 

covering >4,300 solvated organic fluorescent dyes and develop new machine learning (ML) 

approach aimed at efficient and accurate predictions of emission wavelength and 

photoluminescence quantum yield (PLQY). Our feature engineering has given rise to 

Functionalized Structure Descriptor (FSD) and Comprehensive General Solvent Descriptor 

(CGSD), whereby a highly black-box computational framework is realized with consistently good 

accuracy across different dye families, ability of describing substitution effects and solvent effects, 

efficiency for large-scale predictions and workability with on-the-fly learning. Evaluations with 

unseen molecules suggests a remarkable MAE of 0.13 for PLQY and 0.080 eV for emission energy, 

the latter comparable to time-dependent density functional theory (TD-DFT) calculations. An 

online prediction platform was constructed based on the ensemble model to make prediction in 

various solvents. Our statistical learning methodology will complement quantum mechanical 

calculations as an efficient alternative approach for the prediction of these parameters. 
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Introduction 

Organic fluorescent materials, especially small-molecule organic fluorescent dyes, have been used extensively not 

only as useful tools in biological research 1-4 but also as vital elements in material science5-10. The last decades have 

seen the development of novel fluorescence-based applications including electrically pumped organic laser 

(EPOL)11 ,stimulated emission depletion (STED) microscopy12, 13, thermally activated delayed fluorescence (TADF) 

organic light-emitting diode (OLED)14, 15, etc., attracting great attention to the rationale design of organic materials 

with high photoluminescence quantum yields (PLQY, ΦPL) and precisely controlled maximum absorption and/or 

emission wavelengths (λabs, λem)16, 17. Nevertheless, it remains a great challenge to predict ΦPL with first-principle 

calculations18-20. The high expense of excited-state calculations, combined with the involved interplay between 

radiative and non-radiative processes, has made it exceedingly costly to fully explore excited-state potential energy 

surfaces (PESs) without prior information21, 22. The situation is further compounded by the involvement of triplet 

excited states via intersystem  crossing, whose modelling relies on accurate singlet-triplet gaps, spin-orbit coupling 

(SOC) strengths, etc23. For solvated organic dyes, the modelling of solvent, implicitly or explicitly, can lead to an 

array of additional issues for solvent response, hydrogen bonding effects, etc., albeit dramatic dependence of ΦPL on 

solvent is not any rare phenomenon24. As a neat quantum mechanical treatment, the thermal vibrational correlation 

function (TVCF) formalism developed by Shuai et al. has been applied to the ΦPL predictions of bodipy 25 and 

rationalization of aggregation induced emission (AIE) 18, 26 and room-temperature phosphorescence (RTP) 27, 28. 

However, successful TVCF calculations are still within a limited scope, and the efficiency is far from satisfactory for 

large-scale screening. Despite the efforts by Van Voorhis et al. that develop semi-empirical methods to improve the 

efficiency (and accuracy) of ΦPL predictions, the specific backbones and moderate accuracy (MAE ≈ 0.2) again reflects 

the great challenge of ΦPL predictions 23, 29. Besides, the application of all these approaches requires details about the 

major photophysical processes. For the high-throughput screening of organic materials with high ΦPL, it is still strongly 

desired to develop a black-box computational framework with simple inputs, no requirement for pre-knowledge in 

photophysical processes, consistently good accuracy across different dye families, capability of describing substitution 

effects and necessary solvent effects, and efficiency for large-scale predictions. 

Although the predictions of λabs and λem are much more tractable than ΦPL, the commonly adopted computational 

methods, especially linear response time-dependent density functional theory (TD-DFT), is still in urgent need of 
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improvement in various aspects30-32. Seemingly a black-box method, the level of theory being used can have serious 

influences on the performance of TD-DFT33. In particular, the percentage of Hartree-Fock exchange greatly affects 

the description of charge-transfer excited states, the prediction of excited-state geometries (as in biaryl compounds), 

and, in many cases, the systematic overestimation of excitation/emission energies34, 35. Strategies like optimal tuning 

can partly alleviate these issues, but also creating a notable increase in computational expense that is inviable in the 

context large-scale predictions36, 37. Moreover, TD-DFT is unavoidably biased towards certain backbones (e.g. even 

double hybrid functionals fail for cyanines)38. Finally, the efficiency of TD-DFT calculations, especially taking its 

O(N4) scaling into account, can hardly meet the requirement for the large-scale screening of organic materials. 

Analogous to PLQY predictions, the fast, accurate, black-box prediction of λabs and λem with unbiased generality across 

different dyes is sought after in this work.  

The difficulties in first-principle photophysical modellings have motivated us to explore a fundamentally different, 

top-down data-driven approach. In recent years, machine learning (ML) has exhibited enormous potential as a useful 

tool in medicinal chemistry39, organic synthesis40, 41, and material chemistry42-44. For organic materials, although ML 

models have been established for various single-molecular properties available from (TD-)DFT calculations45-47, 

predicting macroscopic characteristic parameters (activity, strength, durability, efficiency, etc.) based on molecular-

level structural information is still a great challenge. So far, first principles can hardly predict these parameters. 

Reported ML predictions are limited to Power Conversion Efficiency (PCE)48-52, gas absorption selectivity53-55 and 

AIE effect56, most relying on expensive quantum mechanical calculations to generate input expressions. For solvated 

molecules, expression of solvent features is critical but rarely studied in detail57. To achieve large-scale predictions 

for emission wavelength and PLQY with low/no sacrifice in accuracy, new strategies for feature engineering as well 

as the selection/designing of ML algorithms must be explored.  

Herein, we report the development of highly accurate ML models for the fast estimation of photophysical 

parameters (λabs, λem, and ΦPL) for solvated organic fluorescent materials. A database with more than 4,300 

experimental samples and 11,000 data (λabs, λem, and ΦPL) was established. Functionalized Structure Descriptor (FSD) 

and Comprehensive General Solvent Descriptor (CGSD) were developed and shown to be efficacious quantum-

chemistry-free input expressions, enabling high-speed ML predictions. Remarkably, our optimal ML models predict 

ΦPL with MAE = 0.11 and λem with MAE = 14.30 nm (0.066 eV in energy scale). This data-driven approach exhibits 

satisfactory universality towards unseen molecules and is systematically improvable via re-training and on-the-fly 
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learning. Using our new solvent descript (CGSD), the pronounced change of PLQY in different solvents can be 

predicted. Detailed comparison of our approach with TD-DFT calculations suggests dramatically less time cost for 

λem predictions (ML <1 s versus TD-DFT ~50 CPU hours for each molecule) with minor difference in accuracy. 

Ensemble model was incorporated into a Web version freely available at http://www.chemfluor.com, which hoped to 

be a useful tool for pre-screening and rational designing of organic fluorescent molecules. We believe that our black-

box ML approach will serve as an efficient and reliable strategy that complements quantum mechanical calculations 

for the estimation of PYQY as well as the high-speed prediction of emission wavelengths. 

Results and Discussion 

Development of Machine Learning Models. 

 Figure 1a shows the statistics of absorption/emission wavelengths (>4,000 molecules with >8,000 wavelength 

data) collected from the literature. The data consist mainly of commercial fluorescent dyes and novel organic 

molecules with fluorescent activity reported in recent years (Figure 1b), including various skeletons with different 

functional groups. Most of the emission wavelengths are distributed in the range of 400 – 700 nm (blue to near-

infrared). One reason is that fluorescent dyes with longer emission wavelengths are believed conducive to the 

applications in biological imaging, and are synthesized extensively in recent years.  

 

Figure 1. (a) Distribution of maximum absorption and emission wavelengths of the solvated organic fluorescent materials in our database. (b) 

Selective organic dyes in our database. (c) Illustration for the motivation of using multiple fingerprints.  

In order to develop ML models, we started by the choice of molecular and solvent descriptors. Molecular descriptors 

serve as the basis for machine learning, for it transforms molecular information into computer-readable data. 

Molecular fingerprints, a subclass of molecular descriptors available without any quantum mechanical calculation, are 

used in our study due to the high potential in high-throughput screening of materials. A potential challenge originates 
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from the multifold molecular features involved in fluorescence emission, but a single molecular fingerprint hardly 

covers all of them (Figure 1c). For this reason, several kinds of fingerprints such as substructure key-based fingerprints 

and circular fingerprints as well as a handful of consensus fingerprints are investigated and compared. Because 

fluorescence properties are also sensitive to solvents especially for molecules with intramolecular charge transfer 

(ICT) features, Comprehensive General Solvent Descriptor (CGSD), which combines ET(30)58 with other four empirical 

scales59, is proposed here in order to discern a wide spectrum of solvents,  

The choice of ML algorithm is key to precise prediction. In addition to Random Forest (RF)60, the most widely used 

ML algorithm, we also compared the performance and efficiency of other models including Support Vector Machine 

(SVM)61, Kernel Ridge Regression (KRR)62, Multi-Layer Perceptron (MLP)63, k-Nearest Neighbors (kNN), Light 

Gradient Boosting Machine (LightGBM)64 and Gradient Boost Regression Tree (GBRT)65 to assess the relative merits 

of these approaches. 

 

Figure 2. Testing results of (a) emission wavelength and (b) absorption wavelength different combinations of ML models with different structure-

based descriptors as inputs. The average MAE of ten tests are shown in the center of each colored block; For each test, we randomly select 10% of 

the data as the test set and use the rest as the training set. Other metrics (R2, RMSE and their confidence intervals) could be found in Table S1 

(Supporting Information). Details about the abbreviation of the FSD and fingerprints can be found in the Method section.  

To gain preliminary insights into the predictive powers of these ML models in conjunction with various molecular 

fingerprints, we first compared their mean absolute errors (MAE) for predicted absorption and emission wavelengths 

(Figure 2). In terms of tendency, shorter inputs show better performance with tree-based algorithms (RF, LightGBM 

and GBRT) while kernel-based algorithms (KRR and SVM) become comparable to tree-based ones with long input 
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features. MLP and kNN only show average results in our model, possibly because molecular fingerprints are sparse 

high-dimensional vectors. LightGBM, SVM and GBRT regressors exhibit the lowest MAEs, and are used for 

assessing fingerprints before further differentiation.  

With regard to the efficacy of molecule descriptors66, substructure key-based fingerprints (MACCS, PubChem), 

which are based on the presence of certain substructures in a limited structure list, exhibit poor performance according 

to Figure 2. By comparison, circular fingerprints including Chemistry Development Kit (CDK) fingerprints and 

Morgan fingerprints show better performance, which implies that the representation of molecular structures by atom 

neighborhoods might be better for our purpose. In the recent study by Glorious et al.67, the benefits of combining 

multiple fingerprints features (MFFs) as a composite input molecular descriptor was demonstrated. However, due to 

the extreme lengths of MFFs (more than 70,000 bits), the resultant increase of computation cost limits its application. 

We propose that the combination of several descriptor describing features directly relevant to the phenomenon of 

interest might increase the efficiency of the expressions. Following this proposal, we have designed Functionalized 

Structure Descriptor (FSD), which combines two circular fingerprints (CDK fingerprints and Morgan fingerprints) 

with E-state fingerprints and substructure fingerprints (presence and count), giving rise to FSD_CDK (E-CDKex_sub) 

and FSD_Morgan (E-Morgan_sub) (Figure 2). One key underlying motivation is that substructure fingerprints provide 

a differentiation for an array of functional groups while structure descriptors (circular fingerprints) such as Morgan 

and CDKex are better expressions of the molecular backbones. Meeting our expectations, such strategy does increase 

the performance for all algorithms considered here. We also applied this method to MACCS, the smallest fingerprint, 

and the resulting E-MACCS_sub also exhibits improved performance. These results indicate that composite inputs 

with multiple relevant features improve the performance of our ML models. The FSD_CDK gives the lowest MAEs 

in reproducing both emission and absorption wavelengths, and are thereby used throughout the further assessments of 

ML algorithms.  

Table 1. Performance of selected algorithms a. 

Prediction 

object 

Algorith

ms 
r R2 MAE/nm RMSE/nm MAE/eV RMSE/eV 

Emission 

SVM 0.959 ± 0.009 0.918 ± 0.018 14.419 ± 0.683 25.736 ± 2.531 0.067 ± 0.003 0.126 ± 0.012 

LightGBM 0.957 ± 0.008 0.916 ± 0.016 15.295 ± 0.839 26.192 ± 2.044 0.071 ± 0.005 0.126 ± 0.013 

GBRT 0.962 ± 0.007 0.925 ± 0.014 14.307 ± 1.118 24.768 ± 2.238 0.066 ± 0.005 0.119 ± 0.012 
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Absorption 

SVM 0.975 ± 0.005 0.951 ± 0.010 11.187 ± 0.984 22.217 ± 2.625 0.076 ± 0.006 0.157 ± 0.015 

LightGBM 0.973 ± 0.005 0.946 ± 0.009 11.614 ± 0.548 23.177 ± 1.845 0.077 ± 0.005 0.156 ± 0.019 

GBRT 0.977 ± 0.005 0.954 ± 0.010 10.471 ± 1.023 21.459 ± 2.565 0.070 ± 0.006 0.146 ± 0.019 

a The presented results for each algorithm are achieved by 10-fold cross validation. The standard deviation is obtained by the difference of the prediction 

of each fold. 

To further differentiate SVM, LightGBM and GBRT to find the optimal prediction model, we further analyzed their 

performance with more performance metrics over our database with 10-fold cross-validation  (Table 1; see Table S2 

for other algorithms and Figure S2 to Figure S9 for scatter plots). Since in the TD-DFT studies, the MAE of eV is a 

more commonly used evaluation standard, so we transformed the test result through the equation E = 1240 / λ to show 

the MAE of our models under eV. The superior performance of the GBRT regressor is consistently suggested by the 

lowest MAEs (10.47 nm and 0.70 eV for absorption, 14.31 nm and 0.66 eV for emission) as well as the highest 

coefficients of determination (R2 = 0.954 for λabs and 0.925 for λem).  In the prediction results of the absorption 

wavelength, the MAE is lower in the case of wavelength (nm), but higher in the case of energy (eV). This is completely 

acceptable and mainly due to the illusion brought about by the unit conversion. Due to the higher decision coefficients 

(R2) and correlation coefficients (r), we argue that the ML models perform more reliably for absorptions. It is worth 

noting that although the prediction of absorption shows a higher accuracy (by R2 and r; plausibly due to the more 

direct structure-property relationship), more attention should be paid on emission due to the greater challenge of 

accurate prediction and the significance in fluorescence-based applications. 

As described by Figure 3a (see Figure S1 for the rest of the algorithms), the advantage of GBRT over SVM and 

LightGBM is further supported by error distribution. The errors of more than 80% of the GBRT-predicted results are 

smaller than 20 nm, demonstrating the high accuracy of our approach for predicting molecules with similar backbones. 

Furthermore, it can be seen that GBRT has consistently larger cumulative percentage of error than the SVM and 

LightGBM. In order to further evaluate GBRT, SVM and LightGBM by their upgradeability and universality, the 

dependence of MAE on the partition ratio of training/test sets was examined (Figure 3b). When the test set makes up 

increasingly higher portions, the MAE of all three regressors increases accordingly. Following this tendency, it can 

be inferred that our model can perform even better with more available training data, and the same conclusion has 

been suggested by the learning curve for the fixed dataset (Figure S11 and Figure S12). The GBRT regressor, whose 

MAE remains smaller than 20 nm even when the training set is reduced to 40% of the entire database, shows smaller 
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MAE than the other two models at all tested partition ratios. Therefore, with the analysis on performance metrics, 

error distribution and model upgradeability, GBRT/FSD_CDK can be reasonably employed in further investigations 

to evaluate our ML approach.  

 

Figure 3. (a) Error distribution and (b) change of mean absolute error with the increase of test set portion for SVM, GBRT and LightGBM. 

FSD_CDK is employed in all these assessments.  

Due to the significance of solvent effects in organic photophysics 58, 68, a successful model should be able to make 

predictions in the face of both new molecules and different solvents. Therefore, we have assessed our ML models for 

unlearnt organic dyes in different solvents to test the performance of CGSD. This is achieved by re-partitioning the 

database into training/test sets based on molecules, that is, the datapoints of the same molecules in different solvents 

will only appear in either training or test sets. In practice, we discriminate between molecules appearing only once 

(part 1) and molecules appearing for multiple times in different solvents (part 2). Then, we randomly and separately 

chosen 20% of the datapoints from part 1 and part 2 to form the test set.  The performance of several algorithms 

following this approach is described in Table S3, which suggests that GBRT is the most suitable model for our purpose 

among selected algorithms. The predictions by GBRT/FSD_CDK are shown in Figure S13. The overall MAE (17.36 

nm, 0.0802 eV) is only slightly less accurate than randomly sampling 20% of the entire dataset (MAE: 15.25 nm, 

0.0700 eV). Although part 2 shows less satisfactory performance (MAE: 20.83 nm, 0.0933 eV for this part of the test 

set), such accuracy is still noticeable. To alleviate the error of part 2, we have devised and trained a stacking model 

using four ML models as basic learners and the linear regressor as meta learner (details and discussions can be found 
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in the supporting information,). This ensemble model has reduced the overall error to 17.20 nm, 0.800 eV and the part 

2 error to 19.79 nm, 0.0887 eV. The benefit of ensemble model adds to the improvability of the ML approach. 

Nevertheless, we have continued to use a single GBRT model due to the following two reasons: (1) its high training 

efficiency (< 5 min) promote the potential on-the-fly learning, while the ensemble model needs comparably much 

longer training time; (2) acceptable accuracy can be achieved by single model, since errors at the level of 1 nm/0.005 

eV is not so obvious in practical applications. 

Summarizing this section, we have assessed an array of ML algorithms and molecular fingerprints for the prediction 

of absorption/emission wavelengths of solvated organic dyes, leading to the development of a ML regressor combining 

the GBRT algorithm, FSD_CDK and CGSD. In the course of our evaluations, the GBRT algorithm shows optimal 

performance on our database according to multiple indicators, error analysis, and upgradeability comparisons. 

Regarding to feature engineering, FSD_CDK has been developed by combining fingerprints describing features that 

are directly relevant to absorption and emission, and have proven effective within the scope of our investigations. 

Furthermore, it has been demonstrated that our ML approach is improvable by the expansion of database and the 

introduction of ensemble models. These results suggest the merits of our ML models for practical applications.  

Machine Learning Predictions for PLQY.  

Photoluminescence quantum yield is one of the most critical factors affecting the fluorescence intensity of organic 

fluorescent materials, but attempts to its prediction is still limited. Oriented towards high-throughput screening of 

emissive organic materials, we hope to achieve the ML prediction of PLQY with efficient quantum-chemistry-free 

molecular representations. In our database, around 3,000 PLQY data measured in various solvents have been collected. 

Screening over several fingerprints and algorithms indicate that the LightGBM/FSD_CDK regressor has optimal 

accuracy in our database (Table S4 and Table S5). Reasonable accuracy is achieved with this regressor (r = 0.84, 

MAE = 0.11; see Figure 4a), which is sufficient for applications such as pre-screening of fluorophore candidates. In 

addition, if we only focused on the samples that are a bit bright (defined as QY > 0.10 here), the MAE value is still 

0.12, indicating the high performance of the ML model (Table S6). Moreover, the accuracy remains better than 

reported estimations with TD-DFT calculations23 even when only 10% of our database is used for training (Figure 

S14 and Table S7), showing the superiority of our approach on this specific problem. 

In attempts to reduce the error of our model, we noticed that experimental QY can have a large error bar. The best 

measurement method (integration sphere) may still have an error of about 10%, the relative method even higher. For 
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this reason, we have investigated the effect of using only the high-quality data (~45% of the dataset) by relative 

measurement. As expected, the resultant accuracy (r = 0.86; see Figure S15 for details) is slightly improved even 

though the dataset is considerably smaller. According to this result, it is believed that our model can be further 

improved with more available high-quality QY data.  

 

Figure 4. Prediction of PLQY with ML regressor model. a Linear correlation between experimental PLQY and LightGBM-predicted values, along 

with the correlation coefficient (r = 0.84). Perfect positive correlation is depicted by the solid diagonal line. b Chemical structures and Quantum 

yield in different solvents of typical compounds which can be accurate predicted. 

Analogous to absorption/emission wavelengths, we have also evaluated the impact of molecule-based partition on 

QY predictions to show the predictive power of our models in the face of solvent effects. The reasonably higher MAE 

(0.131) compared with the datapoint-based approach (0.120) suggests insignificant overfitting in our models. However, 

solvent effects have a more involved influence on QY than emission wavelengths – even the same molecule can 

display distinct QYs in different solvents. Questioning whether our models can discriminate between large solvent 

effects in the same compound, we have selected several organic dyes whose emission shows notable solvent 

dependence (Figure 4b and Figure S18 to S20). It is shown that the dramatic solvent effects have been well reproduced 

for these examples, which is at least indicating the ability of our model for capturing the necessary solvent features 

for these molecules and suggesting the potential transferability to other cases. Further analysis suggests that our models 

can also differentiate the importance of solvent for different photophysical parameters. The overall importance of 

CGSD follows the order of QY (LightGBM: 14.68%, GBRT: 11.84%) > emission (GBRT: 5.84%) > absorption 

(GBRT: 0.69%) (see Table S10 for details), which meets with our cognition on solvent effects. 
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Figure 5. Prediction of PLQY with ML classifier model. a Performance of the LightGBM classifier on the test set (10% datapoints randomly 

selected from the database). b Accuracy versus the number of fractions (n) obtained by the LightGBM model with FSD_CDK. 

Seeking for higher reliabilities than the regressors, we have also evaluated the performance of classifier models. To 

develop binary classifiers, the median of experimental PLQY (0.25) was used as the threshold to equally divide the 

database into two groups. This threshold is also suitable in realistic applications. The performance of the 

LightGBM/FSD_CDK classifier is described by the confusion matrix in Figure 5a. The accuracies of the best-

performing models for the first (ΦPL < 0.25) and second (ΦPL > 0.25) groups are 85.5% and 87.7%, respectively, giving 

rise to a satisfactory overall accuracy (86.8%). Further assessment suggests that the accuracy remains greater than 

80% when the training set shrinks to only 40% of the dataset (Figure S21). Hence, functional organic materials with 

strong fluorescence (ΦPL > 0.25) can be identified by the ML binary classifier even when a relatively small training 

set is available.   

With the binary classifier in hand, we hope to increase the resolution of our classifier by introducing multiclass 

classifier models. The dependence of accuracy on the number of groups (n) is given in Figure 5b. When n = 3, the 

overall accuracy remains at a reasonable level (73.7%; see Figure S22 for confusion matrix). As n increases, the 

accuracy tends to decrease, but is significantly superior to random classifier. For n = 6, we can still obtain a 57.9% 

accuracy, which is around 3.5 times that of random classification. In fact, 68% of the incorrect predictions lie in 

intervals adjacent to the correct one (Figure S23), adding to the usability of our classifier. It can be inferred from the 

results here that ML classifier models are capable of providing reasonable predictions to PLQYs.  

Because the binary classifier can already be applied to large-scale pre-screening of strong light-emission materials, 

we use it as example to test the accuracy of QY prediction on 22 molecules collected from three recent papers69-71. 
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Unfortunately, an average result was obtained (accuracy = 72.7%) (Figure S24 and Table S12). One of the underlying 

reasons might be the lack of negative data, that is, materials with weak/no fluorescence are often reported without 

quantum yields. But still, the recall of strong fluorescent materials can be achieved 86.7%, which means that most 

tested molecules with strong fluorescence emission have been recognized by the binary classifier.  

To conclude, we believe that our ML models, including regressors and classifiers, display reasonable accuracy in 

the tests presented above. The expansion of database is likely to enable further improvements that facilitate the design 

and virtual screening of novel organic fluorescent materials with high-quality ML predictions.  

Comparison between Machine Learning and TD-DFT. 

Whereas in principle quantum mechanical methods are efficacious as long as the physical approximations remains 

reasonable, empirical models such as QSAR and ML typically relies heavily on the scope of the training set and 

thereby lacks universality. For example, the published QSAR studies on the relationship between molecular structures 

and photophysical properties are usually limited to a maximum of hundreds of molecules72, 73. It is therefore important 

to assess the scope of our ML model (hence the potential in real-world applications) for the prediction of emission 

wavelengths. Accordingly, we have collected 116 molecules from TD-DFT studies on vertical emission energies38, 74-

78, mostly benchmark studies. The best levels of theories in each benchmark study were used to compare with our ML 

models. The ML-predicted emission wavelengths were translated into emission energies (eV) to be directly compared 

with TD-DFT. Note that the same level of error in wavelengths (nm) appears to be different when converted into 

energies (eV) due to the inverse proportionality (E = 1240 / λ). To alleviate such effect, the set of 116 molecules are 

divided into two categories, namely large fluorescent dyes whose emission wavelengths range from orange to red, and 

smaller ones with blue-to-green fluorescence emissions.  

The results of the assessment are summarized in Table 2. In terms of overall performance, our ML model displays 

a lower MAE than TD-DFT (0.200 eV for ML vs. 0.237 eV for TD-DFT). The ML prediction of large fluorescent 

dyes seems excellent (MAE = 0.121 eV), superior to TD-DFT for BODIPY cyanines and rhodamine derivatives. In 

fact, these cyanines represent a particular challenge for TD-DFT calculations, which has been ascribed to the failure 

of TD-DFT for not correctly describing the difference of dynamic correlation between the two electronic states38. 

Even double-hybrid density functionals, which explicitly include contribution from virtual orbitals, give large errors 

for these molecules79. In contrast, our approach does not encounter such issue due to the direct statistical learning of 

experimental data, demonstrating the advantage of bypassing physical framework. Although the MAEs of our models 
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are generally larger for small fluorescent dyes, the performance is still comparable with TD-DFT for benzodiazoles 

(MAE = 0.197 eV) and coumarins (MAE = 0.234 eV) and is application to realistic problems. Since most small dyes 

collected in our dataset are novel heterocyclic dyes synthesized in the last decade, thus share fewer common features 

with this test set, and the relatively worse results on these molecules can be understood accordingly. 

Table 2. Comparison between ML Models and TD-DFT Calculations for the Prediction of Emission Wavelengths
a
. 

Datasets Skeletons Range of λ
em

 
ML Predictionsb TD-DFT Calculations 

[Ref] 
MAE/eV MAE/eV Level of Theoryc 

Large 

Fluorescent 

Dyes 

12 BODIPY-Cyanines 600-850 nm 

0.121 ± 0.006 

0.350 
TD-M06-2X/6-311+G(2d,p)/LR-PCM// 

TD-M06-2X/6-31G(d)/LR-PCM 
[38] 

11 D-π-A Dyes 470-650 nm 0.100 
TD-ωB97X-D/6-31+G(d,p)/LR-PCM// 

TD-CAM-B3LYP/6-31G(d)/LR-PCM 
[74] 

11 Rhodamine Derivatives 530-600 nm 0.155 TD-B3LYP-D/6-31+G(d,p)/CPCM [75] 

Small  

Fluorescent 

Dyes 

9 Substituted Benzoxadiazolses 370-500 nm 0.197 ± 0.016 
0.308 TD-PBE0/6-31+G(d) [76] 

With 12 related molecules included into our dataset. 0.141 ± 0.020 

49 Coumarins 350-500 nm 0.234 ± 0.017 
0.280 TD-PBE0/6-31+G(d)/LR-PCM [77] 

With 8 coumarins randomly moved from test set to training set. 0.142 ± 0.005 

24 1,8-Naphthalimides 350-550 nm 0.220 ± 0.018 

0.160 TD-PBE0/6-31+G(d)/LR-PCM [78] 

With 4 naphthalimides randomly moved from test set to training set. 0.149 ± 0.010 

Overall 

116 Organic Fluorescent Materials (Original Training Set) 0.200 ± 0.005 0.237   

104 Organic Fluorescent Materials (Augmented Training Set) 0.144 ± 0.006 0.228   

a
 See Table S14 for details. b The ML-models are constructed with GBRT/FSD_CDK. c Best levels are chosen for each skeleton.  

 

Although a prediction power comparable to TD-DFT is observed on the tested examples, there are still chances for 

the ML model to exhibit larger errors for more generalized cases. To demonstrate the applicability of our approach 

under such circumstances, we have investigated the improvability of our ML models for molecules with lower 

similarity to the training set, especially newly designed ones with unprecedented backbone structures. Note that aside 

from the original training set, learnable structural features might also be shared by certain subset(s) outside the training 

set (Figure 6). Inspired by this idea, we tested the impact of including a certain number of molecules analogous to the 

targeted ones into the training set. Benzoxadiazole dyes were used for preliminary explorations because 12 

characterized molecules with similar backbones were provided in the TD-DFT paper76. The effect of including the 12 

datapoints was notable (MAE reduced to 0.141 eV), which meets with our expectation. For coumarins and 



16 

 

naphthalimides, a different yet similar approach was investigated. We tried to move a small portion (< 17%; randomly 

selected) of the test set into our training set. Again, the updated ML models show excellent performance (MAE = 

0.142 eV and 0.149 eV, respectively). According to these results, we infer that the improvement of our ML models 

for less-learned backbones can be readily achieved by utilizing similar molecules as effective training data. The low 

cost of the (re-)training step (less than 5 minutes) is considerably lower than TD-DFT computations. These results 

have also motivated us to provide a python script for both predictions and further expansion of database for learning 

on-the-fly, which is viable utilizing either more TD-DFT calculations or experimental feedbacks.   

 

Figure 6. Schematic illustration for the improvement of ML models. 

 

Figure 7. Fluorescence emission energies predicted by ML methods (red points) and modelled by vertical emission with TD-DFT (grey points). 

Results obtained with the original dataset (a) and the augmented database (b) are given. Perfect positive correlation (r = 1) is given by the blue lines 

for reference. The results of TD-DFT are slightly different from Table 2 because 12 molecules are moved from the test set to the training set.  
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Figure 7a shows the correlation between experimentally measured emission energies and vertical emission energies 

calculated by TD-DFT and predicted by ML-model directly of the 116 molecules shown in Table 2. Compared with 

TD-DFT, ML shows a smaller MAE but worse correlation coefficient. The compound with the largest error is 3,4-

dihydroxy-2H-chromen-2-one, for which the Lewis structure might deviate from the real one due to tautomerization. 

When the training set is augmented with a few molecules that are structurally related to the test set, the ML model 

exhibits better performance than TD-DFT computations (Figure 7b).  

 

Figure 8. (a) Structure, HOMO and LUMO of representative molecule from the external dataset (30 molecules). (b) Comparison of the CPU time 

cost between ML method and first principle method (E5-2650v3). ML Retrained means the time cost with re-trained process, which will not change 

with the increase of the molecule number. S0 is only for optimize the structure in ground state; S1_1 means optimize the excited structure in S1 with 

CAM-B3LYP/6-31G*/LR-PCM(DCM); S1_2 means after optimizing the excited structure in S1 with CAM-B3LYP/6-31G*/LR-PCM(DCM), 

single point based on CAM-B3LYP/6-311+G*/LR-PCM(DCM) have been calculated. (c) Prediction accuracy of emission wavelength for this 

external dataset with ML model and various functional on 6-311+G*; Prediction accuracy of PLQY is shown in the grey color. 

In order to further assess the performance of our ML methods, we collected 30 heterocyclic fluorescent dyes 

published recently as an additional test set4. These dyes are ionic, a category that is missing from TD-DFT benchmark 

studies. Using experimental reference data, PLQYs are predicted with MAE = 0.21 for ML regressor and 80% 

accuracy (i.e. 24 out of 30 correct answers) for ML classifiers. These are considered good results given the difficulty 

of QY predictions. For emission wavelengths, we make use of this extra dataset to make another comparison between 

TD-DFT and our ML models. For part of the selected dyes, the FMO diagrams imply charge-transfer character (Figure 

8a). Our ML approach is able to make predictions costing less than 1 s for each molecule, reaching an overall MAE 
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of 23 nm (0.09 eV). To contrast this with TD-DFT, we optimized all molecules in the S1 state with TD-DFT at the 

level of CAM-B3LYP/6-31G*/LR-PCM(DCM) (Reference can be found in supporting information). Then, emission 

energies were computed at the optimized geometries with 6-311+G*, a more extended Pople triple-zeta basis set 

equipped with polarization and diffuse functions for heavy atoms, in conjunction with the LR-PCM(DCM) solvent 

model and a series of typically recommended exchange-correlation functionals including hybrid functionals PBE0 

and M06-2X as well as range-separated functionals ωB97X-D and CAM-B3LYP. These levels of theory are believed 

representative for realistic TD-DFT predictions. The accuracy and time cost with TD-DFT are compared with our ML 

models in Fig 8b-8c (see Fig SX for details). It is suggested that PBE0 is the only functional showing lower MAE 

than ML on this dataset (15 nm, 0.07 eV for PBE0 vs 23 nm, 0.09 eV for ML). The MAEs with other functionals are 

in the range of 57 ~ 66 nm (0.26 ~ 0.31 eV), which are generally larger than those with ML models. Meanwhile, our 

ML approach shows a clear advantage in time cost, since most TD-DFT predictions require 40 ~ 50 CPU hours.  

From the comparison between TD-DFT and ML models, the following conclusions can be drawn: (1) By directly 

learning experimental data, ML models can predict emission wavelength with similar level of accuracy as TD-DFT 

in our tests, (2) Improvement of ML models can be readily achieved by the introduction of a certain amount of data 

about organic dyes similar to the targeted one(s), implying potential for on-the-fly learning.  

 

Conclusion 

Machine learning methodology was introduced to the predictions of photophysical parameters for organic 

fluorescent dyes. With a database of >4,300 solvated organic dyes established, ML models were developed. Molecular 

structures and solvent properties were efficiently expressed by the newly designed Functionalized Structure Descriptor 

(FSD) and Comprehensive General Solvent Descriptor (CGSD), respectively, and the underlying design rules were 

demonstrated. Combined with algorithm selection, ML prediction was realized for PLQYs with a good differentiation 

power in the solvent’s degrees of freedom. For emission wavelengths, thorough comparison between our ML approach 

and TD-DFT calculations was drawn, showing comparable accuracy and considerably lower time cost in the quantum-

chemistry-free data-driven approach. Moreover, the improvability of our ML models was shown by the re-training 

process with additional datapoints. Online platform (http://www.chemfluor.top) will be a useful tool in the pre-

screening by experimenters for discovery of new materials. Our work demonstrates how challenges in excited-state 
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modelling especially those with highly involved physical nature (e.g. quantum yields, and potentially lifetime, 

bandwidths and so forth) can be effectively solved by simple machine-learning models. 

 

Data availability 
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