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Abstract 

Artificial neural network provides the possibility to develop molecular potentials with both 

the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical 

methods. In this work, we developed ab initio based neural network potential (NN/MM-RESP-

MBG) to perform molecular dynamics study for metalloproteins. The interaction energy, 

atomic forces, and atomic charges of metal binding group in NN/MM-RESP-MBG are 

described by a neural network potential trained with energies and forces generated from density 

functional calculations. Here, we used our recently proposed E-SOI-HDNN model to achieve 

the automatic construction of reference dataset of metalloproteins and the active learning of 

neural network potential functions. The predicted energies and atomic forces from the NN 

potential show excellent agreement with the quantum chemistry calculations. Using this 

approach, we can perform long time AIMD simulations and structure refinement MD 

simulation for metalloproteins. In 1 ns AIMD simulation of four common coordination mode 

of zinc-containing metalloproteins, the statistical average structure is in good agreement with 

statistic value of PDB Bank database. The neural network approach used in this study can be 

applied to construct potentials to metalloproteinase catalysis, ligand binding and other 

important biochemical processes and its salient features can shed light on the development of 

more accurate molecular potentials for metal ions in other biomacromolecule system.   

  



Introduction 

 Zinc ions play an important role in enzyme catalysis, signal transduction and the structural 

stability of proteins. There are more and more evidences that zinc-containing metalloproteins 

are associated with many human diseases, such as cancer, rheumatism and dementia. The study 

of theoretical modeling methods for zinc-containing metalloproteins is of significance for the 

development of related disease target drugs through computer-aided drug design.  

For known Zn2+ containing metalloproteins, zinc binding site is mostly located at the 

interface between the protein and the cell fluid. Since the outermost electron layer of zinc ions 

is full-shell, the coordination mode of zinc ions is very flexible. In aqueous solutions, Zn2+ and 

water molecules form an octahedral six-coordinated structure; while in proteins, zinc has 

different coordination modes, the most common of which is the nearly regular tetrahedral 

coordination mode. This difference in coordination mode mainly determined by the interaction 

between Zn2+ and coordination molecules.  

In traditional classical force field, the structure of the zinc binding group will be destroyed 

seriously in long time MD simulations due to the polarization effect and charge transfer effect 

between zinc ion and coordinated atoms are not properly considered. Even the total structure 

of metalloprotein will be distorted by the strong electrostatic interaction between +2 e charge 

of zinc ion and the protein environment. In a recent study of Friedman et al, 2 ns MD simulation 

of a zinc-containing metalloprotein (PDB ID: 2WCB) was performed with CHARMM 27 force 

field. The coordination mode of Zn2+ changed from a tetrahedral structure composed of three 

imidazole rings and a carboxyl group in the crystal structure to a six-coordinate structure that 

two water molecules squeezed into the metal binding group. In the study of MMP3 protein by 

Zhu et at., the AMBER 99SB force field also failed to maintain the Zn2+ coordination structure 

correctly. And the Friedman calculated the interaction energy between Zn2+ and its coordinated 

ligands in several representative complexes using both QM and MM methods respectively. As 

a result, it was found that the relative order of the QM interaction energies could not be 

calculated by ignoring or using only the classical force field method. Although the QM method 

performs well in generality and accuracy, it is limited by the computational cost. Recently, 

although hybrid QM/MM method1, linear-scaling and/or fragmentation QM methods2-5 offer 

the possibilities to treat large molecular systems, the computational cost is still an obstacle for 

long time AIMD simulation.  

In the past two decades, several force fields for zinc ions were introduced, such as the 

SIBFA model of Gresh et al6, 7., the CTPOL model of Lim et al.8, 9, the SLEF model of Wu et 

al., the AMOEBA model of Ren et al.10, 11, the 12–6–4 LJ-type non-bonded model of Li and 

Merz12, the ABEEM of Yang et al.13, the Drude oscillator model of Roux et al.14, a new CT 

model of Rick et al.15, and the QPCT model for zinc in our previous work.16 In these force fields, 

the polarization and charge transfer effects were included to some degrees, so the calculated 



results were clearly improved.17 However, this improvement is not always guaranteed and 

largely limited by the form of the potential function and the quality of parameters.  

Fortunately, machine learning methods provide the possibility to develop molecular 

potentials with both the efficiency of the MM method and the accuracy of the QM method. 

Müller et al. performed an assessment and validation study of many machine learning methods, 

including the kernel ridge regression (KRR), support vector regression (SVR) and multilayer 

neural networks (NN) in the prediction of molecular atomization energies18. Among many 

machine learning methods, the artificial NNs offer an interesting approach for the construction 

of fully polarizable, non-rigid and reactive high dimensional potential energy surfaces starting 

from a set of QM data. They constitute a very flexible and unbiased class of mathematical 

functions, which in principle is able to approximate any real-valued function to arbitrary 

accuracy. Since Behler and Parrinello proposed the high-dimensional neural network (HDNN) 

scheme19-23, many different neural network models have been proposed to learn the high 

dimensional potential energy surface of water, small organic molecules and metal materials. 

For example, the GDML and DTNN of Müller et al.24-26, the kCON model of Hammer et al., 

and the Deep Potential model of Wang and co-workers27. Yang et al. also proposed a novel NN 

force field for water system based on an electrostatically embedded two-body expansion 

scheme.28 Thanks to open source packages like DeepMD-kit29 and TensorMol30,31, training a 

neural network potential for specific molecular systems is generally straightforward at present.  

Recently, we proposed a neural network potential model (NN/MM-RESP) which can 

describe the interactions between zinc ion and water accurately and reproduce Zn2+ hydration 

structure well in MD simulations. In addition, our recently proposed E-SOI-HDNN model can 

be used to achieve automatic construction of datasets and self-validation of model prediction 

results. Here, combined with NN/MM-RESP method and enhanced self-organizing incremental 

high dimensional neural network model (E-SOI-HDNN), we developed NN/MM-RESP-MBG 

to solve the difficulty of metalloprotein theoretical modelling. Its calculation efficiency is close 

to the molecular force field and the accuracy is close to QM calculations. A set of one 

nanosecond ab initio MD simulation were performed for each of the four common coordination 

modes of zinc-containing metalloproteins. In the ab initio MD simulations, the coordination 

pattern of metalloproteins were well maintained and the results show great agreement with the 

PDB Bank statistical values and crystal structures. All these results indicating that NN/MM-

RESP-MBG can correctly describe the interaction between Zn2+ and proteins. In addition, the 

method can be easily extended to deal with different biomacromolecule systems containing 

other metal ions.  

This paper is organizing as follows. In theory and method, the basic principles of NN/MM-

RESP-MBG method and the automatic construction method of the neural network model for 

metalloproteins are briefly introduced. In the results and discussion, ab initio kinetics 



simulations were performed on the four common coordination modes of zinc-containing 

metalloproteins, the reliability of the trajectory and the distribution of coordinated bond and 

angle were analyzed. Finally, brief conclusions and outlooks are given in the last section.   

Theory and method 
A. NN/MM-RESP-MBG methods 

In NN/MM-RESP-MBG, if the distance between any atom of a residue that forms a 

coordination bond with metal ions is less than 2.8 Å or shorter, the side chain or main chain 

which contains the coordinated atom of this particular residue is treated as a member of the 

metal binding group. For example, there are three cysteine and one histidine residues that 

coordinate to the zinc ion in a CCCH type zinc finger (PDB ID: 2L30) as shown in Figure 1. 

All the atoms shown by ball-and-stick model within the dotted circle will be included in the 

metal binding group (MBG). According to the statistical value in PDB Bank, the cutoff distance 

of 2.8 Å was chosen because it covers metal-ligand bond distance in most common 

metalloproteins and is able to deal with most abnormal bond length structures in MD 

simulations. In addition, the hydration atoms are added to saturated the metal binding group at 

the position of broken bonds.  

Figure 1. Division of metal binding groups in a CCCH type zinc finger protein which PDB ID 

is 2L30. The part shown by the ball-and-stick model within the dotted circle is defined as metal 

binding group (MBG).    

 

In NN/MM-RESP-MBG, a strategy similar to the QM/MM method is used for the total 

energy calculation. The QM energy and atomic forces of the entire MBG region will be 

predicted by E-SOI-HDNN model, while the rest of the system is described by the classical 

force field. The interaction between MBG group and the rest parts is calculated with the 

Coulomb and Lennard-Jones potential (mechanical embedding) in AMBER FF14SB. But the 



atomic charge parameter is replaced by the RESP charge predicted by the E-SOI-HDNN model. 

Then the total energy of the system can be expressed as follows. 
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B. E-SOI-HDNN model for metalloproteins 

 

In order to achieve self-validation of neural network prediction results, rapid construction 

of datasets focused on metalloproteins, enhanced self-organizing incremental high-dimensional 

neural network (E-SOI-HDNN) model was used to construct the potential energy surface of 

MBG group. Its structure is as shown in Figure 2. 

 

 
Figure 2. The structure of enhanced self-organizing incremental high dimensional neural 

network.  

 

In E-SOI-HDNN model, each MBG structure is represented by two set of descriptors: 

regularized sorted eigen spectrum of the coulomb matrix and ANI-1 symmetry functions. The 

calculation of coulomb matrix is as shown in Eq (2). 
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The regularized sorted eigen spectrum of coulomb matrix act as stimuluses to make 

adjustments to E-SOI layer. And the ANI-1 symmetry functions 𝑆! of Isayev and co-workers 

are used as descriptor to fit energy, atomic forces and RESP charge in training process of neural 

layer. 𝑆! consists the radial and angular part as shown in Eq (3) and Eq (4).   
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 According to the intrinsic spectral similarity of MBG structure, E-SOI layer will finds the 

representative structures from the reference dataset, estimate the density of similar structures 



and make cluster for datasets. The neural layer consists of a set of meta-networks, each of which 

corresponds to a sub-cluster in the E-SOI layer network. In this work, in order to deal with the 

interaction between the MBG and MM parts, we use modified Behler-Parrinello type high-

dimensional neural network (HDNN) as the meta-network in neural layer, which considers the 

environmental charge and Van der Waals correction to predict the energy, atomic forces and 

RESP charge of the MBG region.  

After the MBG structure 𝑅3 in the dataset is inputted, E-SOI layer will determine the m 

nearest subclasses according to the Euclidean distance between the corresponding eigen 

spectrum 𝜀3  and the weight vector 𝑊  of the corresponding node in the network. Then 

structure 𝑅3	will be added into training set of the corresponding meta-networks. In this way, 

each meta-network will be trained independently with its own reference dataset. The decision 

layer receives the predictions from neural layer and calculate the average of m meta-networks’ 

predictions as the final prediction. An error indicator χ3 is defined to quantitatively describe 

the estimation of neural network errors for a configuration of 𝑅3 as shown in Eq (5).  

χ3 = maxE𝐹453!,*(𝑅3) − 〈𝐹453!,*(𝑅3)〉E																																																																																														(5) 

where 𝐹453!,*(𝑅3)  is the atomic force predictions of meta-network 𝑛𝑒𝑡)  for jth atom in 

structure 𝑅3 , and 〈𝐹453!,*(𝑅3)〉  is the average force predictions of corresponding meta-

networks for atom j.  

According to 𝜒3	, the probability 𝑃.4674 of a given structure as a known structure can be 

estimated by error indicator χ3 as shown in Eq (6). 
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Then we can roughly define the known structure, questionable structure and unknown structure 

as shown in Eq (7) 
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Here, 𝛿 is the standard deviation of folded normal distribution of χ3,* and can be calculated 

by Eq (8). 
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And the final predictions of E-SOI-HDNN model are the average of an ensemble of meta-

networks M as shown as follows. 
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C. Automated construction of datasets for metal binding group 

 Combined with E-SOI-HDNN model, we construct the dataset for four common 

coordination modes (CCCC, CCCH, CCHH, HHHD) of zinc-containing metalloproteins 

through active learning and MD simulation sampling. The main workflow is as shown in Figure 

3.  

  

Figure 3. Automatic construction process of E-SOI-HDNN potential function model for 

metalloproteins.  

 

Here, we illustrate the main workflow with an example of CCCH type zinc finger protein (PDB 

ID: 2L30). 

(1) Perform a 100 fs QM/MM simulation with a time step of 1 fs. Take out the MBG 

structure and perform QM calculations as the initial dataset. 

(2) Train the E-SOI-HDNN model. First, all the datasets are used for the training of E-SOI 

layer. After the training of E-SOI layer, the datasets are assigned to each meta-network 



according to the clustering result. In each round of active learning process, the genetic 

algorithm is used to randomly generate structural parameters of each meta-network 

based on the best candidate structural parameters. The entire reference set is divided 

into training set and test set according to 9:1. After the training set is allocated by the 

E-SOI layer, the dataset of each meta-network is divided into a meta-training set and a 

meta-testing set according to 8:2 and the training of meta-network is carried out 

independently.  

(3) It should be emphasized that the subclasses that account for less than 5% of the total 

number of training sets are merged into the nearest class to avoid the excessive number 

of clusters at the E-SOI layer to reduce the performance of each meta-network. And the 

training of the meta network continues until the prediction error of the atomic forces 

on each meta training set is less than 2 𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙 ∙ Å).  

(4) Use the E-SOI-HDNN model to perform two sets of NN/MM-RESP-MBG dynamics 

simulations. One of them perform simulated annealing between 300 K and 400 K, 

which is mainly responsible for expanding the diversity of datasets. Another normal 

MD simulation is performed at 300K to determine whether the active learning process 

is iteratively completed. At each step of the simulation, the reliability of structural 

prediction is judged according to Eq (7). All questionable and unknown structures are 

put into the screening queue. In each round of active learning, the MD simulations are 

restarted from the initial structures.  

(5) Judge the reliability of the trajectory. In each round of active learning, the error 

indicators 𝜒3 in each MD step are tracked. When the average error indicator of 200 

consecutive steps 〈𝜒3〉8<< > 2𝛿 , the E-SOI-HDNN model is considered to be 

insufficiently sampled in the current phase space and the MD simulation is 

automatically stopped. Until the simulation time can reach 1 nanosecond at 300 K and 

all the error indicator 𝜒3 < 2𝛿, the active learning process is completed. Then go to 

step (8). 

(6) Eliminate abnormal and redundant structures in the screening queue. The structure in 

the screening queue. Here, a structure is regarded as an abnormal structure and be 

discarded directly if there is a distance between two atoms is less than 0.6 Å or greater 

than 15 Å. when the number of structures in the screening queue exceeds 1000, E-SOI 

layer will determine the types of each structure. Then we randomly select 1000 

structures of “internal”, “edge” and “noise” types add into reference dataset according 

to 1:3:1.  

(7) Generate the best candidate hyperparameters of E-SOI-HDNN model with genetic 

algorithm. Go back to step (2). 



(8) Train the final E-SOI-HDNN model with the iteratively completed datasets and best 

candidate hyperparameters.  

D. Computational Details 

 In this work, all the QM calculations are performed with Gaussian 16 at M062X/SDD level. 

The classical molecular force field used in NN/MM-RESP-MBG MD simulations is AMBER 

FF14SB. To better match the Amber FF14SB force field, the ESP data was calculated at the 

HF/6-31G* level, then RESP charges were fitted with the RESP module in the Amber 18 

package. In the training of the E-SOI layer, the maximum age of node connection 𝑎𝑔𝑒DEF is 

set to 10 times and every 500 times input are defined as a learning cycle. In the training of the 

neural layer, the initial structural parameters of the meta-networks are [200,200,200]. All the 

NN/MM-RESP-MBG MD simulations and the training of E-SOI-HDNN model are carried out 

through ESOI-CHEM package.  

 Here, we construct the E-SOI-HDNN model for four common coordination modes of zinc-

containing modes of zinc-containing metalloproteins. According to the number of various types 

of amino acids in the metal binding group, four types of MBG can be abbreviated as CCCC, 

CCCH, CCHH and HHHO where C represents cysteine, H represents histidine and O is aspartic 

or glutamate residues. We selected 4 different representative proteins for 4 coordination modes 

which PDB ID were 1ZIN (CCCC), 2L30 (CCCH), 1AAY (CCHH) and 1HFS (HHHO). 

Among 4 zinc-containing metalloproteins, the crystal structures of 1ZIN and 1AAY are in good 

agreement with the statistics of PDB Bank, while the bond length or angle distribution of crystal 

structure of 1HFS and 2L30 clearly deviate from the statistic distribution. Before the MD 

simulations, we optimized the protein crystal structure with AMBER FF14SB in a 25 Å cubic 

water box under periodic conditions. Then a 500 ps heating simulation, 5ns relaxation and 10 

ns production simulation were performed to relax the protein structure. During the MD 

simulations, structural constrains were added to the metal binding group to prevent the 

coordination area from being destroyed. After the pretreatment discussed above, the optimized 

proteins were placed in a water ball with a radius of 25 Å as the initial structure of NN/MM-

RESP-MBG MD simulations. 

 

Result and discussion   

A. Performance of E-SOI-HDNN model 

The performance of E-SOI-HDNN model on the training set and test set of the four 

common coordination modes of zinc-containing metalloproteins is as shown in Table 1. It can 

be seen that the E-SOI-HDNN model can predict the energy, atomic forces and RESP charge 

accurately. On the test set, the root means square error (RMSE) of energy of CCHH type is the 

largest, only 1.78 kcal/mol and all the RMSE of atomic forces in four coordination modes are 



less than 1.8 𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙 ∙ Å). It indicates that the E-SOI-HDNN can be applied to AIMD 

simulations.  

Table 1. The performance of E-SOI-HDNN model on training set and test set of four common 

coordination modes of zinc-containing metalloproteins.  

 

MBG PDB ID 
Number of 
Classes in  

E-SOI Layer 

Training Set/Test Set 

Structure 
Number 

RMSE of E 
(kcal/mol) 

RMSE of F 
(kcal/(mol·Å)) 

RMSE 
of Q (e) 

CCCC 1ZIN 7 11900/1200 1.43/1.29 1.53/1.43 0.04/0.05 
CCCH 2L30 12 28156/3200 1.38/1.34 1.68/1.75 0.03/0.04 
CCHH 1AAY 14 45328/5100 1.78/1.64 1.41/1.52 0.02/0.03 
HHHO 1HFS 11 27100/3000 1.30/1.26 1.63/1.72 0.04/0.03 

  
Then, 1 ns AIMD simulation on the four main modes of metalloproteins were performed 

with NN/MM-RESP-MBG method respectively. In the dynamic simulations, the reliability is 

judged in real time whether the simulation result is reliable with Eq (7). The distribution of the 

error indicator 𝜒3 of four trajectories are as shown in Figure 4. In order to facilitate analysis 

and representation, the RMSE of the E-SOI-HDNN model on the test set is used to replace the 

RMSE of each meta-network to calculate the δ in Eq (8). As can be seen in Figure 4, the 

maximum of error indicator in all four sets of trajectories is 4.68 𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙 ∙ Å) and the error 

indicator of all the structures are within the range of (0, 2δ), which means that there are not any 

unknown structures in simulations and the trajectory results are reliable. 



 

Figure 4. The distribution of error indicator 𝜒3 of four common coordination modes of 

zinc-containing metalloproteins.  

 

B. Charge distribution of Zn2+ and coordinated atoms 

In the classical force field such as AMBER FF14SB, the charge of Zn2+ is fixed at +2 e. 

There are strong electrostatic interactions between Zn2+ and protein environment. Zn2+ will 

attract other polar molecules like water into the coordination area and destroy the normal four-

coordinated structure. This problem has been partially improved in the advanced force field 

considering polarization and charge transfer effects. In NN/MM-RESP-MBG, the short-range 

polarization and charge transfer effects between Zn2+ and coordination atoms are fully 

considered by E-SOI-HDNN model. And the RESP charge of metal binding group are used to 

treat the electrostatic interaction between MBG and MM area. In the 1 ns AIMD simulations, 

it was found that the charge distribution of Zn2+ is obviously different under different 

coordination modes. Its distribution is as shown in Figure 5 and the average resp charge of 

coordinated atoms are shown in Table 2.  

 

Table 2. The RESP charge of Zn2+ and coordinated atoms in four different coordination mode 

of MBG in 1 ns AIMD simulations.  



 

 

In the CCCC coordination mode, Zn2+ forms coordination bonds with four cysteine residues. 

Compared with other coordination modes, the average RESP charge of Zn2+ is the highest, 

which is +1.25 e and significantly lower than +2 e in the classical force field. As shown in Table 

2, the average RESP charge of S atom is almost the same as the AMBER charge. It indicates 

that the defects of AMBER force field are mainly coming from the unreasonable charge of Zn2+. 

In CCCH coordination mode, Zn2+ forms coordination bonds with three cysteines and one 

histidine in the crystal structure of 2L30. The average RESP charge of Zn2+ is +0.98 e, which 

shows that the charge transfer effect between Zn2+ and the protein is stronger than that of CCCC 

mode. It is clear that the average RESP charge of coordinated N atom on histidine is smaller 

than AMBER charge while the S atom is basically same as that in CCCC mode. It indicates 

that the charge transfer effect between Zn2+ and coordinated N atoms are more obvious in 

NN/MM-RESP-MBG. In CCHH coordination mode, the average RESP charge of Zn2+ is +0.83 

e which is 0.15 e less than that in CCCH mode. Compared with the Amber FF14SB force field, 

the RESP charge of coordinated 𝑁G 	atom in histidine increased by about 0.15 e. It can be seen 

that Amber has defects in handling the charge transfer interaction between Zn2+ and N atoms. 

Finally, we analyze the coordination mode of HHHO, Zn2+ forms coordination bonds with an 

aspartic residue and three histidine residues in the crystal structure of 1HFS. Generally, when 

carboxyl group coordinated with Zn2+, there are two coordination cases of dioxygen 

coordination and mono oxygen coordination, which mainly depends on the interaction between 

the coordinated carboxyl and the protein environment. In the crystal structure of 1HFS, the 

1ZIN 
(CCCC) 

Coordinated Atoms Zn2+ S𝜸@C5 S𝜸@C8 S𝜸@C25 S𝜸@C28 
E-SOI-HDNN RESP 

charge 1.25 -0.85 -0.87 -0.86 -0.84 

Amber charge 2 -0.88 -0.88 -0.88 -0.88 

2L30 
(CCCH) 

Coordinated Atoms Zn2+ S𝜸@C5 S𝜸@C8 N𝛿@H37 S𝜸@C40 
E-SOI-HDNN RESP 

Charge 0.98 -0.87 -0.95 -0.41 -0.81 

Amber Charge 2 -0.88 -0.88 -0.57 -0.88 

1AAY 
(CCHH) 

Coordinated Atoms Zn2+ S𝜸@C5 S𝜸@C10 N𝜀@H23 N𝜀@H27 
E-SOI-HDNN RESP 

charge 0.83 -0.82 -0.81 -0.37 -0.42 

Amber charge 2 -0.88 -0.88 -0.57 -0.57 

1HFS 
(HHHO) 

Coordinated Atoms Zn2+ N𝜀@H64 O𝛿1/O𝛿2@H66 N𝜀@H78 N𝛿@H92 
E-SOI-HDNN RESP 

Charge 0.98 -0.51 -0.64 / -0.87 -0.43 -0.38 

Amber Charge 2 -0.57 -0.88 -0.57 -0.57 



coordination mode between carboxyl group and zinc ion is mono oxygen coordination due to 

the hydrogen bond between 𝑂H,  of ASP66 and a hydrogen atom of TYR68. The average 

RESP charge of Zn2+ is +1.12 e. It is worth noting that in Amber FF14SB, the charge of the two 

oxygen atoms on the carboxyl group is both +0.88 e due to the incorrect consideration of 

polarization and charge transfer effects. It overestimates the interaction between carboxyl group 

and Zn2+ and make it difficult to maintain a mono oxygen coordination mode. In NN/MM-

RESP-MBG, the charge of the 𝑂H8atom coordinated to Zn2+ on the carboxyl group is -0.87 e, 

while the average RESP charge of the non-coordinated 𝑂H,  atom is only -0.64 e. In the 1ns 

AIMD simulation, due to the polarization and charge transfer effect are well considered by 

neural network potential model, the carboxyl single coordination structure is well maintained.  

 

C. AIMD simulation with NN/MM-RESP-MBG 

In this work, we performed 1ns AIMD simulations for four common coordination mode 

of zinc-containing metalloproteins. First, we verified the accuracy of NN/MM-RESP-MBG in 

1ZIN (CCCC type) and 1AAY (CCHH type). Then we refined the crystal structure of 2L30 

and 1HFS with NN/MM-RESP-MBG MD simulations.  

 

 

Figure 5. RESP Charge distribution of Zn2+ under four different coordination modes. 

 

C.1 Structure of metal binding group in AIMD simulation 



Firstly, we analyzed the structure of the Zn2+ coordination region of the protein 1ZIN in 

1ns AIMD simulation. The distribution of the bond length and angle between Zn2+ and 

coordinated atoms are as shown in Figure 6 and Figure 7. And the comparation between statistic 

average in MD simulation and PDB Bank statistical value and crystal structure is as shown in 

Table 3. It can be seen that the statistical average values of all the coordinate bond lengths and 

angles are within the error range given by PDB Bank, indicating the accuracy of the results. In 

the AIMD simulation, the statistical average of the bond length of the Zn-S bond is 2.4 Å, which 

is about 0.05 Å longer than the statistical value of the PDB Bank. There are two possible reasons. 

On the one hand, the statistical values of all PDB Banks given in this article values of all PDB 

Banks are statistically averaged in all different coordination modes, which are not specific to 

the CCCC coordination mode. On the other hand, the theory level may have an impact on the 

accuracy of AIMD simulations. Here, the E-SOI-HDNN model is trained at the M062X/SDD 

level where the accuracy and efficiency for the structure optimization of zinc-containing 

Cambridge small molecule database are well balanced. The performance of this theory level 

has not been thoroughly compared for metalloproteins. Based on the above considerations, we 

believe that the current results are sufficiently accurate at the current level. In addition, the 

result angle distribution is also in good agreement with PDB Bank statistics. The statistical 

average values in the simulation are all within the error distribution range of PDB Bank 

statistics.  

 

Table 3. Comparation between the coordination bond and angle statistical average value in 

NN/MM-RESP-MBG MD simulation and PDB Bank statistical values and crystal structure of 1ZIN. 

The unit of bond length is Å, and the unit of angle is °. 

Zinc-ligand geometry PDB survey NN/MM-RESP-Metal X-ray 

Zn-S𝜸@C5 2.35 ± 0.09 2.41 2.33 
Zn-S𝜸@C8 2.35 ± 0.09 2.39 2.3 
Zn-S𝜸@C25 2.35 ± 0.09 2.4 2.32 
Zn-S𝜸@C28 2.35 ± 0.09 2.41 2.33 

∠S𝜸@C5-Zn-S𝜸@C8 111 ± 8 107 114 
∠S𝜸@C5-Zn-S𝜸@C25 111 ± 8 116 106 

∠S𝜸@C25-Zn-S𝜸@C28 111 ± 8 111 112 



 

 
Figure 6. The distribution of coordination bond length in 1 ns NN/MM-RESP-MBG MD 

simulation of CCCC mode, where the dotted line represents the average value of PDB Bank 

statistics and the orange area represents the statistic error distribution given by PDB Bank database 

for Zn-S bond length.  

 



Figure 7. The distribution of coordination angle in 1 ns NN/MM-RESP-MBG MD simulation 

of CCCC mode, where the dotted line represents the average value of PDB Bank statistics and the 

orange area represents the statistic error distribution given by PDB Bank database for S-Zn-S angle. 

 
In the coordination mode of CCHH, the distribution of the bond length and angle between 

Zn2+ and coordinated atoms in AIMD simulation of 1AAY are as shown in Figure 8 and Figure 

9. And the comparison of the statistical average value in the simulation with PDB Bank 

statistical value and crystal structure is as shown in Table 4. The average bond length of the 

Zn-S bond and Zn-N are 2.35 Å and 2.08 Å respectively, both of them are in good agreement 

with the statistical value of the PDB Bank. But for the coordination angle of N-Zn-N, there is 

an obvious deviation from the statistical value and crystal structure in the PDB Bank as shown 

in Figure 9. In order to check the problem, we found relevant QM/MM simulation results in 

recent work through literature research. The statistical average value of N-Zn-N in NN/MM-

RESP-MBG MD simulation is 97°. In recent 50ps QM/MM simulation of 1AAY, the statistical 

average of N-Zn-N is 99°. Two results are in good agreement with each other. It indicates the 

deviation of coordination angle of N-Zn-N does not come from the inaccurate prediction of the 

E-SOI-HDNN model. In the following work, we will continue to verify whether the angular 

distribution of N-Zn-N is same on more CCHH type zinc-containing metalloproteins.  

 

Table 4. Comparation between the coordination bond and angle statistical average value in 

NN/MM-RESP-MBG MD simulation, PDB Bank statistical values and crystal structure of 1AAY. 

The unit of bond length is Å, and the unit of angle is °.  

Zinc-ligand geometry PDB survey NN/MM-RESP-Metal X-ray QM/MM 
(50 ps) 

Zn-S𝜸@C5 2.35 ± 0.09 2.35 2.29 2.32 ± 0.06 
Zn-S𝜸@C10 2.35 ± 0.09 2.34 2.29 2.34 ± 0.07 
Zn-N𝜀@H23 2.05 ± 0.12 2.07 2.04 2.12 ± 0.07 
Zn-N𝜀@H27 2.05 ± 0.12 2.09 2.04 2.13 ± 0.07 

∠N𝜀@H23-Zn-N𝜀@H27 107 ± 8 97 105 99 ± 7 
∠N𝜀@H23-Zn-S𝜸@C5 109 ± 8 108 109 108 ± 7 

∠S𝜸@C5-Zn-S𝜸@C10 111 ± 8 116 113 114 ± 6 



 

Figure 8. The distribution of coordination bond length in 1 ns NN/MM-RESP-MBG MD 

simulation of CCHH mode, where the dotted line represents the average value of PDB Bank 

statistics, the orange area and blue area represent the statistic error distribution given by PDB 

Bank database for Zn-S and Zn-N bond length respectively.  



Figure 9. The distribution of coordination angle in 1 ns NN/MM-RESP-MBG MD simulation 

of CCHH mode, where the dotted line represents the average value of PDB Bank statistics and the 

orange area, brown area and blue area represents the statistic error distribution given by PDB Bank 

database for S-Zn-S, N-Zn-S and N-Zn-N respectively. And the green area and dot-dash line 

represent the relevant N-Zn-N angle error range and statistical average in 50 ps QM/MM simulation.  

 

C.2 Structure refinement with NN/MM-RESP-MBG 

In the CCCH coordination mode, the bond length of Zn-N in the crystal structure of 2L30 

is only 2.01 Å, which deviates from the statistical value of PDB Bank seriously while the bond 

length of Zn-N is refined in NN/MM-RESP-MBG MD simulations. The comparison between 

the statistical average value and PDB Bank statistics and crystal structures are as shown in 

Table 5. As the results discussed above, the statistical average of all coordination bond lengths 

and angles are within the error range given by PDB Bank as shown in Figure 10 and Figure 11, 

indicating the accuracy of the results. The distribution of Zn-N bond length completely matches 

the statistic distribution of PDB Bank database. Although the distribution of the refined 

structural coordination bond angle slightly deviates from the statistical value, the regular 

tetrahedral coordination mode of the crystal structure is perfectly maintained and the average 

value of the angle in dynamics is completely consistent with crystal structure. It means that 

NN/MM-RESP-MBG has the ability to optimize and refine the abnormal crystal structure of 

metalloproteins.  

Table 5. Comparation between the coordination bond and angle statistical average value in 

NN/MM-RESP-MBG MD simulation, PDB Bank statistical values and crystal structure of 2L30. 

The unit of bond length is Å, and the unit of angle is °.  

 

Zinc-ligand geometry PDB survey NN/MM-RESP-Metal X-ray 
Zn-S𝜸@C5 2.35 ± 0.09 2.4 2.34 
Zn-S𝜸@C8 2.35 ± 0.09 2.39 2.34 

Zn-N𝛿@H37 2.14 ± 0.09 2.15 2.01 
Zn-S𝜸@C40 2.35 ± 0.09 2.35 2.34 

∠N𝛿@H37-Zn-S𝜸@C40 109 ± 8 113 114 
∠S𝜸@C5-Zn-S𝜸@C8 111 ± 8 108 109 

∠S𝜸@C8-Zn-S𝜸@C40 111 ± 8 114 113 



 

Figure 10. The distribution of coordination bond length in 1 ns NN/MM-RESP-MBG MD 

simulation of CCCH mode, where the dotted line represents the average value of PDB Bank 

statistics, the orange area and blue area represent the statistic error distribution given by PDB Bank 

database for Zn-S and Zn-N bond length respectively.  



Figure 11. The distribution of coordination angle in 1 ns NN/MM-RESP-MBG MD simulation 

of CCHH mode, where the dotted line represents the average value of PDB Bank statistics and the 

orange area, brown area represents the statistic error distribution given by PDB Bank database for 

S-Zn-S, N-Zn-S respectively.  

 

Finally, we analyzed the HHHO coordination mode and the result is as shown in Figure 12 

and Figure 13. In the crystal structure of 1HFS, the coordination bond length between Zn2+ and 

N atoms is significantly shorter than the statistic value of PDB Bank. Among them, the two Zn-

N bond lengths are only 1.78 Å and 1.83 Å. and the distance between Zn2+ and 𝑁H atom of 

93th HIE residue is 2.01 Å as shown in Table 6. And not only the coordination bond length of 

Zn-N recovered to 2.01 Å, 2.02 Å and 2.06 Å respectively, which are in good agreement with 

the statistic of PDB Bank, but also the angular distribution bet Zn2+ and coordination atoms is 

consistent with the regular tetrahedral coordination structure in the crystal structure.  

Table 5. Comparation between the coordination bond and angle statistical average value in 

NN/MM-RESP-MBG MD simulation, PDB Bank statistical values and crystal structure of 1HFS. 

The unit of bond length is Å, and the unit of angle is °.  

 

 

 

 

 

 

 

Zinc-ligand geometry PDB survey NN/MM-RESP-Metal X-ray 

Zn-N𝜀@H64 2.05 ± 0.12 2.02 1.83 
Zn-O𝛿2@D66 1.95 ± 0.08 1.97 2 
Zn-N𝜀@H79 2.05 ± 0.12 2.01 1.78 
Zn-N𝛿@H93 2.14 ± 0.09 2.06 2.01 

∠N𝜀@H64-Zn-O𝛿2@D66 107 ± 12 111 105 
∠N𝜀@H64-Zn-N𝛿@H79 112 ± 7 116 119 

∠N𝜀@H79-Zn-N𝛿@H93 112 ± 7 112 113 



 
 
Figure 12. The distribution of coordination bond length in 1 ns NN/MM-RESP-MBG MD 

simulation of HHHO mode, where the dotted line represents the average value of PDB Bank 

statistics, the orange area and blue area represent the statistic error distribution given by PDB Bank 

database for Zn-O and Zn-N bond length respectively.  

 



Figure 11. The distribution of coordination angle in 1 ns NN/MM-RESP-MBG MD simulation 

of CCHH mode, where the dotted line represents the average value of PDB Bank statistics and the 

pink area, blue area represents the statistic error distribution given by PDB Bank database for N-

Zn-O, N-Zn-N respectively.  

 

To further test the ability of NN/MM-RESP-MBG to refine the wrong structures of zinc-

containing metalloproteins, we refined two abnormal structures sampled in 350 K MD 

simulations.  

 

Here, one of them is to refine the abnormal structure of 2L30 with excessively Zn-S 

coordination bond. The structure of metal binding group before and after refinement is as shown 

in Figure 14 (a) and (b). Before the refinement, the distance between Zn2+ and 𝑆I atom of 8th 

CYM was 2.92 Å. In order to deal with this abnormal structure in simulation, the distance 

threshold for dividing MBG is set to 3.00 Å. After 30 ps NN/MM-RESP-MBG simulation, the 

bond length of Zn-𝑆I @CYM8 has been restored to 2.40 Å and the regular tetrahedral 

coordination is well maintained. The time evolution of Zn-𝑆I@CYM8 is as shown in Figure 

14 (c). 

 

 



Figure 14. Structure refinement with NN/MM-RESP-MBG for 2L30 abnormal structure. 

(a) the abnormal initial structure, (b) the refined structure, (c) the time evolution of Zn-S 

distance.  

  

Another one is to refine the abnormal structure of 1HFS with an excessively large N-Zn-O 

coordination angle which means the regular tetrahedral coordination structure of MBG is 

distorted. Before and after refinement, the structure of MBG is as shown in Figure 15 (a) and 

(b) respectively. It can be seen that the 𝑁J − 𝑍𝑛 − 𝑂H8  angle is 140° which is seriously 

deviated from the ideal coordination angle 109° of regular tetrahedral coordination. After less 

than 5 ps NN/MM-RESP-MBG MD simulation, the angle of 𝑁J − 𝑍𝑛 − 𝑂H8 quickly drops 

from 140° to 120°. If we continued the refined MD simulations, the angle will gradually return 

to the statistical average value of 111°.  

 

Figure 15. Structure refinement with NN/MM-RESP-MBG for 1HFS abnormal structure. (a) 

the abnormal initial structure, (b) the refined structure, (c) the time evolution of O-ZN-O 

coordination angle.  

 

Conclusion and outlook  

 In this work, the NN/MM-RESP-MBG AIMD simulation method for metalloproteins is 

developed. In this method, the E-SOI-HDNN potential function model is used to describe the 



interaction between Zn2+ in the metal binding group and each coordination molecules. The 

classical molecular force field is used to describe the long-range interaction between the 

external environment and MBG.  

To more accurately describe the effect of the MBG on the protein, the RESP charge 

predicted by the E-SOI-HDNN model is used to replace the fixed charge model in the classical 

molecular force field. For four common coordination mode of zinc-containing metalloproteins, 

E-SOI-HDNN can accurately predict the atomic charge, potential energy and atomic forces of 

MBG while the computational efficiency is close to that of classical molecular force field. 

Combined with E-SOI-HDNN model and related active learning method, the reference dataset 

for zinc-containing metalloproteins are automated constructed. The model can not only handle 

stable crystal structures, but also accurately predict the energy and force of abnormal structures 

with strange coordination bond or angle. With the self-verification characteristics of E-SOI-

HDNN model, we can judge the accuracy of NN/MM-RESP-MBG MD simulation. NN/MM-

RESP-MBG method can be applied to long time MD simulations and structure refinement for 

metalloproteins. In 1 ns AIMD simulations of 4 zinc-containing metalloproteins with different 

common coordination mode, the structures of MBG are in good agreement with statistic value 

of PBD Bank dataset. In structure refinement MD simulations, the structure of MBG can be 

recover from the distorted tetrahedral coordination and the distribution of coordination bond 

and angle is consistent with the statistics of the PDB Bank database.  

Compared with the classical molecular force field, the neural network potential function 

model is not limited by the function form and complex parameterization process. Its form is 

flexible and there are not any priori deviations. All local quantum effects, especially 

polarization effects and charge transfer effect can be described accurately with NN potential 

model. This method has advantages when dealing with molecular systems containing complex 

quantum effects, such as the metalloproteins or other biological macromolecular systems 

containing metal ions. In addition, the computational efficiency of the neural network potential 

function model is improved by several orders of magnitude compared to the QM calculation 

and QM / MM methods. For the zinc-containing metalloproteins studied in this work, on a 

common Linux server with a 16-core CPU and an NVIDIA GTX1080Ti GPU card, the single-

step simulation with NN/MM-RESP-Metal method only takes about 0.1 s. Since the 

computational cost of the E-SOI-HDNN model mainly comes from the prediction in neural 

layer, combined with multi-GPU parallelism, the calculation efficiency can be further improved. 

Using this method, it is easy to deal with related problems on the time scale of nanoseconds, 

such as metalloproteinase catalysis, ligand binding and other important biochemical processes. 

 Although the neural network potential function model presented in this work has the 

advantages of accuracy and efficiency, there are also some shortcomings in NN/MM-RESP-

MBG. First, the polarization effect of the environment on ZBG is not considered, and only the 



short-range polarization effect between the Zn2+ and the coordination molecule is included. 

Secondly, the MBG area is fixed because it is hard to deal with the continuity of the potential 

energy surface of the total system in the current scheme. Finally, the neural network potential 

function model used in this work is trained with reference to the DFT calculation results. There 

are still rooms to improve the performance of DFT calculations when dealing with weak 

interactions. Therefore, a higher theory level research should be carried out. 

Despite the above shortcomings, the accuracy of the NN/MM-RESP-MBG method is fully 

guaranteed with the calculation efficiency of the classical molecular force field in AIMD 

simulations of metalloproteins, it can greatly extend the application of AIMD in metalloproteins 

related researches. 
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