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Despite the remarkable progress of machine learning (ML) techniques in chemistry, modeling the optoelec-
tronic properties of long conjugated oligomers and polymers with ML remains challenging due to the difficulty
in obtaining sufficient training data. Here we use transfer learning to address the data scarcity issue by pre-
training graph neural networks using data from short oligomers. With only a few hundred training data,
we are able to achieve an average error of about 0.1 eV for excited state energy of oligothiophenes against
TDDFT calculations. We show that the success of our transfer learning approach relies on the relative locality
of low-lying electronic excitations in long conjugated oligomers. Finally, we demonstrate the transferability
of our approach by modeling the lowest-lying excited-state energies of poly(3-hexylthiopnene) (P3HT) in its
single-crystal and solution phases using the transfer learning models trained with data of gas-phase oligothio-
phenes. The transfer learning predicted excited-state energy distributions agree quantitatively with TDDFT
calculations and capture some important qualitative features observed in experimental absorption spectra.

I. INTRODUCTION

Conjugated oligomers and polymers are semiconduct-
ing organic molecules with extended π-conjugated back-
bones, over which π electrons can be delocalized. Due
to their desirable electronic and photophysical proper-
ties, they have found wide applications in many fields,
spanning from optoelectronics1–3 to bio-sensing and bio-
imaging.4 For these applications, it is critical to under-
stand the relationship between the microscopic structures
and electronic properties of these materials. However,
predicting their electronic properties is a challenging
task mostly for two reasons: quantum chemical calcula-
tions for long oligomers and polymers are very expensive,
if not impossible, even with density functional theory
(DFT); and their electronic properties are very sensitive
to their conformations, which are often highly heteroge-
neous at ambient temperature. To address the first issue,
a common strategy is to infer the electronic properties of
long oligomers/polymers by extrapolating short oligomer
properties, and empirical relations have been devised.5–9

However, this approach is mostly used with optimized ge-
ometries, and how to learn from short oligomers to pre-
dict the properties of long oligomers/polymers at their
nonequilibrium geometries remains largely unexplored.
In this work, following the extrapolation idea we advo-
cate the use of transfer learning, a machine learning (ML)
technique, to tackle this problem.

ML has attracted significant interests from the scien-
tific community due to its potential to accelerate atom-
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istic calculations by orders of magnitude.10–15 Specifi-
cally for organic semiconductors, a plethora of ML meth-
ods, such as support vector machine (SVM), kernel ridge
regression (KRR), feed-forward neural network (NN),
and random forests (RF), have been applied to study
their electronic properties for various (opto)electronic
applications.16–41 The success of ML methods in many
of these studies relied on careful feature selection, while
recent graph-based ML approaches, such as SchNet42

and Message Passing Neural Networks (MPNN),43 are
capable of extracting the optimal representation of a
molecule solely from atom types and Cartesian coordi-
nates. These state-of-the-art ML methods have shown
impressive performance on benchmark datasets such as
the QM9 dataset which contains the ground state prop-
erties of molecules consisting of up to 9 non-hydrogen
atoms.42–55 Despite the remarkable progress of these
graph ML methods, their application to conjugated long
oligomers and polymers remains limited primarily due to
the difficulty in obtaining sufficient training data using
quantum chemical methods.

A popular technique in ML to address data scarcity
is transfer learning, in which an ML model is trained
on data from one task, then the model is re-used
as the starting point for a different but related task
where training data is often limited.56,57 There were al-
ready several applications of transfer learning in chem-
istry, and these include transferring models trained on
DFT data to CCSD(T)/CBS data;58 applying mod-
els pre-trained on small molecules to larger ones (up
to 14 non-hydrogen atoms);59 development of pre-
trained library XenonPy.MDL from publicly available
datasets;60 using pre-trained models for QSPR/QSAR
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predictions;61,62 virtual screening of donor organic pho-
tovoltaic molecules63 and solid lithium-ion conductors;64

and autoencoder approach to transfer learning.65,66

In this work, we apply transfer learning to predict the
electronic properties of long oligomers using training data
on short oligomers. Using oligothiophenes (OTs) as an
example (see Fig. 1), we first pre-train a graph neural
network (GNN) with data from short oligomers of var-
ious lengths whose repeating unit is the same as that
of the target long oligomers. Since computing electronic
properties of short oligomers with quantum chemistry is
very affordable, it is relatively easy to generate a training
dataset comprising a large number of (nonequilibrium)
configurations of short oligomers. After pre-training, the
GNN model is then fine-tuned with a small number of
training data of the target long oligomer. We find that
the use of pre-training could improves the accuracy of
GNNs by as much as 37% compared to the results with-
out transfer learning. The rest of the paper is organized
as follows. In Sec. II, we provide the details of train-
ing data generation and model training. In Sec. III, we
assess the performance of the transfer learning models
in predicting the HOMO-LUMO gap and excitation en-
ergy of long OTs, provide a physical explanation for their
success, and demonstrate their transferability by apply-
ing them to a substituted polythiophene in its condensed
phases. In Sec. IV, we conclude.

II. COMPUTATIONAL DETAILS

α-linked OTs are chosen as our systems to demon-
strate the effectiveness of transfer learning, and they
are denoted as nT, where n is the number of thio-
phene rings in the OT. OTs have been extensively
studied both experimentally and theoretically due to
their optoelectronic properties and their relevance to
polythiophenes and their derivatives, such as poly(3-
hexylthiopnene) (P3HT), a widely used organic semicon-
ducting polymer.67,68 There are many studies suggesting
that the electronic properties of polythiophenes (PTs)
may be inferred from those of OTs, and the estimated
effective conjugation length of unsubstituted or substi-
tuted PTs varies greatly, ranging from about 11 to 96
thiophene units.6,69–75 Empirical expressions have also
been devised to correlate the excitation energy and the
size of OTs and PTs,6,73–75 and despite their differences,
the difference in excitation energy between 10T and the
infinite long nT predicted by these empirical relationships
is about 300 meV. Considering the computational afford-
ability and the typical errors of time-dependent density
functional theory (TDDFT) in estimating singlet excita-
tion energy (i.e., 100-500 meV), we choose 2T-10T as the
short OTs in the pre-training phase, and the target prop-
erties for transfer learning are the excited-state energies
and HOMO-LUMO gaps of 11T-16T.

A. Data Generation

To adequately sample the configuration space of OTs
and test the performance of transfer learning over a
wide range of configurations, classical molecular dynam-
ics (MD) simulations were performed for each OT in
its gas phase at 1000 K. Sufficiently large simulation
boxes were employed with periodic boundary condition.
Simulations were performed in the NVT ensemble at
1000 K with the Nosé-Hoover thermostat76,77 and a cou-
pling constant of 2.0 ps, and the particle-mesh Ewald
method78,79 was used for electrostatic interactions. All
the MD simulations were performed with the OPLS/2005
force field80 in the Desmond package 3.6.81 OPLS/2005
force field80 was adopted for its capability of reproducing
the torsional potential energy surface of (unsubstituted)
bithiophene from localized second-order Møller-Plesset
perturbation theory.82 The simulation time step was 1 fs,
and during the production run configurations were saved
every 100 fs over a 2-ns trajectory for each OT. Config-
urations were randomly drawn from the trajectories for
subsequent quantum chemical calculations.

DFT was employed to compute the HOMO-LUMO
gap, and TDDFT with the Tamm-Dancoff approxima-
tion was used for the excitation energy. CAM-B3LYP
functional and 6-31+G(d) basis set were chosen based on
the agreement with coupled cluster calculations in our
previous study,40 where the average error for the exci-
tation energies of OTs up to 6T using CAM-B3LYP/6-
31+G(d) was estimated to be around 200-300 meV. All
the quantum chemical calculations were performed using
the PySCF program,83 and density fitting was adopted
with the heavy-aug-cc-pvdz-jkfit auxiliary basis set, as
implemented in PySCF.

B. Model Training

The specific GNN model we choose for our transfer
learning protocol is SchNet since it has been shown in
our previous study to provide the best performance for a
range of ground and excited state properties of OTs up
to 6T.40 Similar to other GNN models, SchNet is capable
of automatically extracting optimal representations from
molecular configurations without resorting to the more
traditional approach of manually designing descriptors
such as Coulomb matrices,84,85 bags of bonds,86 smooth
overlap of atomic positions87 or generalized symmetry
functions.88 In our previous work, we have shown that
SchNet can reliably predict various electronic properties
(e.g., HOMO-LUMO gap and excited-state energies) of
OTs up to 6T with the average errors in the range of
20-80 meV.40 It is worth emphasizing that the transfer
learning protocol advocated here does not depend on the
specific underlying ML model, a similar performance im-
provement could be obtained even when a different ML
model is used, as demonstrated in the Supporting In-
formation (SI) where we use a multilevel graph convo-
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FIG. 1. (a) We use oligothiophenes (OTs) of varying lengths to demonstrate the transfer learning protocol. A sample config-
uration of an OT molecule (i.e., 15T) is shown. (b) Schematic of transfer learning protocol used in this work. The weights
of a GNN model are first randomly initialized. Subsequently, the GNN model is pre-trained using data of short oligomers
that resemble the target molecule. Training data of these short oligomers can be easily obtained through electronic structure
calculations. After pre-training, the model is then fine-tuned with data of the target long oligomer. The amount of data of the
target long oligomer is typically limited.

lutional neural network (MGCN) as the underlying ML
model.48

The transfer learning protocol used in this work is out-
lined in Fig. 1(b). SchNet is first pre-trained using data
from 2T-10T (1000 for each OT, and 9000 in total) for
300 epochs, the weights of SchNet are then fine-tuned
for up to 100 epochs using data from the target molecule
(i.e., 11T-16T). We use the same hyperparameters as the
original SchNet paper,42 unless otherwise stated. Par-
ticularly, a cutoff of 5 Å is used for the predictions of
all electronic properties. The dimension of embedding
in SchNet is set to be 128, and we use three interaction
blocks. We train SchNet with Adam optimizer89 using
a learning rate of 0.0001 and a batch size of 64. The
decay rate is set to 1 (i.e., no decay) since we find that
adding decay does not lead to noticeable improvement.
In the final training phase, only 200 training data of the
target molecules are used, unless otherwise stated (e.g.,
in Fig. 3). Additionally, 500 validation data are used for
early stopping in the final training phase, and the trained
models are evaluated using 1000 test data. To demon-
strate the performance improvement offered by the trans-
fer learning, we also train SchNet models without transfer
learning for up to 400 epochs, and again use the valida-
tion set for early-stopping. Our version of SchNet is im-

plemented using PyTorch90 and Deep Graph Library,91

and the source codes can be found on GitHub.92

We note that using less validation data for early stop-
ping could lead to over-fitting of the models and con-
sequently poor performance on test data. In case that
generating the additional validation data is not feasible,
we recommend that one can simply train SchNet with
the training data of the target molecules for 100 epochs
without early stopping. We found that the errors of such
approach are on average about 7% higher than those with
early stopping, still a significant improvement over results
without transfer learning

III. RESULTS AND DISCUSSIONS

A. Model Performance

The mean average errors (MAEs) of the first excited-
state energies and HOMO-LUMO gaps of 11T-16T from
our transfer learning protocol are shown in Fig. 2. With-
out transfer learning, the MAEs of the excited state en-
ergy range from 170 meV to 187 meV (solid blue line) for
11T to 16T. These results from direct training are already
notable as compared to other traditional ML methods
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FIG. 2. Mean average errors (MAEs) of (a) excited state
energy and (b) HOMO-LUMO gap of OTs as a function of
molecular size where n denotes the number of thiophene rings
in the molecules. Blue lines represent the results from direct
training of SchNet without transfer learning, whereas the red
lines denote the results of SchNet pre-trained with 2T-10T
data. 200 training data of the target long OT are used in all
the simulations.

such as shallow feed-forward neural network whose MAEs
could exceed 400 meV even with 5 times as many training
data (i.e., 1000 training data) for molecules as small as
6T.40 The performance of SchNet is further boosted with
the use of transfer learning: the corresponding MAEs re-
duce to 101-119 meV, an average improvement of 37% or
65 meV. Given our transfer learning protocol, one might
anticipate that the errors might increase with the size
of OTs as the target long OTs become increasingly dif-
ferent from the small OTs used in the pre-training. In-
terestingly, we find that the increase in MAEs is fairly

minuscule, implying the robustness of our transfer learn-
ing method at least up to 16T.

Similar to the results on excited-state energy, the
MAEs of HOMO-LUMO gap range from 208 meV to
244 meV without transfer learning, and transfer learn-
ing reduces the MAEs to 125-156 meV, with an average
improvement of 36% or 78 meV. The MAEs of HOMO-
LUMO gap are larger than those of excited state energy
because its distribution is broader. For example, the
standard deviation of 15T HOMO-LUMO gap in the data
is 322 meV whereas that of excited state energy is 246
meV. The larger standard deviation of HOMO-LUMO
gap is likely due to the absence of exciton binding energy
which makes the absolute value of HOMO-LUMO gap
larger than that of excited state energy. For example,
the average value of 15T HOMO-LUMO gap is 5.1 eV
whereas that of excited state energy is 3.1 eV.

Next we explore how the performance of transfer learn-
ing depends on the amount of training data in Fig. 3,
which shows the MAEs of 15T excited state energy (blue
lines) and HOMO-LUMO gap (red lines) as functions of
15T training data (panel (a)) and as functions of pre-
training data from each of the 2T-10T molecules (panel
(b)). From Fig. 3 (a), it can be seen that without any
data from the target molecule 15T, the MAEs for excited
state energy and HOMO-LUMO gap are 279 meV and
623 meV, respectively. However, adding as few as 100
training data from the target molecule leads to signifi-
cant improvement in performance and reduces the MAEs
to 114 meV for excited state energy and 155 meV for
HUMO-LUMO gap. Further increase of training data
only marginally improves the performance of SchNet. For
example, with 500 T15 data, the MAEs reduce to 98 meV
for excited state energy and 132 meV for HOMO-LUMO
gap. This represents approximately 15% reduction of
MAE even with five times as many training data.

It is also instructive to learn how the performance of
transfer learning depends on the amount of data used in
the pre-training phase, as depicted in Fig.3 (b). The x-
axis of Fig.3 (b) denotes the number of data from each of
2T-10T used in the pre-training phase, while the number
of 15T training data is fixed at 200. The MAE of excited-
state energy decreases from 162 meV to 113 meV as we
increase the amount of pre-training data from 0 to 1000
per short OT. Correspondingly, the MAEs for HOMO-
LUMO gap drops from 208 meV to 150 meV within the
same range of pre-training data. Even though our MAEs
have not yet reached convergence with respect to the size
of the pre-training dataset, it is clear that expanding the
pre-training dataset of short OTs is likely more efficient
in reducing MAEs than adding more long OT data to
the final training set, a good news from the perspective
of computational cost.
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FIG. 3. MAEs of excited state energy (blue lines) and
HOMO-LUMO gap (red lines) of 15T as functions of 15T
training data (panel (a)) and as functions of pre-training data
from each of the 2T-10T (panel (b)). 1000 training data from
each of 2T-10T are used for panel (a), and 200 15T training
data are used for panel (b).

B. Justification for Transfer Learning

To gain physical insights into the reason why pre-
training ML models with data of short OTs could im-
prove the predictions of long OTs, we analyse the elec-
tron density difference between the lowest-lying excited
and ground states of 15T molecule in Fig. 4. We con-
sider electron density gain as electron and electron den-
sity depletion as hole upon electronic excitation. Fig. 4
(a) depicts the electron (blue) and hole (red) density of
a typical 15T configuration. It can be seen that both
densities only occupy a small number of thiophene rings

(b) electron hole(c)

(a)

FIG. 4. (a) Electron density difference between the ground
and first excited states of a representative 15T configuration.
Electron density gain (loss), shown as the blue (red) 0.0005
iso-surface, is considered as electron (hole) density upon elec-
tronic excitation. (b) and (c) are the histograms of electron
and hole spatial extent, respectively, generated from the elec-
tron density difference plots of 400 15T configurations. Note
that the length of one thiophene ring is approximately 4 Å.

in the chain. This observation suggests that despite the
long length of molecules like 15T, the electronic proper-
ties like excited-state energy are determined by a small
fragment of the molecule. The limited delocalization of
the electron/hole density is likely the result of the nu-
merous kinks and distortions along the thiophene chain
which prohibit the extension of electron and hole den-
sities. This is consistent with many previous theoreti-
cal studies93–98 which found that conformational disor-
der due to thermal fluctuation or steric constraints (e.g.,
those caused by side chains) can localize the exciton in
conjugated polymers.

To confirm the hypothesis that the electron and hole
densities are relatively localized in most molecular config-
urations, we define electron/hole spatial extent following
Ref. 99, which is given by

Da = 2

(∫
(~r − ~ra)2ρa(~r)d~r

/∫
ρa(~r)d~r

)1/2

, (1)

where a = e, h for electron and hole, respectively, ρa(~r)
is the electron/hole density, and the centroid of elec-
tron/hole density is given by

~ra =

∫
~rρa(~r)d~r

/∫
ρa(~r) d~r. (2)

Da provides a rough measure of the delocalization ex-
tent of electron and hole densities, and the results for
400 15T configurations are shown as histograms in Fig. 4
(b) and (c). It can be seen that electron/hole spatial ex-
tent does not go beyond 20 Å, which is approximately the
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length of 5 thiophene rings (the length of one thiophene
ring is about 4 Å). In fact, for most of the molecular
configurations, electron/hole spatial extent is within the
range of 10-15 Å. Some previous theoretical studies on
P3HT95,98 showed that the electron or hole localization
length is estimated to be around 5-7 thiophene rings at
ambient temperature, slightly higher than our numbers
for gas-phase 15T at 1000K, although they adopted dif-
ferent measures to quantify delocalization. Additionally,
we verify that the electron/hole spatial extent within a
single 16-unit P3HT chain in its crystalline phase at 300
K (see Section III C for simulation setup) is also about 6
thiophene rings due to the distortions caused by thermal
fluctuation and crystalline packing.

The relatively localized electron and hole densities in-
dicate that ML models only need to learn the fragments
of molecular chains with non-negligible electron/hole
density, since the electronic properties are determined by
these fragments which consists a smaller number of thio-
phene rings. Since the short OTs used in the pre-training
phase may resemble these molecular fragments, they pro-
vide ML models with useful information in capturing the
relation between atomic coordinates and quantum me-
chanical properties.

C. Application to P3HT

As an application of the transfer-learning model, we
computed the excited state energies of P3HT in both
its single-crystal phase and the dichloromethane so-
lution. For both systems, classical MD simulations
were performed for 16-unit regioregular P3HT using the
OPLS/2005 force field,80 and the initial structure of
P3HT was constructed using the geometric information
in Ref. 100. For P3HT in dichloromethane, a single 16-
unit P3HT chain was immersed in a simulation box of
2876 dichloromethane molecules. Classical MD simula-
tion was performed in the NPT ensemble at 300 K and
1 atm using the Martyna-Tobias-Klein scheme101 with a
coupling constant of 2.0 ps, and after 100-ns equilibra-
tion, P3HT configurations were saved every 1 ps over a
10-ns production run. For the P3HT crystal, a total of
16 P3HT chains were initially stacked with their thio-
phene backbones perfectly aligned102 in the simulation
box, whose dimensions match the estimated lattice con-
stants in Ref. 103. NVT simulation was then performed
using the Nosé-Hoover thermostat76,77 with a coupling
constant of 2.0 ps. After 40-ns equilibration, P3HT con-
figurations were saved every 10 ps over a 10-ns production
run. All other simulation details are the same as those
for gas-phase OTs. 10000 P3HT configurations were har-
vested from the MD simulations for each system, and the
hexyl side chains were replaced by H atoms for subse-
quent excited-state energy predictions since they are not
involved in the π conjugation.

We directly applied the transfer learning model for 16T
that was trained with the gas-phase data at 1000 K (i.e.,

2.5 3.0 3.5 4.0 4.5
eV

0.00

0.25

0.50

0.75

1.00
(a) Crystal P3HT

Transfer Learning
TDDFT

2.5 3.0 3.5 4.0 4.5
eV

0.00

0.25

0.50

0.75

1.00
(b) Solution P3HT

FIG. 5. The lowest excited-state energy distributions of P3HT
in its single-crystal phase (top) and in dichloromethane solu-
tion (bottom), computed from the transfer learning model
(red lines) and TDDFT calculations (blue bars). For each
system, 10000 P3HT configurations were used in transfer-
learning prediction, whereas 400 configurations separated ev-
ery 500 fs were used for the TDDFT prediction. All the dis-
tributions are scaled to have the same peak height of 1.

pre-trained on 2T-10T with 1000 data for each OT, and
fined-tuned with 200 data for 16T) to obtain the excited-
state energies, and their distribution was then computed
using

f(E) = 〈δ(E − Ωi)〉, (3)

where Ωi is the lowest excited-state energy of the ith
(truncated) P3HT configuration, δ(x) is the Kronecker
delta function, and the angular brackets indicate an en-
semble average over 10000 configurations. Note that the
excited-state energy distribution would be a good ap-
proximation to the UV-Vis absorption spectrum if ex-
citonic couplings, motional narrowing, and non-Condon
effects are negligible.104

The calculated lowest excited-state energy distribu-
tions from the transfer learning model are shown as red
lines in Fig. 5, the distribution for the solution-phase
spectrum is significantly blue-shifted and much broader
compared to the that for crystal. To verify this trend, we
randomly chose 400 configurations separated every 500
fs for each system to have their excited state energies
computed directly from TDDFT, and the resulting dis-
tributions are shown as blue bars. It is evident that the
transfer learning model faithfully reproduces the TDDFT
results covering essentially the same energy ranges de-
spite the fact that the configurations of P3HT in single
crystal and solution could be very different from the gas-
phase 16T configurations sampled in the model training.
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However, this might not be surprising since excitons are
also relatively localized in P3HT at ambient temperature
due to conformational disorder as suggested by other the-
oretical studies.95,98 The blue-shifted and much broader
distribution for the P3HT solution compared to that for
the crystal from our simulation is also consistent with the
experimental UV-Vis absorption spectra of P3HT solu-
tion and crystal,105,106 although the P3HT in the exper-
iments is much longer potentially with substantial inter-
chain and through-space intra-chain excitonic couplings.
The successful application of the transfer learning model
to P3HT shows the transferability of the trained model to
different chemical environments, critical for its applica-
tion to more relevant systems for optoelectronic devices,
e.g., bulk heterojunctions for organic photovoltaics.

IV. CONCLUSION

In this work, we have shown using OTs as the example
that transfer learning with deep graph neural networks
enables accurate predictions of electronic properties of
long conjugated oligomers from those of short ones. This
extends the conventional strategy of property extrapo-
lation for optimized geometries to nonequilibrium con-
figurations, and alleviates the data scarcity issue for big
conjugated molecules. Prediction errors below 200 meV
in excited-state energy and HOMO-LUMO gap compared
to DFT results can be achieved by transfer learning with
even as few as 100 training data of target long OTs. We
further show that the success of our transfer learning
approach relies on the relative locality of low-lying elec-
tronic excitations in long conjugated OTs. The transfer
learning model trained on gas-phase configurations shows
good transferability in modeling the excited-state energy
of P3HT in its single-crystal and solution phases. There
remain challenges of applying transfer learning to model
electronic properties of conjugated polymers, such as ex-
tension of the model to longer conjugated polymers and
using higher-level quantum chemical methods than DFT
for model training, and they will be interesting topics of
future work.
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