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SARS-CoV-2 rapidly infects millions of people worldwide since December 2019. There is still no effective treatment for the 

virus, resulting in the death of more than one million of patients. Inhibiting the activity of SARS-CoV-2 main protease (Mpro), 

3C-like protease (3CLP), is able to block the viral replication and proliferation. In this context, our study has revealed that in 

silico screening for inhibitors of SARS-CoV-2 Mpro can be reliably done using the monomeric structure of the Mpro instead 

of the dimeric one. Docking and fast pulling of ligand (FPL) simulations for both monomeric and dimeric forms correlate well 

with the corresponding experimental binding affinity data of 30 compounds. The obtained results were also confirmed via 

binding pose and noncovalent contact analyses. Our study results show that it is possible to speed up computer-aided drug 

design for SARS-CoV-2 Mpro by focusing on the monomeric form instead of the larger dimeric one.

Introduction 

The novel coronavirus (2019-nCoV or SARS-CoV-2), a member of 

the Coronaviridae virus family, has been reported to be able to 

spread among humans.1 The virus initially appeared the first case 

since December 2019 in Wuhan, Hobei province, China.2-4 It shares 

more than 82% identical RNA genome to the SARS-CoV, SARS-CoV-2 

severe cases of respiratory syndromes.5 Although the bat has been 

thought of as the original reservoir, the intermediate host is still 

unknown.6 Moreover, it is known that the SARS-CoV-2 can endure in 

aerosol for more than 3 hours,7 which may be a major factor behind 

the outbreak of COVID-19 pandemic, which has caused several 

hundred thousands of deaths worldwide.5 Therefore, the COVID-19 

pandemic becomes an urgency for community health, which requires 

to develop an effective treatment or vaccine immediately. 

 Coronaviruses genomes occupy ca. 26-32 kb in length that is the 

largest sequence among RNA viruses.8, 9 The SARS-CoV-2 genome 

encodes more than 20 various structural and non-structural proteins. 

Particularly, the SARS-CoV-2 main protease (Mpro), 3C-like protease 

(3CLP), is one of the most important viral enzymes, having more than 

96% similarity with SARS-CoV 3CLP.9, 10 SARS-CoV-2 Mpro cleaves 

nascent polyproteins, which are produced by the translation of the 

viral RNA. During this process, 11 non-structural polyproteins are 

auto-cleaved to become polypeptides, which are required for the 

viral replication and transcription.9 Therefore, SARS-CoV-2 Mpro 

turns out to be an attractive target for antiviral drug aiming since 

blocking viral protease can inhibit viral replication and 

proliferation.10, 11 Numerous investigations following this strategy 

have been carried out and shown some initial success.12-18 However, 

unfortunately, an effective drug for COVID-19 is still unavailable until 

the date. 

 Currently, it should be noted that the time and cost to advance a 

drug has been significantly decreased by using the power of 

computational approaches.19-22 Normally, the binding free energy, 

∆𝐺, between a ligand and an enzyme can be probed via 

computational approaches. The ∆𝐺 is associated with experimental 

inhibition constant, 𝑘𝑖, via formula ∆𝐺bind = 𝑅𝑇𝑙𝑛(𝑘i), where 𝑅 is 

gas constant, 𝑇 is absolute temperature, and 𝑘𝑖 is a critical metric 

revealing the nature of binding between two biomolecules.19 

Accurate assessment of the ligand-binding free energy is very 

important in computer-aided drug design (CADD) problem.23  

 In addition, it should be noted that the dimer was shown to be 

the biologically active form of the SARS-CoV-2 Mpro but the interface 

does not contain a ligand-binding pocket.12 An important question 

which araise is that can we use monomeric form of SARS-CoV-2 Mpro 

as inhibitor-screening target instead of the dimeric one to reduce CPU 

time consumption? Therefore, in this context, the binding free energy 

of 30 available inhibitors12-18 to the monomeric and dimeric SARS-

CoV-2 Mpro was examined via docking and FPL schemes. The similar 

of correlation coefficients between computational and experimental 

values of monomeric and dimeric systems suggests that we can use 

the monomeric form of SARS-CoV-2 Mpro as CADD target instead of 

the dimeric form. The obtained results can be beneficial to the 

COVID-19 therapy by speeding up CADD progression. 
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Materials and Methods 

Structure of Inhibitors and SARS-CoV-2 Mpro 

 Three-dimensional structures of the monomeric and dimeric 

SARS-COV-2 Mpro were copied from the Protein Data Bank with ID 

6Y2F12 and 6XBG,24 respectively. Inhibitor shapes were taken from 

the PubChem database.25 The ligand protonation state was assessed 

by using a webserver, www.chemicalize.com, which is an tool of 

ChemAxon. The ligand structure was first optimized using quantum 

mechanics (QM) simulation with the B3LYP functional at 6-31G(d) 

level of basis set. 

 

Molecular Docking Simulations 

The binding position and affinity of ligands to the monomeric and 

dimeric SARS-CoV-2 Mpro were probed via the Autodock Vina 

package (cf. Figure 1).26 The docking parameter  was selected 

referring to the previous study,27-29 in which the exhaustiveness is of 

8. The obtained-docking result was chosen as the highest binding 

affinity conformations. The grid center was selected as the geometric 

center of the 𝛼-ketoamide 13b and UAW246 compounds, which 

correspond to the monomeric and dimeric Mpro, respectively.12, 24 

The grid size was chosen as 24 × 24 × 24 Å, which entirely cover the 

ligand-binding cleft of the Mpro.28, 29 

 

Figure 1. Computational scheme for evaluation of the ligand-binding affinity to the 

monomeric and dimeric SARS-CoV-2 Mpro. 

Steered-Molecular Dynamics Simulations 

 GROMACS version 5.1.330 was appointed to imitate the solvated 

complex involving the ligand and monomeric/dimeric SARS-COV-2 

Mpro. The protease and inhibitor were topologized via the 

Amber99SB-ILDN31 and general Amber force field (GAFF),32 

correspondingly. It should be recorded that the ligand 

parameterization was completed by using AmberTools18 and ACPYPE 

approaches.33, 34 In particular, the inhibitor atomic charges were 

assigned via the Restrained Electrostatic Potential (RESP) method32 

through QM investigation at the level of B3LYP/6-31G(d,p). During 

QM simulation, the implicit water model, 𝜀 = 78.4, was involved. The 

monomeric and dimeric SARS-CoV-2 Mpro + inhibitor were inserted 

into a rectangular periodic boundary condition (rPBC) box with a 

dimension of  (9.8, 5.9, 8.7) and (9.4, 9.0, 12.1) nm, respectively. The 

corresponding box volumes of the monomeric and dimeric systems 

are 506.28 and 1013.82 nm3, respectively. Therefore, the total atoms 

of these systems approximately are 50 000 and 100 000 atoms, 

respectively. 

 The atomistic simulation was realized by utilizing the parameters 

signified to the prior appraisals.28, 29 Particularly, the MD time step is 

2 fs. The noncovalent pair was affected within a radius of 0.9 nm. The 

electrostatics interaction was assessed implementing the fast 

Particle-Mesh Ewald electrostatics scheme.35 The SARS-CoV-2 + 

inhibitor was then optimized and equalized throughout the EM, NVT, 

and NPT imitations. The NVT and NPT imitations were operated 

during intervals of 0.1 and 2.0 ns, correspondingly. Moreover, the 

SARS-CoV-2 Mpro 𝐶𝛼 atoms were restrained during these imitations 

via a small harmonic force with a value of 1000 kJ mol-1 nm-2 per 

proportions. The relaxed conformation of the SARS-CoV-2 Mpro + 

inhibitor was then employed as initial structure of FPL simulation. 

During which, the inhibitor was pulled out of the binding cleft under 

effect of an externally harmonic force with parameters of 𝑘 = 0.005 

nm ps-1 and 𝑣 = 600 kJ mol-1 nm-2 for pulling speed and cantilever 

spring constant (cf. Figure 1), respectively.29 Totally, 8 independent 

trajectories were carried out to assess the ligand-binding affinity. 

Analyzed Tools 

A intermolecular nonbonded contact was enumerated when the 

minimum distance of nonhydrogen atoms of a residue to the inhibitor 

was smaller than 0.45 nm. A hydrogen bond was enumerated when 

the angle between donor, D,-hydrogen, H,- acceptor, A, is larger than 

1350 and the distance between D and A is lesser than 0.35 nm. The 

error of computations was computed through 1000 rounds of the 

bootstrapping method.36 

Results and Discussion 

Docking Calculations 

 The preliminary investigations of binding pose and affinity of the 

trial inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro were 

initially estimated by a molecular docking method. Autodock Vina,26 

a very efficient molecular docking approach with a successful-docking 

rate up to 81 %,27 would be able to complete this task. We have thus 

docked 30 available inhibitors to the monomeric and dimeric SARS-

CoV-2 Mpro using Autodock Vina referring to the previous study.28, 29 

By using exhaustiveness 8 as suggested in the previous work,27 the 

results were rapidly obtained in few hours (Table 1 and Table S1 of 

the Supplementary – ESI file). Interestingly, the correlation 

coefficient between docking and experimental affinities of the 

monomeric target, 𝑅Dock
Monomer = 0.59 ± 0.11, is slightly larger than 

that of the dimeric target,  𝑅Dock
Dimer = 0.52 ± 0.10 (cf. Figure 2). The 

root mean square error (RMSE) between calculated and experimental 

values also indicates good consistency between monomer and dimer 

docking results. In particular, the monomeric system gives a value of 

𝑅𝑀𝑆𝐸Dock
Monomer = 1.17 ± 0.15 kcal mol-1 and the dimeric system 

adopts a metric of 𝑅𝑀𝑆𝐸Dock
Dimer = 1.35 ± 0.18 kcal mol-1. It should be 

noted that the computed error bars was obtained via 1000 rounds of 

the bootstrapping method.36  

 

http://www.chemicalize.com/


 

Figure 2. Correlation between docking and experimental binding free energy. 

Computational results were obtained using Autodock Vina. The experimental binding 

free energies were estimated using IC50 value12-18 as an approximation for the inhibition 

constant 𝑘𝑖. The computed error was attained via 1000 rounds of the bootstrapping 

method.36 

Furthermore, the binding pose of inhibitors to the monomeric 

and dimeric SARS-CoV-2 Mpro is in good agreement together since 

espousing the root-mean-square deviation (RMSD) of 0.19 ±  0.02 

nm (cf. Figure 3A and Table S1 of the ESI). It should be noted that the 

RMSD of the ligand-binding poses, which is smaller than 0.20 nm, 

normally counted as the conformations locating in the same cluster. 

The structural observation is thus confirmed the obtained docking 

energy above. 

 

Figure 3. The superposition of the Oxyclozanide in the binding mode with the monomeric 

and dimeric SARS-CoV-2 Mpro. (A) the docking pose. (B) the MD-refined binding pose. In 

particular, the green and red colors mentioned the monomeric and dimeric complexes, 

correspondingly. 

Table 1. Computed values of docking energy in comparison with experiments. 

N0 Name 
∆𝑮𝐃𝐨𝐜𝐤

𝐌𝐨𝐧𝐨𝐦𝐞𝐫 ∆𝑮𝐃𝐨𝐜𝐤
𝐃𝐢𝐦𝐞𝐫 ∆𝑮𝐄𝐗𝐏

a 

short medium long short medium long  

1 11r -6.7 -6.4 -6.3 -7.9 -8.1 -8.3 -9.23 

2 13a -7.6 -7.6 -7.6 -8.0 -7.8 -7.8 -7.70 

3 13b -7.6 -7.8 -7.8 -7.6 -7.1 -7.8 -8.45 

4 Bazedoxifene -7.4 -7.5 -7.4 -7.4 -7.4 -7.5 -7.48 

5 Calpain inhibitor XII -6.2 -6.3 -6.3 -7.3 -7.3 -7.2 -8.69 

6 Carmofur -5.2 -5.5 -5.6 -5.7 -5.8 -6.1 -7.86 

7 Chloroquine -5.0 -5.3 -5.1 -6.6 -6.6 -6.6 -6.74 

8 Cyclosporine -5.8 -5.7 -5.7 -5.4 -5.4 -5.4 -7.17 

9 Digitoxin -8.1 -8.1 -8.2 -7.0 -7.0 -7.2 -9.09 

10 Digoxin -8.1 -8.1 -8.1 -7.1 -7.2 -7.2 -9.20 

11 Dihydrogambogic Acid -7.0 -7.0 -7.0 -7.2 -7.2 -7.2 -6.67 

12 Disulfiram -3.9 -3.8 -3.9 -4.3 -4.1 -4.1 -6.89 

13 Ebastine -5.7 -6.5 -6.1 -6.5 -6.3 -6.4 -7.06 

14 Favipiravir -4.5 -4.8 -4.8 -5.0 -5.0 -5.0 -4.52 

15 Fluspirilene -6.9 -7.2 -7.3 -8.0 -7.7 -7.6 -7.53 

16 Isoosajin -7.7 -7.7 -7.7 -8.0 -8.0 -8.0 -7.52 

17 Ivacaftor -6.7 -6.7 -6.7 -7.2 -7.6 -7.5 -7.10 

18 Lusutrombopag -6.2 -6.1 -6.8 -6.4 -6.5 -6.3 -7.42 

19 Mefloquine -6.5 -6.5 -6.5 -7.6 -7.7 -7.6 -7.34 

20 Mequitazine -6.6 -6.6 -6.6 -6.3 -6.3 -6.3 -7.03 

21 MG-132 -5.6 -6.2 -6.2 -6.1 -5.8 -6.2 -7.41 

22 Narlaprevir -7.8 -7.5 -7.4 -6.5 -6.9 -6.8 -7.18 

23 Osajin -6.8 -6.9 -6.8 -7.6 -8.0 -8.0 -7.41 

24 Oxyclozanide -6.4 -6.4 -6.4 -6.7 -6.7 -6.7 -7.44 

25 Penfluridol -7.0 -6.9 -6.9 -8.0 -8.2 -8.2 -7.26 

26 Phenazopyridine -6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.23 

27 Proscillaridin -7.7 -7.7 -7.7 -6.8 -7.3 -7.3 -7.79 

28 PX-12 -3.8 -3.8 -3.8 -4.1 -4.2 -4.5 -6.39 

29 Shikonin -6.1 -6.1 -6.1 -7.0 -6.9 -6.9 -6.58 

30 Tetrandrine -6.6 -6.6 -6.6 -6.8 -6.8 -6.8 -7.56 
aThe experimental binding free energies were gained based on IC50 value,12-18 approximating that the one equals to the inhibition constant 𝑘i.The unit is of kcal mol-1. 

The molecular docking with larger exhaustiveness, which selected 

as 56 and 400 according to the previous study,27 were also performed 

in order to validate the convergence of the docking scheme. In total 

we used three different values of exhaustiveness including 400, 56, 

and 8 which are denoted as long, medium, and short options, 

respectively. The accuracies of the docking simulations for monomer 



and dimer with respect to experiment are shown in Figure 3 Figure 4. 

Interestingly, changing the docking exhaustiveness parameter from 

short to medium and/or long does not have a significant impact on 

the correlation coefficient and RMSE, which is consistent with the 

prior benchmark27. In particular, the correlation coefficients slightly 

change to 𝑅Dock
Monomer = 0.57 ± 0.11 and 𝑅Dock

Dimer = 0.50 ± 0.11 

matching with the medium option Figure 3A(cf. Figure 4A). The 

metrics are of 𝑅Dock
Monomer = 0.58 ± 0.12 and 𝑅Dock

Dimer = 0.55 ± 0.10 

resembling the long option (Figure 4A). Moreover, the calculated 

accuracy is also associated with the RMSE value. Absolutely, within 

computed error, the RMSE was unchanged over the docking options 

short, medium, and long with amounts of 𝑅𝑀𝑆𝐸Dock
Dimer = 1.17 ±

0.15, 𝑅𝑀𝑆𝐸Dock
Dimer = 1.18 ± 0.15, and 𝑅𝑀𝑆𝐸Dock

Dimer = 1.10 ± 0.15 

kcal mol-1 for dimeric systems and 𝑅𝑀𝑆𝐸Dock
Monomer = 1.35 ± 0.18, 

𝑅𝑀𝑆𝐸Dock
Monomer = 1.29 ± 0.19, and 𝑅𝑀𝑆𝐸Dock

Monomer = 1.28 ± 0.19 

kcal mol-1 for monomeric systems, respectively (cf. Figure 4B). 

Overall, the docking simulations provide slightly accurate results for 

monomeric systems than for the dimeric systems. 

 

 

Figure 4. Correlation and RMSE values between calculated and experimental binding 

affinity. 

 

MD-Refined Investigations 

As mentioned above, the binding affinity of 30 available 

inhibitors12-18 to the monomeric and dimeric SARS-CoV-2 Mpro was 

appropriately probed using molecular docking calculations. However, 

it should be noted that the dynamics of receptors were not 

considered in docking simulations, and the number of trial docking 

poses was small. To overcome this limitation we have operated the 

atomistic simulations which serve as a validation for the docking 

results37-39. Moreover, FPL is an efficient computational approach to 

assess ligand-binding affinity with a suitable time-consuming 

calculation.40, 41 Furthermore, the scheme was successfully applied to 

the monomeric SARS-CoV-2 Mpro system recently.28, 29 The FPL 

approach is thus used to probe the binding affinity of 30 available 

inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. In the 

simulations, the ligand binding pose was optimized over short 

canonical and isothermal-isobaric simulations. The equilibrated 

ligand was then pulled to translocate from bound to unbound states. 

The maximum of pulling force, called rupture force, and pulling work 

are typically assumed to correlate with ligand-binding affinity. It 

should be noted that the rupture force corresponds to the point that 

the non- covalent bond between a ligand and a receptor was 

terminated. 

 The computed values of the rupture force and pulling work were 

shown in   



Table 2. The denoted pulling force and work profiles were 

described in Tables S2 and S3 of the ESI file. The shape of both pulling 

force and work appear reliable when compared to the previous 

exertion.40, 41 In particular, starting at zero, the pulling force quickly 

increases to the maximum value, then suddenly drops to zero due to 

the loss the non-covalent bond to the receptor. During this process, 

recorded-pulling work speedily rises from zero value to a stable value, 

corresponding to the distance at which the contact between protein 

and inhibitor is vanished. Moreover, the rupture force 𝐹Max
Monomer of 

monomeric Mpros diffuses in the range from 295.0 to 977.6 pN 

corresponding with the spreading of pulling work 𝑊Monomer from 

13.7 to 106.1 kcal mol-1. Besides that, the matching metrics of dimeric 

Mpros forms in the range from 336.1 to 769.6 pN and 20.5 to 84.7 

kcal mol-1, correspondingly. It should be noted that the computed 

works are significantly larger than the magnitude of experimental 

binding affinity, which diffuses in the range from 4.52 to 9.23 kcal 

mol-1, since applied large cantilever and high pulling velocity.40 

Although the discrepancy can be reduced to zero by using a small 

cantilever and an extremely low pulling velocity, it is not appropriate 

since it requires to perform several trajectories with hundred 

nanoseconds each.42 Furthermore, previous investigations revealed 

that although reducing the magnitude of cantilever spring constant 

and pulling velocity was able to enlarge the accuracy of the 

estimations, the observed results are approximately the equivalent 

as those at high pulling velocity.40 

  



Table 2. Computed values of rupture force and pulling work in comparison with experiments. 

N0 Name 𝑭𝐌𝐚𝐱
𝐌𝐨𝐧𝐨𝐦𝐞𝐫 𝑾𝐌𝐨𝐧𝐨𝐦𝐞𝐫 𝑭𝐌𝐚𝐱

𝐃𝐢𝐦𝐞𝐫 𝑾𝐃𝐢𝐦𝐞𝐫 ∆𝑮𝐄𝐗𝐏
a 

1 11r 724.8 ± 57.7 77.6 ± 7.1 636.6 ± 28.2 71.5 ± 2.9 -9.23 

2 13a 526.9 ± 56.4 54.4 ± 7.3 769.6 ± 16.3 84.7 ± 3.2 -7.70 

3 13b 977.6 ± 33.7 106.1 ± 4.6 739.1 ± 28.4 81.6 ± 3.0 -8.45 

4 Bazedoxifene 460.3 ± 26 41.2 ± 3.1 471.1 ± 20.0 47.5 ± 3.6 -7.48 

5 Calpain inhibitor XII 491.6 ± 20.5 46 ± 2.3 693.6 ± 50.7 63.5 ± 4.8 -8.69 

6 Carmofur 485.5 ± 34.2 36.2 ± 2.7 436.9 ± 16.3 33.6 ± 1.8 -7.86 

7 Chloroquine 363.4 ± 32.1 28.5 ± 2.8 410.9 ± 12.5 36.0 ± 1.6 -6.74 

8 Cyclosporine 638.8 ± 33.4 67.7 ± 5.4 426.5 ± 41.6 44.1 ± 4.7 -7.17 

9 Digitoxin 667.4 ± 17.7 70.9 ± 2.1 502.6 ± 65 55.3 ± 8.3 -9.09 

10 Digoxin 637.0 ± 30.3 75.0 ± 2.5 573.1 ± 42.3 59.4 ± 4.9 -9.20 

11 Dihydrogambogic Acid 542.8 ± 37.7 59.6 ± 3.2 487.5 ± 29.9 44.0 ± 3.3 -6.67 

12 Disulfiram 364.7 ± 24.7 22.7 ± 1.9 526.2 ± 30.3 40.1 ± 1.9 -6.89 

13 Ebastine 447.5 ± 40.1 40.2 ± 3.5 389.8 ± 25.0 32.8 ± 2.8 -7.06 

14 Favipiravir 364.9 ± 26.2 21.3 ± 2.9 336.1 ± 19.1 20.5 ± 2.5 -4.52 

15 Fluspirilene 490.1 ± 23.6 43.8 ± 2.0 544.6 ± 36.3 58.0 ± 3.2 -7.53 

16 Isoosajin 393.1 ± 32.8 28.9 ± 3.2 454.4 ± 19.7 40.4 ± 2.5 -7.52 

17 Ivacaftor 347.9 ± 34.8 22.3 ± 4.4 477.5 ± 22.1 41.0 ± 2.1 -7.10 

18 Lusutrombopag 540.6 ± 37.5 59.1 ± 3.7 396.8 ± 24.3 41.8 ± 2.2 -7.42 

19 Mefloquine 523.7 ± 23.5 41.5 ± 2.3 509.6 ± 43.3 46.3 ± 3.3 -7.34 

20 Mequitazine 392.5 ± 51.3 29.5 ± 4.0 384.9 ± 24.4 29.0 ± 2.2 -7.03 

21 MG-132 543.2 ± 22.2 49.8 ± 2.1 505.7 ± 41.1 47.5 ± 6.0 -7.41 

22 Narlaprevir 601.8 ± 31.9 64.8 ± 2.8 522.0 ± 38.3 54.7 ± 4.3 -7.18 

23 Osajin 367.9 ± 20.4 30.8 ± 2.9 471.4 ± 23.9 39.8 ± 1.8 -7.41 

24 Oxyclozanide 463.7 ± 31.7 33.6 ± 3.2 468.1 ± 13.3 39.2 ± 3.5 -7.44 

25 Penfluridol 542.3 ± 33.1 53.3 ± 2.7 444.5 ± 25.0 48.0 ± 3.9 -7.26 

26 Phenazopyridine 391.7 ± 36.2 25.6 ± 2.8 384.8 ± 22.7 32.4 ± 1.4 -6.23 

27 Proscillaridin 485.6 ± 37.2 45.8 ± 3.3 512.8 ± 18.9 58.0 ± 1.6 -7.79 

28 PX-12 295.0 ± 17.4 13.7 ± 1.2 382.0 ± 25.5 27.2 ± 2.0 -6.39 

29 Shikonin 321.8 ± 29.7 19.7 ± 3.0 504.5 ± 22.8 39.1 ± 1.2 -6.58 

30 Tetrandrine 485.6 ± 37.2 45.8 ± 3.3 401.5 ± 18.5 31.6 ± 1.8 -7.56 
aThe experimental binding free energies were gained based on IC50 value,12-18 approximating that the one equals to the inhibition constant ki.The unit of force and energy/work 

are in pN and kcal mol-1, respectively.

In practice, the rupture force has been used as a predictor of 

ligand-binding affinity based on the assumption that a ligand binds 

with a higher affinity requires a stronger pulling force to dissociate it 

from binding cleft.43 Using the rupture force  as a proxy to ligand-

binding affinity, numerous investigations were successful in 

predicting the ligand-binding affinity to various targets.43, 44 Here, the 

average of rupture forces were estimated over 8 independent FPL 

trajectories (cf.   



Table 2). The correlation coefficient, obtained results of 

monomeric systems, is 𝑅Force
Monomer = −0.64 ± 0.08; while the 

analogous value of dimeric forms is 𝑅Force
Dimer = −0.63 ± 0.10 as 

sketched in Figure 5. Clearly, the accuracy of the FPL technique is 

significantly larger than that of molecular docking calculation. 

Moreover, because the correlation coefficients appear to be the 

same within the error range, we may conclude that there is no 

difference when using monomer or dimer as a CADD target. 

 

  

Figure 5. Relationship between rupture force and experimental binding free energy. 

Rupture forces were obtained via FPL calculations. The binding free energies were 

gained based on IC50 value,12-18 approximating that the one equals to the inhibition 

constant 𝑘𝑖. The computed error was attained via 1000 rounds of the bootstrapping 

method.36  

 The work of pulling force was assessed via formula 𝑊 =

𝑣 ∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
, where 𝑣 is pulling velocity and 𝐹(𝑡) is pulling force. In 

isothermal-isobaric simulations, 𝑊 is related to the experimental 

binding affinity via Jarzynski equality.45 Therefore, utilizing 𝑊 to 

estimate the ligand-binding affinity commonly acquires a better 

accurate result in comparison to rupture force.37, 40, 44 The obtained 

results reaffirmed this statement. The correlation coefficients of the 

monomeric and dimeric SARS-CoV-2 Mpro are 𝑅Work
Monomer = −0.66 ±

0.09 and 𝑅Work
Dimer = −0.70 ± 0.09 as shown in Figure 6, respectively. 

Although, the computational accuracy targeting the SARS-CoV-2 

Mpro dimer is slightly larger than that of the monomeric system, the 

difference in correlation coefficients is small implying that the 

monomeric form of SARS-CoV-2 Mpro can be used as CADD target 

instead of the dimeric one. 

 

 

Figure 6. Association between pulling work and experimental binding free energy. Pulling 

works were obtained via FPL calculations. The binding free energies were gained based 

on IC50 value,12-18 approximating that the one equals to the inhibition constant 𝑘𝑖. The 

computed error was attained via 1000 rounds of the bootstrapping method.36   

 In addition, the association of computed pulling works of the 

monomeric and dimeric SARS-CoV-2 Mpro was probed and shown in 

Figure 7. Over the bootstrapping examination, the correlation 

coefficient is 𝑅Monomer
Dimer = 0.74 ± 0.09 confirming the observation 

above. We can manipulate the inhibitor screening for SARS-CoV-2 

Mpro with smaller computing resources since targeting the 

monomeric form. 

 

 

Figure 7. Association between calculated pulling work of the monomeric and dimeric 

SARS-CoV-2 Mpro. The computed error was attained via 1000 rounds of the 

bootstrapping method.36 

In addition, the MD-refined ligand-binding affinity results are 

confirmed since the RMSD between ligand-binding poses to the 

monomeric and dimeric forms is of 0.22 ±  0.02 nm only as an 

example in Figure 3B. It should be noted that the RMSD metrics were 

calculated based on the last snapshot of NPT simulations, which were 

utilized for the binding free energy prediction via the FPL scheme. 

Moreover, the RMSD of MD-refined structure was slightly larger than 

docking results due to the effects of the conformational entropy. 

Moreover, the intermolecular hydrogen bond analyses suggests that 

three residues including Asn142, Gly143, and Glu166 are critical 

residues controlling the binding mechanism of the inhibitors to both 

monomeric and dimeric SARS-CoV-2 Mpro. 

Conclusions 

 
 Both of Autodock Vina and FPL simulations were confirmed to be 

able to appropriately estimate the ligand-binding affinity of the SARS-

CoV-2 Mpro in both monomeric and dimeric forms. The assessed 

results suggested that the monomeric form of SARS-CoV-2 Mpro can 

be used as a CADD target instead of the dimeric form. In particular, 

the correlation coefficients between computational and 

experimental binding free energy of the monomeric SARS-CoV-2 

Mpro are 𝑅Dock
Monomer = 0.59 ± 0.11 and 𝑅Work

Monomer = −0.66 ± 0.08. 

The metrics are approximately similar to the dimeric target with the 

coefficients of 𝑅Dock
Dimer = 0.52 ± 0.10 and 𝑅Work

Dimer = −0.70 ± 0.09. 

Moreover, the correlation coefficient between the rupture forces to 

binding free energy are roughly the same since 𝑅Force
Monomer = −0.64 ±

0.08 and 𝑅Force
Dimer = −0.63 ± 0.10. Furthermore, the correlation 

coefficient between the calculated metrics of the monomeric and 

dimeric SARS-CoV-2 Mpro is 𝑅Monomer
Dimer = 0.74 ± 0.09. It should be 



noted that the observation is in good agreement with structure 

analyses with the RMSD between ligand-binding pose to the 

monomeric and dimeric form of 0.19 ±  0.02 and 0.22 ±  0.02 nm 

for docking and MD-refined structures, respectively. In addition, in 

good agreement with the previous observation,27 the molecular 

docking by Vina package rapidly converged since the correlation 

coefficient between computed and experimental values did not 

change when the docking option was altered. The RMSE of docking 

results also unchanged upon these alterations. Finally, it may be 

concluded that for SARS-CoV-2 Mpro system the pulling work is 

better than rupture force in predicting the ligand-binding affinity. It 

is well compatible with earlier probe various protein-ligand 

complexes.37, 40, 44 
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