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We applied augmented Lagrangian method to optimize molecular wave function based on non-
orthogonal orbitals (Spin coupled wave function; SCWF) for its grand-state energy. In contrast
to the orthogonal-orbital-based electronic structure theory, SCWF includes spin eigenfunctions to
satisfy the eigen states as the operator of the square of the spin. To obtain the ground-state
energy of SCWF, therefore, it is necessary to optimize the orbital and the spin-coupling coefficients
simultaneously. In this study, the spin-coupling and the orbital coefficients are optimized with
the augmented Lagrangian method under the constrain of normality of the wave function. We
employed this SCWF method to compute dissociative potential energy surfaces (PESs) of H2, H−

2 ,
He+2 , and HLi. The obtained PESs by the SCWF method are close to these by full configuration
interaction theory. These results indicate that the augmented Lagrangian method is effective to
optimize SCWF.

I. INTRODUCTION

Recent electronic structure theories included in several
simulation packages [1–3] had been developed based on
the orthogonal orbitals, that is, molecular orbital (MO)
method (Hartree-Fock approximation) [4]. However, the
orthogonality between the orbitals is just a assumption
and not an obligatory requirement to describe electronic
structure on a molecule [4, 5]. Owing to this assumption,
we need to use unrestricted MO method to include the
correlation between α and β electrons in the same orbital.
Hence, we always suffer from troubles like spin contam-
ination [4], using these approximations for simulating
chemical reactions or magnetic systems. To circumvent
this problem, configuration interaction (CI) based the-
ory represented as full CI and multi-configuration self-
consistent theory (MCSCF) had been developed [6].

In contrast to the much successful MO method, there
are electronic structure theories that are developed to
describe chemical reactions, which are conventionally
known as valence bond (VB) methods [7–10] originated
from the Heitler-London wave function [11]. In spite
of the clarity of the VB method for explaining chemi-
cal reaction, the VB method had not been succeeded as
a main tools for simulating chemical reactions owing to
much demanding computational costs.

The VB method generally uses the non-orthogonal or-
bitals that require explicit spin eigenfunction. Hence,
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it is a very formidable task to optimize the wave func-
tion in contrast to the MO method where minimiza-
tion can be performed with iterative diagonalization
used Hermitian of electronic Hamiltonian. Tradition-
ally, the wave function based on the non-orthogonal or-
bitals are variationally optimized. In the case, analyt-
ical first-derivative to the electronic spatial orbital and
spin (spin-coupling) coefficients is not enough to stabi-
lize the energy but the analytical second-derivative [5, 12]
to them is also necessary. In this study, we intro-
duced the augmented Lagrangian method with the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [13]
using numerical gradient to optimize these coefficients for
the energies and validated its accuracy by comparing the
full CI potential energy surface (PES).

The augmented Lagrangian method or method of mul-
tipliers [14, 15] is an algorithm to solve constrained op-
timization problems. It is used in quantum chemistry
for reducing the computational cost results in computa-
tional acceleration under the constrain of idempotent of
density matrix [16, 17]. Here, we applied this algorithm
to optimize the orbital and spin-coupled coefficients for
the energy of wave function based on non-orthogonal or-
bitals.

II. NON-ORTHOGONAL ORBITALS SYSTEM

A. Spin coupled wave function

Wave function of N electrons based on non-orthogonal
orbitals are called spin coupled wave function (SCWF)
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proposed by Gerratt and expected to show much stability
rather than molecular orbital [5]. The SCWF are written
in the following form,

ΨSM =

fs∑
k

CSk
√
N !A (φ1φ2...φNΘSMk). (1)

CSk is the spin-coupling coefficient. A is a well-known
anti-symmetrizer imposing the anti-symmetry of Fermion
to the wave function;

A =
1

N !

∑
P

εPP. (2)

φi(i = 1, 2, ...N) is familiar linear combination of basis
functions (χj) with coefficient Cij and the normalized
orbitals but non-orthogonal to each other;

φi =
∑
j

Cijχj , (3)

〈φi |φk〉 = ∆ik. (4)

A includes permutations (P ) all over N electrons with
its parity εP . P operates on both spatial and spin parts.
ΘSMk is an N-electron spin function. The number of
the degeneracy of spin eigenfunction is represented by fs.
When the number of spin is S, the number of independent
spin functions with the Sz eigenvalue M = S is given by,

fs =

(
N

N/2− S

)
−
(

N

N/2− S − 1

)
. (5)

Hence, eq. (1) indicates that the linear combination of
the independent spin functions. Although there are sev-
eral ways to construct spin eigenfunctions [18, 19], we

employed the branching-diagram method to construct
the orthonormal spin systems because the operation of
a permutation on a spin function can be represented by
the linear combination of independent spin functions with
the coefficient of matrix elements Ulk(P ) of symmetric
group;

PΘk = εP

fs∑
l

Ulk(P )Θl. (6)

B. Energy of SCWF

The Hamiltonian of N electrons is defined by,

H =

N∑
µ

hµ +
1

2

∑
µ,ν

gµ,ν

= h +
1

2
g. (7)

here, hµ and gµν(µ, ν = 1, 2, ...N) are the one electron
and two electron operators respectively. Briefly, they are
described in bold style as h and g. Electronic energy
of the wave function of eq. (1) can be obtain as the
expectation value of the Hamiltonian. Thus, the ground
state energy (E) is obtained by minimizing

E(C,Cs) =
〈ΨSM |H |ΨSM 〉
〈ΨSM |ΨSM 〉

. (8)

The numerator of eq. (8) can be deformed by substitut-
ing ΨSM with eq. (1).

EMS(C,Cs)) = 〈ΨSM |H |ΨSM 〉 =
1

N !

fs∑
k,l

CSkCSl
∑
PR

〈P (φ1φ2...φN ) |H |R(φ1φ2...φN )〉 〈PΘk |RΘl〉 (9)

Hereafter, we introduce the notation, µ1µ2...µN and ν1ν2...νN as electron arrangements after operating the permuta-
tion P and R to φ1φ2...φN . As will be shown letter, because we use SymPy package [20] to decompose a permutation
to elementary transpositions, the following formulated representation is employed as the original electron arrangement
is always φ1φ2...φN . Hence, the spatial parts of eq. (9) can be described as the following,

∑
PR

〈µ1µ2...µN |H | ν1ν2...νN 〉 =
∑
PR

{〈µ1µ2...µN |h | ν1ν2...νN 〉+
1

2
〈µ1µ2...µN |g | ν1ν2...νN 〉}

=
∑
PR

{〈µ1 |h | ν1〉 〈µ2 | ν2〉 ... 〈µN | νN 〉+
1

2
〈µ1µ2 |g | ν1ν2〉 .. 〈µN | νN 〉}. (10)

∵ P =

(
φ1 φ2 . . . φN
µ1 µ2 . . . µN

)
, R =

(
φ1 φ2 . . . φN
ν1 ν2 . . . νN

)
.
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On the other hand, spin parts of eq. (9) can be deformed as the following by using eq. (6) and the orthonormality of
the spin eigenfunctions.

〈PΘk |RΘl〉 = εP εR

〈∑
m

Umk(P )Θm

∣∣∣∣∣∑
n

Unl(R)Θn

〉
= εP εR

∑
m,n

Ukm(P )Unl(R) 〈Θm |Θn〉

= εP εRUkl(PR) ∵ 〈Θm |Θn〉 = δmn (11)

For spatial parts, because the one-electron integral for any electrons (1,2,...,N) has the same value and the two-electron
integral for any electron-pairs (N(N − 1)) is also in the summation over all permutations (P,R), we can obtain the
following form,

EMS(C,Cs)) =
1

N !

fs∑
k,l

CSkCSl
∑
PR

εP εRUkl(PR){〈µ1 |h | ν1〉 〈µ2 | ν2〉 ... 〈µN | νN 〉+
1

2
〈µ1µ2 |g | ν1ν2〉 .. 〈µN | νN 〉}

=

fs∑
k,l

CSkCSl
∑
PR

εP εRUkl(PR){ 1

(N − 1)!
〈µ1 |h | ν1〉 〈µ2 | ν2〉 ... 〈µN | νN 〉

+
1

2(N − 2)!
〈µ1µ2 | g | ν1ν2〉 .. 〈µN | νN 〉}. (12)

Therefore, N !×N ! terms of both one-electron and two-electron integrals should be computed. Here, we dropped the
indices of electron µ and ν for h and g.

For the computation of the denominator of eq. (8), we just compute N ! overlap integrals because of the similarity,
fixing the electronic arrangement of the left side in the bracket to the original φ1φ2...φN , i.e.

∆(C,Cs) = 〈ΨSM |ΨSM 〉

=

fs∑
k,l

CSkCSl
∑
PR

εP εRUkl(PR)
1

N !
〈µ1 | ν1〉 〈µ2 | ν2〉 ... 〈µN | νN 〉

=

fs∑
k,l

CSkCSl
∑
R

εRUkl(R) 〈φ1 | ν1〉 〈φ2 | ν2〉 ... 〈φN | νN 〉 . (13)

Gerratt et al. [12, 21] obtained the energy of SCWF,
optimizing Cs and orbital expansion coefficients (C) for
the energy of eq. (8). On the other hand, McWeeny [22]
suggested optimizing (12) under the constraint of nor-
mality of SCWF represented in eq. (13) (∆(C,Cs) =
〈ΦSM |ΦSM 〉 = 1). We employed the latter method to
optimize the energy of SCWF with the augmented La-
grangian method in this work.

C. Augmented Lagrangian method

A constrained optimization problem with m equality
constraints is formulated as follows:

minimize f(x) (14)

subject to ci(x) = 0 (1 ≤ i ≤ m) (15)

The augmented Lagrangian method solves this con-
strained optimization problem by repeatedly solving an
unconstrained optimization problem. In the k-th step of

the algorithm, the unconstrained optimization problem

minimize f(x) + µk

m∑
i=1

ci(x)2 +

m∑
i=1

λk,ici(x), (16)

is solved. λk,i and µk are initialized as λ1,i = 0, and
µ1 = 1. In each step, they are updated as λk+1,i = λk,i+
2µci(xk) and µk+1 = 2µk, where xk is the solution to the
k-th step. This process is repeated until the conversion
criteria |ci(xk)| < ε is satisfied for all 1 ≤ i ≤ m.

In our method, we solve a constrained optimization
problem where the objective function f(x) is the numer-
ator of eq. (8), EMS(C,Cs) represented in eq. (12),
and the constraint ci(x) = 0 is the normality constraint
∆(C,Cs)− 1 = 0.

III. COMPUTATIONAL DETAILS

All molecular integrals were obtained via PySCF pack-
age [23]. Since any permutations can be represented
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Algorithm 1 Augmented Lagrangian method

Input: objective function f(x), constraints ci(x) (1 ≤ i ≤
m), tolerance ε

Output: x
1: initialize µ = 1, λi = 0 for all i
2: repeat
3: x← argmin f(x) + µ

∑m
i=1 ci(x)2 +

∑m
i=1 λici(x)

4: λi ← λi + 2µci(x) for all i
5: µ← 2µ
6: until |ci(x)| < ε for all i

by the multiply of elementary transpositions, the coef-
ficients of matrix elements Ulk(P ) of symmetric group
are prepared only for the elementary transpositions in
an N -electron system. To decompose a permutation to
the product of transpositions, we used SymPy package
[20]. To reduce the computational costs, we employed a
minimum basis set, STO-3G. Initial values of Cs and C
are set random numbers but Cs is normalized and C is
set to the values so as to satisfy eq. (4) before the SCWF
energy computation.

In our implementation of the augmented Lagrangian
method (Algorithm 1), the unconstrained optimization
problem was solved by BFGS [13] implemented in SciPy
[24], and we set ε = 10−8. The gradient for BFGS was
estimated using 2-point finite difference estimation with
SciPy’s default setting.

IV. RESULTS AND DISCUSSION

We used SCWF optimized by the augmented La-
grangian method to describe the PESs of H2, H−

2 , He+2 ,
and HLi as the function of their internuclear distances
and compared them with the PESs at the full CI level.
As the non-orthogonal orbital is the open shell, SCWF
is good at describing the dissociation of chemical bonds.
Furthermore, it is easy to get the spin states through the
spin-coupled coefficients. Here, we validate the SCWF
with the augmented Lagrangian method from the quali-
tative and quantitative viewpoints.

A. H2, two electron system

In two electron systems, the spin eigenfunction for the
singlet state is given as the following,

Θ0 =
1√
2
{α1β2 − β1α2}, (17)

where the subscript numbers indicate the indices of elec-
trons. The number of degeneracy of spin eigenfunction is
1. Hence, CS is a constant, 1, and the orbital coefficients
are the values to be optimized. As an example of two elec-
tron systems, we computed the bond breaking process of

Distance / Å

R
el

at
iv

e 
en

er
gy

 / 
E

h

FIG. 1. PESs of H2 as the function of internuclear distance
computed by full-CI and SCWF. Relative energies are com-
puted to the dissociated limitation at each computational
level.

hydrogen molecule, H2. The PESs as the function of
internuclear distance at the full CI and SCWF with aug-
mented Lagradian method are shown Fig. 1. The PES
by SCWF shows the minimum at which the internuclear
distance is 1.4 Å and lies at 6.16 eV lower than dissociate
limitation, which is much lower than experimental results
(4.75 eV). This result indicates the over optimization of
SCWF by the augmented Lagradian method. Overes-
timation of the equilibrium would be attributed to the
lack of constrained condition. Unfortunately, we could
not figure out the suitable condition to elevate the accu-
racy except for replacing the object function to eq. (8),
which brings unstability to PESs of the other test sys-
tems. In the longer range, however, the relative energy
of SCWF is stabilized to the degree of full-CI.

The non-orthogonal orbitals of electron 1 and 2 are
shown in Fig. 2. Although both symmetric orbitals are
almost localized on respective nucleus, the overlap inte-
gral with them is computed as the order of 10−4, that
seems to be small but enough to stabilize the H2 system.
Since eq. (17) indicates the coupling between electron
1 and 2, we can confirm the appearance of the valence
bond between hydrogen atoms.

B. H−
2 , He+2 , three electron systems

More than three electron systems, spin eigenfunctions
degenerated with each others. In the three electron dou-
blet systems, the following two functions are degenerated,

Θ0 =
1√
6
{2α1α2β3 − α1β2α3 − β1α2α3}, (18)

Θ1 =
1√
2
{α1β2α3 − β1α2α3}. (19)

In the H−
2 system, the equilibrium internuclear dis-
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FIG. 2. non-orthogonal orbitals for electron 1 and 2 of H2 at
which internuclear distance is 0.7 Å.

tance and the binding energy are reported as 0.8 Å and
1.7 eV respectively [25]. As shown in Fig. 3, the SCWF
qualitatively reproduced the PES at the full CI level.
However, the internuclear distance and the binding en-
ergy are overestimated, that is, the minimum lies at 5.68
eV around 1.1 Å. Optimized CS as the function of the
internuclear distance is shown in the bottom of Fig. 3.
From the internuclear distance longer than 0.5 Å, the
dominant spin configuration is eq. (18) and its occu-
pancy is over 90%. This function indicates that the spin
couplings of electron 3 with 1 and 2. At the internuclear
distance of 1.1 Å, the orbital of electron 1 mainly local-
ized on one nucleus and that of electron 3 mainly local-
ized on the other nucleus as shown in Fig. 4. Hence, the
coupling between 1 and 3 indicates the valence bond be-
tween nucleus. On the other hand, the orbital of electron
2 is delocalized on both nucleus with the anti-bond char-
acter as like the LUMO of H2 as shown in Fig. 4. Clearly,
electron 2 is the radical electron that is only coupled with
electron 3. This result indicates the qualitatively correct
description that the character of H-H valence bond is de-
duced by coupling with the radical electron. However,
the orbital symmetry is not conserved. Then the overes-
timation of the binding energy is owing to the symmetry
breaking [26]. From the internuclear distance shorter
than 0.5 Å, the spin configuration eq. (19) is dominant.
Because eq. (19) represents that the spin coupling be-
tween electron 1 and 2, this spin configuration just con-
tribute the destabilization of the system because bonding
character of electron 1 is offset by anti-bonding character
of electron 2.

On the other hand, the SCWF failed to reproduce the
existence of the minimum in the He+2 system though the
PES at the SCWF level is close to that at the full CI
level as shown in Fig. 5. In similar way to the H−

2 sys-
tem, dominant spin configuration is eq. (18) whose oc-
cupation is over 90% in the region of longer internuclear
distance than 0.6 Å. The non-orthognal orbital of elec-
tron 1, 2, and 3 are shown in Fig. 6. In contrast to the
H2 and H−

2 systems, orbitals are symmetric and all elec-
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FIG. 3. PESs of H−
2 as the function of internuclear distance

computed by full-CI and SCWF (top). Relative energies are
computed to the dissociated limitation at each computational
level. Square of spin-coupling coefficients along with the top
PES of H−

2 (bottom). Cs[0] and Cs[1] are the coefficients of
eq. (18) and (19) respectively.

FIG. 4. non-orthogonal orbitals for electron 1, 2, and 3 of H−
2

at which internuclear distance is 1.1 Å.

trons delocalized on both nucleus but only electron 2 has
anti-bonding character. Because eq. (18) indicates the
coupling of electron 3 with electron 1 and 2, the system
is mainly stabilized by the coupling of electron 3 with
electron 1. However, in the region of shorter internuclear
distance than 0.5 Å, the dominance of eq. (18) collapses
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FIG. 5. PESs of He+2 as the function of internuclear distance
computed by full-CI and SCWF (top). Relative energies are
computed to the dissociated limitation at each computational
level. Square of spin-coupling coefficients along with the top
PES of H−

2 (bottom). Cs[0] and Cs[1] are the coefficients of
eq. (18) and eq. (19) respectively.

FIG. 6. non-orthogonal orbitals for electron 1, 2, and 3 of
He+2 at which internuclear distance is 1.1 Å.

and the spin configuration of eq. (19) mixes suddenly
not gradually. Therefore, in the shorter region, crossing
between electronic states may be involved in this drastic
change of spin configuration states.

C. HLi, four electron system

Finally, we have checked heteronuclear diatomic
molecule, HLi, it is expected to show ionic (heterolytic)
dissociation to H− and Li+. The PES as the function
of internuclear distance is shown in the top of Fig. 7.
We found the existence of a minimum at 1.1 Å, that is
underestimated in comparison with the experimental one
(1.596 Å) and the dissociation energy is overestimated as
4.25 eV (experimentaly 2.498 eV) [27]. However, quali-
tative tendency of dissociative PES agrees with that of
full CI. Furthermore, ionic character of this system agree
with the qualitative speculation.

In this system, four electrons and six primitive basis set
functions are involved and the following two spin eigen-
functions are degenerated.

Θ0 =
1√
12
{2α1α2β3β4 − α1β2α3β4 − β1α2α3β4

− α1β2β3α4 − β1α2β3α4 + 2β1β2α3α4}, (20)

Θ1 =
1

2
{α1β2α3β4 − β1α2α3β4

− α1β2β3α4 + β1α2β3α4}. (21)

Eq. (20) indicates the following electron couplings,
pairs of 2-4, 1-3 electrons, and pairs of 1-4, 2-3 electrons.
On the other hand, eq. (21) indicates the electron cou-
pling, pairs of 1-2, 3-4 electrons. As shown in Fig. 8,
electron 1 and 4 are the 1s orbital of Li slightly com-
bined with 1s orbital of H, and electron 2 and 3 mainly
attributes to the 1s orbital of H combined with the 1s of
Li. Hence, we can conclude that H negatively charged
and Li positively. Furthermore, the pairs of 1-2/3-4 elec-
trons indicate the interaction like a valence bond between
1s of Li and 1s of H but its spin configuration is always
inferior in the whole PES shown in Fig. 7. On the other
hand, the dominant spin configuration includes two elec-
tron coupling style. One is the pairs of 1-4 and 2-3, which
clearly indicate the interaction within 1s of Li and 1s of
H respectively. The other is the pairs of 1-3 and 2-4,
which indicate valence bond like interaction between H−

and Li+. Therefore, we can conclude that not only ionic
but also valence bond interaction also contribute the sta-
bilization of the HLi system, which is widely believed as
a representative ionic interaction system.

V. CONCLUSION

In this work, the augmented Lagrangian method is
employed to optimize the orbital coefficients and spin-
coupling coefficients of the spin-coupled wave function
(SCWF) for its energy. The application of the SCWF
to compute dissociative PES of H2, H−

2 , He+2 , and HLi
shows that the PESs qualitatively close to those of the
full-CI level without depending on the nature of (ho-
molytic/heterolytic) dissociation. Therefore, we can con-
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FIG. 7. PESs of HLi as the function of H-Li bond length
computed by full-CI and SCWF (top). Relative energies are
computed to the dissociated limitation at each computational
level. Square of spin-coupling coefficients along with the top
PES of H−

2 (bottom). Cs[0] and Cs[1] are the coefficients of
eq. (20) and (21) respectively.

FIG. 8. non-orthogonal orbitals for electron 1, 2, 3, and 3 of
HLi at which internuclear distance is 1.6 Å.

clude that the augmented Lagrangian method is effec-
tive to optimize the energy of SCWF. However, quanti-
tative structure at the minimum of each system did not
agree with those at the full-CI level or experimental re-
sults. Particularly, as shown in H−

2 , even for SCWF,
it is impossible to avoid the symmetry breaking that is
also a formidable problem for any molecular orbital based
method. This means that SCWF would also need the
state average method to avoid this problem.

Unfortunately, the SCWF presented here is not for
quantitative discussion. For quantitative discussion,
SCWF probably requires suitable basis sets. At the
present study, we did not check basis set dependence be-
cause of heavy computational cost. Our current code
requires 1.4 hours to compute the SCWF energy by op-
timizing 24 orbital coefficients and 2 spin-coupling coef-
ficients because the processes of constructing spin eigen-
fucntion and counting electron pairs are time consuming.
Developing applicable SCWF algorithm to more large
system is our future work.

Because SCWF includes spin eigenfunctions that have
information about the electron coupling, SCWF makes
it possible to discuss the qualitative chemical reaction
process and the electronic structure at equilibrium from
the different viewpoint of molecular orbital methods. Al-
though the spin eigenfunction does not involve the energy
of a molecule directly, it is important to describe chemi-
cal reactions and magnetic systems [10]. Recent several
computation models for complex material systems like
Li-ion batteries interface SumitaPolymer, oxidation on
GaN surface systems [28] indicate the importance of the
treatment of spin state in the computational model. Ad-
ditionally, correct treatment of spin state is of importance
to analyze the systems that include singlet and triplet
oxygen molecules and singlet diradical systems [29, 30].
Therefore, the methods that ensure a spin eigen state of
target systems, like SCWF as shown in this study and
CASSCF [6] would become important.
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semann, A. W. Götz, J. Hammond, V. Helms, E. D.
Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen,
B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm,
R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Kr-
ishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logs-
dail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del
Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin,
T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J.
Nichols, J. Nieplocha, A. Otero-de-la Roza, B. Palmer,
A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pit-
tner, L. Pollack, R. M. Richard, P. Sadayappan, G. C.
Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith,
T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S.
Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman,
T. Van Voorhis, A. Vázquez-Mayagoitia, P. Verma,
O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H.
Weare, M. J. Williamson, T. L. Windus, K. Woliński,
A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias,

Z. Zhang, Y. Zhao, and R. J. Harrison, Nwchem: Past,
present, and future, The Journal of Chemical Physics
152, 184102 (2020).

[4] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry
(Dover Publications, Inc., 1989).

[5] J. Gerratt and W. N. Lipscomb, Proc. Natl. Acad. Sci.
(USA) 59, 332 (1968).

[6] B. O. Roos and P. R. Taylor, Chem. Phys. 48, 157 (1980).
[7] D. L. Cooper, M. Raimondi, and J. Gerratt, Chem. Rev.

91, 929 (1991).
[8] J. Gerratt, D. L. Cooper, P. B. Karadakov, and M. Rai-

mondi, Chem. Soc. Rev. 26, 87 (1997).
[9] G. A. Gallup, Valence Bond Methods: Theory and appli-

cations (Cambridge University Press, 2002).
[10] D. L. Cooper, ed., Valence Bonc Theory, Theoretical and

computational, chemistry, Vol. 10 (Elsevier, 2002).
[11] W. Heitler and F. London, Z. Physik 44, 455 (1927).
[12] N. C. Pyper and J. Gerratt, Proc. R. Soc. Lond. A 355,

407 (1977).
[13] J. Nocedal and S. Wright, Numerical optimization

(Springer Science & Business Media, 2006).
[14] M. R. Hestenes, Multiplier and gradient methods, Jour-

nal of optimization theory and applications 4, 303 (1969).
[15] M. J. Powell, A method for nonlinear constraints in min-

imization problems, Optimization , 283 (1969).
[16] S. Adhikari and R. Baer, Augmented lagrangian method

for order-n electronic structure, The Journal of chemical
physics 115, 11 (2001).

[17] A. Staszczak, M. Stoitsov, A. Baran, and W. Nazarewicz,
Augmented lagrangian method for constrained nuclear
density functional theory, The European Physical Jour-
nal A 46, 85 (2010).

[18] R. Pauncz, Spin Eigenfunctions Construction and Use
(Springer Science+Business Media New York, 1979).

[19] R. Pauncz, The Construction of Spin Eigenfunctions An
Exercise Book (Kluwer Academic/Plenum Publishers,
2000).

[20] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B.
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A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and
A. Scopatz, Sympy: symbolic computing in python,
PeerJ Computer Science 3, e103 (2017).

[21] J. Gerratt and M. Raimondi, Proc. R. Soc. Lond. A 371,
525 (1980).

[22] R. McWeeny, Methods of Molecular Quantum Mechanics
(Academic Press, 2001).

[23] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth,
S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova,
S. Sharma, S. Wouters, and G. K.-L. Chan, Pyscf: the
python-based simulations of chemistry framework, Wi-
ley Interdisciplinary Reviews: Computational Molecular
Science 8, e1340 (2018).

[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
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