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Abstract 
 
 The application of machine learning (ML) to problems in homogeneous catalysis has 

emerged as a promising avenue for catalyst optimization. An important aspect of such optimization 

campaigns is determining which reactions to run at the outset of experimentation and which future 

predictions are the most reliable. Herein, we explore methods for these two tasks in the context of 

our previously developed chemoinformatics workflow. First, different methods for training set 

selection are compared, including algorithmic selection and selection informed by unsupervised 

learning methods. Next, an array of different metrics for assessment of prediction confidence are 

examined in multiple catalyst manifolds. These approaches will inform future computer-guided 

studies to accelerate catalyst selection and reaction optimization. Finally, this work demonstrates 

the generality of the Average Steric Occupancy (ASO) and Average Electronic Indicator Field 

(AEIF) descriptors in their application to transition metal catalysts for the first time.  
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Introduction 

 Since the turn of the century, computational methods for enantioselective catalyst 

optimization have gained traction within the scientific community.1-28 The most established 

method for computational catalyst design is transition state analysis with quantum chemistry or 

force field methods calculate the relative energy differentials leading to enantiomers which then 

enables more informed catalyst optimization.2,5,6,8,10-12,29-33 A more recent alternative to these 

approaches is the application of quantitative structure-selectivity relationships (QSSR).34 In this 

method, numerical values representing catalyst structural characteristics are correlated with an 

experimental observable, generating a mathematical model which can be used to evaluate new 

catalyst structures in silico. QSSR also has the advantage of being mechanistically agnostic at the 

outset of investigation. In enantioselective catalysis, the seminal example of QSSR was reported 

by Norrby and coworkers to predict ratios of isomeric products from various nucleophilic 

substitution reactions on palladium η3-allyl complexes.35 Since this initial report, this field has 

become an established area of research.36-44 Of particular note, Sigman and coworkers have 

pioneered the application of linear free energy relationships (LFERs) for mechanistic 

interrogation.45  

 In our own laboratories, molecular interaction field (MIF)-based approaches have been 

investigated to elucidate important structural characteristics of phase transfer catalysts.46,47 More 

recently, we have used additional statistical learning protocols with MIF-type descriptors to 

evaluate chiral catalysts, culminating in a computer-driven workflow for the optimization of 

enantioselective catalysts.48,49 The aim of this workflow is to identify the most selective catalyst 

from a large in silico library of catalysts in a way that is agnostic of mechanism. However, these 

studies, like many studies investigating the application of machine learning to enantioselective 

catalysis, are proof-of-principle studies. In practice, when employing this kind of a workflow, 
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researchers must have quantitative measures for identifying which chemical entities to synthesize 

and which predictions are the most reliable. Notably, some of these concepts have been explored 

in other applications in the chemical sciences.50-57 However, these concepts have not been explored 

rigorously in the context of enantioselective catalysis. In the work described herein, a variety of 

catalyst selection protocols are evaluated. Further, multiple metrics for error assessment are 

compared in multiple catalyst systems. Specifically, error assessment metrics used previously in 

the literature at tested to determine how best to use them in our previously published workflow. 

Finally, suggestions are made as to how these investigations can aid decision making in ML-guided 

optimization campaigns.  

Results and Discussion 

Evaluation of Different Training Set Selection Methods 

First, this work seeks to identify suitable algorithmic methods for subset selection (i.e. 

selection of the initial training set). Specifically, we hypothesize that algorithmic selection will 

reliably provide more accurate models than random selection or selection on the basis of synthetic 

or commercial availability. In our previous work, the Kennard-Stone algorithm was used to select 

an initial subset for model training and validation, and K-Means clustering was used to augment 

training data for ML studies.48,49 Both algorithms have been empirically successful selection 

methods; however, to our knowledge, no study in homogenous catalysis has investigated an array 

of subset selection protocols to determine which is best for selecting an initial set of experiments. 

To probe this hypothesis, a literature dataset of enantioselective transfer hydrogenation reactions 

previously used in chemoinformatic analysis will be used as a case study.58-60 In this investigation, 

330 amino alcohol ligands were combined with six transition metal complexes, which were then 

employed in the enantioselective transfer hydrogenation of acetophenone (Figure 1). From this 
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dataset, reactions providing yield and enantioselectivity values were chosen, reducing the total 

number of reactions to 315. The original report chose to optimize for a combination of these values, 

which was termed Normalized Performance Factor (NPF). NPF is calculated as the  

 
Figure 1. Enantioselective hydrogen transfer catalyst system and possible catalyst structures.  



Zahrt, Rose, Darrow, Henle, and Denmark page 5 

conversion multiplied by two plus the enantiomeric excess (ee). That value is normalized to the 

highest performer by this metric to give NPF values for all catalysts, with the catalyst having the 

highest performance factor normalized to 1.  

 With multiple reaction outcomes to predict, this dataset was used for further exploration. 

As in our previous study,49 average steric occupancy (ASO) and average electronic indicator field 

(AEIF) descriptors were calculated for the amino alcohol metal complexes. Although these 

descriptors were successfully implemented for different classes of organocatalysts, we wanted to 

assess the efficacy of these descriptors for representing chiral transition metal complexes. The 

capability to represent disparate catalyst families with the same molecular representation would 

indicate good generality in the molecular representation, which is a necessary requirement if 

comparisons between different families of catalysts is desired in future work. Additional 

parameters for the respective metals were also calculated (see Supporting Information for full 

computational details). When investigating methods for selecting initial subsets of compounds, the 

most appropriate were deemed to be those dependent on only the catalyst descriptors. The rationale 

for this approach is that the initial subset of catalyst structures (i.e. the training set) should be 

general for use at the outset of optimization campaigns for any application. By considering only 

catalyst structure descriptors, the selection process is agnostic to the specific reaction under study.  

When evaluating methods to use for subset selection some considerations need to be taken 

in the context of our workflow. Most notably, our system for catalyst optimization first begins with 

the construction of a large in silico library containing thousands of synthetically accessible catalyst 

structures. The remainder of the workflow (at this stage of development) works under the 

assumption that this library will remain static. Thus, every sample for which a value could be 

measured is known at the outset of experimentation. Therefore, the ideal subset of molecules will 
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yield models that most accurately predict reaction outcomes for the remainder of the library. 

Toward this end, five different methods fulfilling this criterion were used: the Kennard-Stone 

algorithm, K-means clustering, affinity propagation, agglomerative clustering, and mean shift 

clustering.61 For each method, 33 catalysts were selected except for affinity propagation and mean 

shift clustering in which the number of clusters cannot be preset. For affinity propagation, 34 

clusters were identified by the algorithm and for mean shift clustering 33 clusters were 

recommended. Thus, affinity propagation has a slight advantage over the other four methods owing 

to the additional cluster employed. For comparison, ten randomly selected subsets were also 

compiled. It is worth noting that, in general, random selection from a diverse in silico library likely 

covers more chemical space than most experimental catalyst optimization campaigns. As 

demonstrated in our previous work, most such campaigns over-sample a limited region of chemical 

space owing to commercial availability or synthetic accessibility of certain types of structures.49 

Consequently, it is likely that random selection from a diverse library would give more diverse 

structures than most instances of “traditional” catalyst optimization. Therefore, any selection 

protocol that gives consistently higher performance than random selection can be considered a 

particularly promising selection method.  

 The performance of interest in this study is the capability to determine the selectivity of 

every catalyst in the library a priori. Thus, to determine the best subset selection methods, models 

were trained and cross validated using only the selected catalysts and their performance compared 

by using all remaining catalysts in the library as an external test set. Although we have chosen this 

experimental design with our own workflow in mind, it is worth noting that in many cases 

experimentalists have an idea of which catalysts are acceptable at the outset of experimentation. 

The following analysis should be applicable to all of such cases. Using each initial subset (which 
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in practice was used for model training and cross validation), an ensemble of models was generated 

for both the NPF and the enantioselectivity datasets. Because limited training data was used to 

simulate real optimization scenarios, an ensemble of linear models was constructed (see 

Supporting Information for full detailed regarding this ensemble). The summary of the models for 

enantioselectivity and NPF are given in Tables 1 and 2, respectively.  

 The data in Tables 1 and 2 demonstrate that, in general, models derived from 

algorithmically selected training set outperform those selected through random selection. For both 

enantioselectivity models and NPF models, three of the top five models are derived from 

algorithmically selected training sets. Further, in both cases even the worst performing model 

derived from an algorithmically selected training set yields a lower MAETest than the average 

performance of the randomly selected training sets. Finally, all models derived from 

algorithmically selected training data perform with excellent accuracy as dictated by MAETest 

(enantioselectivity models MAE < 0.235 kcal / mol, NPF models < 0.124 NPF). This observation 

is encouraging in such studies, as it indicates that it is generally possible to make accurate models 

with limited training data, which should facilitate adoption of such methods in experimental 

optimization campaigns.  

 When comparing the performance of the different training sets, it is apparent that random 

training data selection results in model accuracy that is highly dependent on set selection. For the 

randomly selected training sets, resulting model MAETest scores ranged from 0.198 kcal/mol to 

0.310 kcal/mol for models predicting enantioselectivity and 0.112 to 0.154 for models predicting 

NPF.62 This wide fluctuation in performance is expected when a small portion of the dataset is 

sampled randomly; as the number selected randomly increases, the overall variability of model 

accuracy decreases. However, for synthetic applications, acquiring enough datapoints to reduce 
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Table 1. Summary of Different Selection Methods for Enantioselectivity Models.  
 

Model Type MAETest (kcal / mol) Standard Deviation in MAETest (kcal / mol) 
Random 1 0.198 0.001 

Agglomerative Clustering 0.207 0.003 
Kennard-Stone 0.214 0.014 

Affinity Propogation 0.215 0.013 
Random 3 0.217 0.009 
Random 7 0.218 0.012 
K-means 0.22 0.01 

Random 5 0.22 0.008 
Random 4 0.223 0.003 
Random 2 0.225 0.016 
Mean Shift 0.235 0.013 
Random 8 0.253 0.016 
Random 10 0.273 0.004 
Random 6 0.283 0.006 
Random 9 0.310 0.012 

Algorithmic Selection Ave 0.218  
Random Average 0.242  

 

Table 2. Summary of Different Selection Methods for NPF Models.  
 

Model Type MAETest (NPF) Standard Deviation in MAETest (NPF) 
Kennard Stone  0.110 0.007 

Agglomerative Clustering 0.111 0.004 
Random TS1 0.112 0.002 

Affinity Propogation 0.116 0.007 
Random TS5 0.119 0.009 
Random TS8 0.119 0.006 
Random TS4 0.120 0.003 
Random TS3 0.121 0.002 
Mean Shift 0.122 0.010 

K-Means Clustering  0.124 0.014 
Random TS7 0.130 0.008 
Random TS10 0.133 0.004 
Random TS9 0.134 0.001 
Random TS2 0.141 0.005 
Random TS6 0.154 0.003 

Algorithmic Selection Ave 0.117  
Random Average 0.128  
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this variation resulting from “fortuitous” (e.g. Random Training Set 1) or “unfortunate” (e.g. 

Random Training Set 6) training set selection is undesirable and unrealistic. In this regard, all 

algorithmic selection methods demonstrate the advantage of avoiding an “unfortunate” random 

selection. It is also noteworthy that algorithmic subset selection methods result in models with 

lower MAEs than random sampling as indicated by comparing the MAETest of each subset 

selection method to the average MAETest of the random sets. In both enantioselectivity and NPF 

models, all algorithmic selection methods had lower MAEs than the mean MAE of the random 

sets. Finally, it is worth noting other datasets might have a different highest performing subset 

selection algorithm. Until numerous high-quality large datasets are available for benchmarking, it 

is not possible to determine which subset selection algorithm is the most general when applied to 

asymmetric catalysis. That notwithstanding, it is safe to conclude that such algorithmic methods 

will give a more reliable and robust selection than random selection when applied to library-based 

optimization protocols.   

Evaluation of Different Error Assessment Metrics.  

Having probed suitable selection protocols for gathering initial datasets, we next sought to 

examine an array of error assessment metrics to inform which reaction should be run “next” in an 

optimization campaign. As such, the hydrogen transfer catalyst dataset was used to generate an 

ensemble of neural networks which was then used to evaluate different error assessment protocols. 

The dataset was divided into a training set of 200 reactions, a validation set of 37 reactions, and a 

test set of 78 reactions. A set of 2000 neural networks with randomized hyperparameters was 

selected, and the top 40 networks were used in the ensemble of networks. This process was 

repeated to create models both for predicting enantioselectivity and NPF. The external test sets for 

both models are depicted in Figure 2.  
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Figure 2. (A) Test set predicted vs. observed for the model predicting enantioselectivity and (B) 
test set predicted vs. observed for the model predicting NPF.  
 
 Both models in Figure 2 have excellent accuracy; enantioselectivity is predicted with MAE 

= 0.17 kcal/mol and NPF predicted with MAE = 0.10. This level of accuracy in itself is an 

interesting finding for two reasons: (1) the same conformer-dependent descriptors used to describe 

molecular shape in chiral Brønsted acid catalysis48 and asymmetric phase transfer catalysis49 have 

now been applied to transition metal catalysis with no modification, suggesting broad applicability 

of these descriptors, and (2) models have been constructed with consideration for both the 

enantioselectivity and conversion, demonstrating the capability of optimizing multiple reaction 

properties simultaneously.  

As a preliminary investigation, two conceptually distinct error metrics were employed. The 

first type is founded on the premise that the outcome of reactions farther in feature space from the 

data on which the models were trained will be less reliably predicted. In this regard, four different 

dimensionality reduction methods were used on the total feature space. For each space, the distance 

between each test point and its three nearest neighbors in the training set was calculated. For 
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unsupervised dimensionality reduction, Principal Component Analysis (PCA) and Multi-

Dimensional Scaling (MDS) were used to reduce the dimensionality of the input data. It is worth 

noting that because our workflow operates under the assumption that all future chemical entities 

for which predictions will be made are known and descriptors for those entities have been 

calculated (i.e. the in silico library is constructed and descriptors have been calculated), all samples 

are used in the unsupervised dimensionality reduction transforms. For supervised dimensionality 

reduction, distance in PLS space (commonly referred to as Distance in Model Space, or DModX) 

and the average distance in the latent space63 of the neural network were used. More specifically, 

because the different neural networks had different numbers of nodes in their hidden layers, the 

distances used are the average distances computed for the entire ensemble.  

The second metric is the standard deviation in predicted values. The concept is that if 

predictions vary widely between different estimators, there is more uncertainty in that prediction, 

and it may be less reliable. Both concepts (distance in feature space and variability in predictions) 

have been explored previously in the chemical sciences.50,64 All five metrics were calculated for 

both the enantioselectivity models (Figure 3) and NPF (Figure 4) models for this dataset. The 

different accuracy metrics can then be compared by (1) plotting error vs the error metric and (2) 

constructing accuracy averaging curves. Accuracy averaging curves are plots in which data points 

(in this case test set samples) are ordered by their error metric from smallest to highest. The average 

error of retained points is then plotted against the number of points retained (i.e. the first point on 

the plot is the sample with the smallest error metric and its error, the last point is the entire dataset 

and the MAE of the dataset). In this case, as more points are retained, one would expect the average 

error to increase if the error metric is indeed a good indication of error. Further, a steeper curve 

would indicate a larger response, in turn indicated a better metric of error.  
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Figure 3. See next page for figure legend. 
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Figure 3. Summary of different error assessment methods for enantioselectivity, including (A) 
distance in Principal Component Analysis (PCA)-space from training data, (B) distance in Multi-
Dimensional Scaling (MDS)-space from training data, (C) standard deviation in predicted values 
of the ensemble, (D) distance in neural network latent space from the training data, and (E) distance 
in Projection to Latent Structure (PLS)-space from the training data.  
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Figure 4. See next page for figure legend. 
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Figure 4. Summary of different error assessment methods for NPF, including (A) distance in PCA-
space from training data, (B) distance in MDS-space from training data, (C) standard deviation in 
predicted values of the ensemble, (D) distance in neural network latent space from the training 
data, and (E) distance in PLS-space from the training data. 
 
 From examination of the error metrics (Figures 3 and 4), it becomes immediately apparent 

that no one metric is best for each dataset. For the enantioselectivity models, average distance in 

neural network latent space (Figure 3D) appears to be the best metric of prediction reliability, with 

the largest response in the accuracy averaging curve. Distance from the training data in PLS-space 

(Figure 3E) also shows a meaningful response with regard to averaged error. Standard deviation 

in predicted values (Figure 3C), distance in MDS-space (Figure 3B), and distance in PCA space 

(Figure 3A) curves are relatively flat curve, indicating less efficacious error metrics. In contrast, 

the NPF models have different error metrics best correlating with the residuals. As with the 

enantioselectivity models, average distance in neural net latent space appeared to be the best metric 

of error when analyzing the accuracy averaging curve (Figure 4D). The superiority of this metric 
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is in line with previous results.50 However, the next greatest response is distance in MDS-space 

(Figure 4B), all other metrics appearing to have flatter response curves.  

 These results suggest that the best error metric for a given application is dataset and 

application dependent. Despite this apparent limitation, these conclusions are useful in informing 

future studies. We envision that in the course of an optimization campaign the first set of models 

obtained will be externally validated. Each of the above metrics can be plotted against the error 

for each test set member to best identify which error assessment metric(s) are best for that specific 

application. Then, when evaluating a set of predictions to be tested experimentally, practitioners 

can quantitatively assess which predictions to pursue on the basis of prediction confidence. It is 

also worth noting that all of the curves in Figure 3 and 4 are relatively flat. This could arise from 

the accuracy of the parent models; because a large portion of the total dataset is sampled and the 

overall accuracy of the models was very high in evaluation of the external test set, it is possible 

that the test points fall well within the domain of the model resulting in relatively flat response 

curves. In this sense, the relative response in the accuracy averaging curves is likely application 

dependent.   

 To further probe this hypothesis, our previously published dataset of BINOL phosphoric 

acid catalyzed additions of thiols to imines was used as an additional case study (Figure 5).48 

Originally published by Antilla and coworkers,65 the modularity, technical accessibility, and 

reproducibility of this reaction enabled collection of a dataset of 1075 reactions in duplicate runs. 

In this work, the dataset has been further expanded to a total of 1150 reactions in an effort to 

provide larger, high-quality datasets for use in ML studies. The descriptors used to represent the 

molecules are identical to those previously reported.48,49 The dataset was first divided into two 

sets: a set of 384 reactions for training and validation — 24 training catalysts (Figure 6) with 16 
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training substrate pairs (imines 1 – 4 and thiols A – D, Figure 5) and the remaining 766 reactions 

as an external test set. The 384 training reactions include catalyst structures that were selected in 

our Universal Training Set previously disclosed48 and the remaining catalysts were selected on the 

basis of either their commercial availability or their qualitative diversity. In the partitioning 

scheme, imine 5, thiol E, and catalysts 30-51 (Figure 7) were purposefully withheld from the 

possible training data to force out-of-sample predictions. The 384-member set was then randomly 

divided into a training set of 300 members and a validation set of 84 members. Models were then 

generated using an ensemble of feedforward networks, which were constructed with a single 

hidden layer. Parameters including activation functions for each layer, number of nodes in the  

 

 

Figure 5. Matrix of 25 different possible substrate combinations derived from imines 1-5 and 
thiols A-E. Adapted with permission from ref 48. Copyright 2019 American Association for the 
Advancement of Science. 
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hidden layer, and percent dropout were optimized randomly. In total, 10,000 different 

hyperparameter combinations were tested and the top 100 models (determined by the performance 

on the validation set) were used as the final ensemble of models. The average predicted values for 

the model ensembles were then used as the predicted value for the purposes of this study.  

 

Figure 6. The 24-member Universal Training Set of chiral phosphoric acids. 
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Figure 7. The 22-member external catalyst test set of chiral phosphoric acids. 

The ensemble of neural networks accurately predicted the outcome of the reactions in the 

test set, with a MAE in test set predictions of 0.30 kcal/mol (Figure 8). Using the absolute values 

of the residuals in the test set, the five different error metrics detailed above were compared by 
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plotting the errors against each metric (metric refers to either distance in the respective 

dimensionality-reduced space or the standard deviation in predicted values of the ensemble). In 

addition, average accuracy plots were constructed for each metric (Figure 8). 

 
Figure 8. See next page for figure legend. 
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Figure 8. (A) Predicted vs. Observed plot for the 766-member external test set for the BPA dataset. 
(B) Error plot with the standard deviation in predicted values of the ensemble as the error metric 
(C) Error plot with distance in the neural network latent space as the error metric (D) Error plot 
with distance in PLS space as the error metric (E) Error plot with distance in PCA space as the 
error metric (F) Error plot with distance in MDS space as the error metric. 
 

 As depicted in Figure 8, standard deviation in predicted values, distance from training data 

in neural network latent space, and distance from training data in PLS space all appear to be good 

indicators of prediction accuracy. In contrast, distance in the reduced dimensionality space for the 
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unsupervised methods (PCA and MDS) gives a weaker response. Notably, considering both case 

studies, it appears that metrics associated with a supervised dimensionality reduction method have 

best performance.  With this analysis, users can identify predictions as potentially high-risk. 

Further, it may be possible to use multiple metrics simultaneously to better assess how much of a 

risk a particular prediction would be in an actual optimization campaign. Predictions that fall into 

multiple categories could be identified as even higher-risk predictions which may inform the end 

user to consider selecting a different prediction to test experimentally depending on the effort 

required per new data point. By using a collection of error metrics, users will make the most well-

informed decisions when considering how best to use a given model. 

Conclusions 

 This work demonstrates the successful application of ASO and AEIF descriptors to 

transition metal catalysts over and above their previous use for organocatalysts. The capacity to 

use the same 3D molecular representation across such disparate chiral catalyst families has laid 

the groundwork for future studies, in which comparisons across different catalyst scaffold may be 

desired. Further, this work demonstrates that algorithmic subset selection protocols give more 

reliable results and generally can be used to construct more accurate models than random selection 

when selecting small datasets. Further, multiple metrics of error assessment have been investigated 

to assist in identifying which predictions are the most reliable when attempting to use ML models 

in optimization campaigns, particularly those beginning with a pre-defined set of catalyst 

candidates. Combining these ideas will enable more efficient initialization and execution of 

computer-guided workflows for catalyst design. We envision that in new scenarios, practitioners 

can use an algorithmic selection protocol (e.g. informed by agglomerative clustering) to gather an 

initial set of catalyst structures. Next, that dataset will be acquired experimentally and used to train 
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and validate statistical learning models. Error can then be correlated with a set of error assessment 

metrics to identify which metrics are best for assessing error for that particular dataset. The models 

can then be used to evaluate an in silico library of catalyst structures to identify catalysts predicted 

to be more selective than those in the initial set of data. When identifying which of the catalysts 

predicted to be more selective than the initial set should be experimentally evaluated, the decision 

can be informed by the error metric to guide a more reliable prediction. In other words, the more 

reliable predictions will be given priority over others when selecting which predictions to 

experimentally evaluate (Figure 9). Further, we suspect that identification of the best error metric 

could also find use in an active learning campaign in which unreliable predictions could be selected 

as the next best reactions to improve the model. In fact, this concept has already been demonstrated 

in other areas of the chemical sciences.57,66 Together, the concepts explored in this work will 

provide a practical guide to ML-guided optimization in catalysis.  

 

Figure 9. Intended use of this workflow.  
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