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ABSTRACT

 The generation potential energy functions (PEF) that are orders of magnitude faster to compute but as

accurate as the underlying training data from high-level electronic structure methods is one of the most

promising applications of machine learning (ML) in chemistry.  In contrast to such studies in materials

and small molecules, which parameterizes the entire system without constraints on the functional form of

the PEF, the simulation of biomolecular systems requires that the PEF is compatible with one of the

extensively validated biomolecular force fields. Here, we describe the application of the quantum guided

molecular mechanics (Q2MM) method to transition states of enzymatic reactions to generate a transition

state  force  field  (TSFF)  with  the  functional  form of  the  well-established  AMBER  force  field.  The

differences to fitting small molecule TSFFs and the similarities of the approach to transfer learning are

discussed. Finally, the application of the to the transition state of the second hydride transfer in HMGCoA

Reductase from Pseudomonas mevalonii is demonstrated. 

     



Introduction

Understanding how enzymes achieve their catalytic function is one of the grand challenges of

chemistry and biology. Studying enzymes using computational methods has produced highly impactful

work, as highlighted by the award of the Nobel Prize in 20141 for the development of multiscale methods

such as the Quantum Mechanics/Molecular Mechanics (QM/MM) method.2 Because enzymes consist of

tens of thousands of atoms, using even low level electronic structure methods is cost prohibitive for the

full system. Furthermore, extensive sampling of the conformational space, e.g. by molecular dynamics

simulation at the microsecond time scale for the enzyme, possible ligands, and the surrounding water

molecules, is necessary to obtain physically meaningful results. To enable such simulations, a range of

classical  force  fields  that  approximate  atoms  and  bonds  as  masses  connected  by springs  have  been

developed.3, 4 The accuracy of these simulations is dependent on the quality of the force field used. 5 As a

result, extensive validation studies of the force field functional form as well as the parameters themselves

have been performed.

The  use  of  machine  learning  (ML)  methods  in  science  and  technology  has  expanded

exponentially in recent years, in part due to the rapid expansion in computational power and available

datasets. In chemistry, applications of ML range from basic research through material research to drug

discovery.6 More pertinent to the topic of the present study, ML has been applied to force field and PEF

parameterization given its strengths in pattern recognition.7-10 There are numerous examples in materials

chemistry,  where the accurate description of large systems to predict  material properties demanded a

cheap method at high accuracy.11 Another well-recognized example is the ANI-1 potentias12 that use active

learning and neural network algorithms to take high-level QM data to create transferable ML potentials. 13

Even though the  development  of  ML methods for  the  treatment  of  enzymatic  reactions  provides  an

alternative to the computationally expensive QM/MM methods, there have been comparatively few ML

applications for force field development reactions and/or biomolecular systems. One reason is that in

most cases, the new potential energy surfaces created break away from the restrictions of a predefined

functional form.



Figure  1.  Structure  of  PmHMGR (pdb  code  1QAX 2.80  Å  resolution)  with  substrate,  cofactor  and

reparameterized residues  shown in colored stick representation while the  remainder  of the  protein is

shown in gray cartoon representation.

This is less likely to be successful for the case of the study of reactions in biomolecular systems,

as  exemplified  by  Pseudomonas  mevalonii 3-hydroxy-3-methylglutaryl-CoA Reductase  (PmHMGR)

shown in Figure 1. Here, the vast majority of the system (shown in grey) is well described by extensively

validated  classical  force  fields.  However,  these  cannot  describe  the  substrate,  cofactor,  or  residues

involved in the transition state the reaction (show in color). The large dataset needed for training of an

ML PEF for the reactive center is not available from experimental data and cannot be generated from

high-level electronic structure calculations due to their high computational cost.  Here, we propose an

alternative approach that is  reminiscent of transfer learning where the functional form and extensively

validated parameters of a classical force field (in the present case, AMBER) are used and retrained for a

subset of the structure that includes the bond breaking  and making atoms as well as key active site

residues  and cofactors  (shown in  color  in  Figure  1)  using the quantum-guided molecular  mechanics



(Q2MM) method that was originally developed for the parameterization of small molecule force fields,

especially TSFFs.14, 15 

As mentioned before, most of the work done on the use of ML for all-atom force fields has been

focused on small molecules or solvents using functional forms determined by e.g. a neural network. 16, 17

There are a few examples of the use of ML for fitting predefined functional forms using both linear and

non-linear regression algorithms in the literature to reproduce training data from appropriate electronic

structure methods. ML in the form of a genetic algorithm was used to optimize a polarizable force field

from ab initio QM data18 as well as the parameterization of reactive force fields.19 The Parsely force field

for small molecules uses QM data for parameterization of an AMBER-lineage with SMIRNOFF atom

specification.20 Similarly,  the  AMBER-15  Force  Balance  force  field21 for  use  with  the  TIP3P-Force

Balance water model22 is fitted using a weighted least-squares method. The AMOEBA-2013 force field

also  was  optimized  using  automated  techniques  to  obtain  a  general  polarizable  protein  force  field. 23

However, these studies concern ground state (GS) force fields that are not able to describe bond breaking

and making steps of an enzymatic reaction where a TSFF is needed.

One of the best established24 automated fitting procedures for the parameterization of both ground

state  and transition  state  force  fields  (TSFF)  is  the  Quantum Guided Molecule  Mechanics  (Q2MM)

approach  that  has  been  used  extensively  for  the  development  of  TSFF  for  the  prediction  of

stereoselectivity of small molecule reactions.25-28 To the best of our knowledge, the only application of

Q2MM to biomolecular systems is a TSFF for transition-state docking of small molecular drugs to P450

enzymes to identify potential sites of hydroxylation.29, 30 However, the code used for this fitting procedure

is to the best of our knowledge not widely available.

Q2MM uses training data from electronic structure (usually density functional theory) reference

calculations to automatically parameterize molecular mechanics TSFF based on the MM3* PEF. The

details of this process for asymmetric catalysis by small molecules have been covered elsewhere 14, 15,  31

and will not be elaborated on here. Here, we will describe the application of the Q2MM method to derive

TSFFs of a predefined functional form compatible with the AMBER-family force fields with particular



attention to the differences to the fitting of small molecule TSFFs. We will also discuss the interfacing of

the Q2MM tools to the AMBER suite of molecular dynamics programs and demonstrate this workflow

for the case of a TSFF for the second hydride transfer of PmHMGR.

Fitting Methods 

Q2MM fits the FF parameters by minimizing the value of objective or loss function,

χ2=∑
i

wi
2(x i

0−x i)
2

(1)

where x i
0  is the reference data point, x i  is the FF data point, and w i  is the weight for

that data point. The minimization step in the parameter space is calculated using gradient-based method

such as the Newton-Raphson technique and simplex method.32 The gradient-based method is general and

utilizes the Jacobian matrix J  where 

J ij=
∂ xi

∂ p j
(2)

and  p j  is  j-th  parameter,  which  is  calculated  in  many  programs  using  numerical

differentiation and therefore the rate-determining step. Thus, the simplex method is often used to avoid

the high cost of numerical derivatives.33 The simplex method in Q2MM is modified to move toward the

best point(s) in the parameter space using a bias of reflection point.32  The modified simplex method has

shown to have faster convergence than the Raphson-type methods up to ca. 40 parameters.31 Thus, it is

used to optimize a medium-sized parameter set or a subset of the larger parameter set.

Q2MM, unlike most traditional methods for fitting system-specific FF parameters,22, 34, 35 uses the

Hessian Matrix for the fitting of force constants of bonded parameters with geometric data for reference

structures.32, 36, 37 The Hessian matrix is the second partial derivative of the energy with respect to the xyz

coordinates of atoms, which gives the matrix size of 3N x 3N where N is the number of atoms. It can be

obtained by appropriate electronic structure calculations of suitable model systems including, in the case

of the large biomolecular systems discussed here, QM/MM calculations. In the later case, the calculation



of the Hessian Matrix usually needs to be limited to a subsystem due to the memory demands of such

calculations.   The Hessian matrix’s eigenvalues and eigenvectors provides information on the vibrational

frequencies and normal modes, respectively. Normally, eigenvalues of the Hessian matrix are positive, but

at  the  transition  state  geometry,  the  eigenvalues  contain  one  significantly  negative  value  with  its

eigenvector representing the reaction vector. By providing Hessian matrix information in the objective

function, Q2MM uses information on both the transition state geometry and the shape of the potential

energy surface around it when fitting the FF parameters. However, because Q2MM fits these parameters

to represent the transition state, which is a saddle point, as a minimum on the potential energy surface, the

matrix  element  that  corresponds  to  the  negative  eigenvalue  is,  inevitably,  altered  during  the  fitting

process. This leads to an increase of the objective function value.

To address this and the fact that the algorithms in most molecular force field-based programs38, 39

38 are designed to optimize towards minima rather than transition states, a small modification to Q2MM is

made.  Traditionally,  in  the  Cartesian  Hessian  fitting  method,  all  indices  of  the  Hessian  matrix  are

accounted for in the objective function with respect to the reference values. However, different weights

are  assigned  to  each  element  of  the  Hessian  matrix  to  correctly  represent  the  transition  state  as  a

minimum. The indices of Hessian matrix are given a weight of 0.0 to 1-1 interactions, 0.031 to 1-2 and 1-

3 interactions, 0.31 to 1-4 interactions and 0.031 to all other interactions. 40 The Cartesian Hessian matrix

fitting method is used for large molecule systems such as an enzyme, where only one reference structure

is used to fit the parameters.

Alternatively,  users  can  use  the  eigenmode  fitting  method  in  Q2MM.  In  this  method,41 the

reference Hessian matrix  H=V T EV  is decomposed into eigenvector  V  and eigenvalue  E .

Then the objective function includes the calculated eigenvalue matrix E '  where E'=VH ' V T  and

H '  is the Hessian matrix of the FF calculated Hessian matrix. By preserving the original eigenvector

V ,  all  of  the  originally  positive  eigenvalues  are  preserved  and  only  the  negative  eigenvalue  is

converted into a positive value by zeroing the weight of the eigenvalue to represent a transition state as a



minimum. This method has yielded an FF that is stable to unnatural distortions and is used for small-

molecule  systems  such  as  metal-ligand-substrates,  where  multiple  reference  data  are  used  to  fit  the

parameters.  It  should be noted that  this  this  inversion of the potential  energy surface in the reaction

coordinate is done to allow the use of simple energy minimization techniques available in all force field

packages to locate the stationary point. However, it is not absolutely required and alternative approaches

have been developed.42

The Q2MM Flow Scheme

The  following  parameterization  scheme  is  specific  towards  the  implementation  of  the

AMBER2039 interface of Q2MM and its use for large large biomolecular systems. Details of the method

regarding parameterization of TSFF for asymmetric catalysis using other programs such as Macromodel

have been documented elsewhere.15 As an example of using Q2MM for a large biomolecular system, the

development of a TSFF for the second hydride transfer transition state of PmHMGR,43-45 shown in Figure

1, will be discussed. Examples of the files discussed in this section as well as the final TSFF are given in

the Supporting Information. The Q2MM code itself, which contains the interface to the AMBER Suite of

programs,  and  several  published  TSFFs  are  freely available  on  the  Q2MM/CatVS github  repository

(github.com/q2mm). 

In order to develop a TSFF for an enzyme, the first step is to define a model system that includes

the reactive species and the relevant parts of the protein involved in catalysis to generate the training data

for the TS of this model system. For the example discussed here, the QM/MM or theozyme 46 model

incorporated  the  relevant  residues  in  the  QM region  derived   from our  previous  studies43,  44 of  the

mechanism of HMGR and shown in Figure 2, though other model systems were also explored. 43 Since

this model system is derived from electronic structure calculations, only the most essential atoms should

be included for efficiency of the fitting procedure even though the methodology is equally applicable to

larger numbers  of  refitted atoms.  A fixedatoms.txt  file is  created to include any atoms frozen in  the

electronic  structure  calculation (Figure  2,  green  atoms).  Because the  frozen  atoms  create  unphysical



Hessian elements, the weight of the Hessian values associated with these atoms are set to zero during the

parameterization.  Results  of  transition  state  optimizations,  in  a  .log  file,  contain  the  energetic  and

geometric data that are used by Q2MM in the parametrization and are thereby included in the Q2MM

input as reference. Currently, Q2MM supports interfaces to Gaussian47 and Jaguar38 .log files as training

data for the parameterization process. The .log file is also used to create a .mol2 file of the model system

using the RESP protocol in AMBER. The .mol2 file contains updated partial charges of all the atoms in

the model system at the TS and is for used throughout the parametrization.  

Figure 2. Flow scheme of the Q2MM method for the parameterization of TSFFs for enzymatic reactions

using the AMBER interface 

At this point, new atom types should be assigned to the atoms directly involved in the reaction, as

their  properties  will  be  sufficiently different  from that  of  the  parent  force  field.  This  allows for  the

parameters defined by the TSFF to be restricted to a specific atom in the entire system. The atoms to be

reparametrized in the case discussed here are shown in Fig. 3A. It should be noted that this procedure is

analogous to transfer learning in that parameters trained to a much larger dataset (standard parameters of



the Amber force field) and extensively validated in the literature are used as a starting point for retraining

a much smaller subset for which smaller training data sets are available. It is a key difference from the

development  of  TSFFs  for  transition  metal  catalyzed  reactions14,  15,  25,  26 where  there  are  usually  no

parameters available for the transition metal  environment.   As a result,  a  much larger training set  is

needed in those cases to achieve a reliable TSFF. Even though the number of atoms to be retrained is

usually larger for the case of enzyme catalyzed reactions, the use of a transfer learning approach makes

the fitting procedure much more effective because the vast  majority of  atoms only undergoes minor

perturbations in proceeding from the ground state to the transition state of the reaction. 

Figure  3.  (A)  reassigned  atom  types  and  (B)  overlay  of  geometries  of  substrate,  cofactor,  and

reparametrized protein atoms from electronic structure calculations (purple) and from the TSFF (atom

colored)

The .mol2 file should also be used to generate the force field modification (frcmod) file, using

antechamber  program of AMBER.39 The .frcmod file needs to be updated accordingly to be used in

Q2MM, examples of which can be found in the documentation on github. All parameters such as bonds,

angles, and dihedrals for atoms directly involved in the reaction should be included in the .frcmod file.

Transition state parameters are different from the ground state ones, so initial guesses of the bond lengths

and angles should be for the system at the TS as described by the QM reference data. The estimation of



the parameters prevents optimization to local nonphysical minima of the objective function and decreases

the number of iterations required for parameterization. Force constants are initially set to standard values

based on the Generalized Amber Force Field (GAFF),48 and initial estimations for dihedrals should in our

experience be avoided to prevent over-parameterization. The parameter.py module of Q2MM generates a

list of a specified parameter type to be optimized that references the .frcmod file line and includes the

range of values acceptable for that parameter type. 

The input  file,  loop.in, for  Q2MM files should contain all  of the relevant  information for an

optimization cycle. The FFLD being read every cycle should be the given AMBER .frcmod file and the

RDAT being read should be the Gaussian or Jaguar .log file. For CDAT, a tleap input file that calls the

mol2 file and frcmod file of the model system and relevant  Amber force fields should be created to

generate a prmtop and inpcrd file that  is  used during the parameterization process.  The optimization

criteria  of  the  penalty function are  set  in  the  loop.in  file  under  the  LOOP flag.  Initially the  penalty

function can be set to a 10% convergence criterion. The loop.in file can be submitted by >python loop.py

loop.in .

Partial  charges  should remain unchanged throughout  the  course  of  the  parameterization.  The

order of parameterization (Figure 2) is largely the same as discussed earlier. 15 The force constants should

be optimized first  while  ensuring that  the  optimized value stays  above 32.2 kcal  mol -1  Å-2 for  bond

distances and angles and 3.2 kcal mol-1 Å-2 for dihedrals. Subsequently, the bond length parameter can be

refined to reflect the reference data. Bond angles can be optimized after the bond lengths while ensuring

that  the  optimized  values  are  within  reasonable  ranges.  If  the  optimized  angles  deviate  towards

unreasonable  values,  then  this  angle  parameters  value  should  be  “tethered”  to  the  reference  data  to

prevent  major deviations during optimization.  The tether is defined as a weight  value associated that

would thereby control the deviation of the parameter being optimized. A higher tether weight should be

used in the first round of optimization, then slowly decreased to zero in subsequent optimizations cycles.

Finally,  the Vn terms for the torsional  potentials  are fit  to the Hessian data first  before being further

refined. A second round of optimizations should be performed with a 1% convergence criterion for the



penalty function to allow parameter refinement to be closer to the reference data parameters. Additional

optimization cycles can be performed as needed until  a  working transition state force field has been

obtained. For enzymatic systems, a working TSFF is obtained when an optimization step changes the

objective function by less than a 1% and the values and parameters are deemed realistic by the given user.



Additionally,  the  resulting  force  field  should  be  tested  in  a  large-scale  molecular  dynamics

simulations in conjunction with the ground state force field to describe the remainder of the protein

(shown in gray in Figure 1). The TSFF will have to be parsed to generate new residue types that contain

reparametrized  atoms and new library files  will  need  to  be created to  read into  the  leap module  of

AMBER20. This could also involve setting conditions that allow the reacting atoms to have more than the

standard amount of bonds in a system. Other important considerations are adjusting the time step of the

simulation to  account for the  vibrations  of  the  reacting atoms and potentially removing the SHAKE

algorithm for hydrogens in the TSFF. A short MD simulation should then be performed to ensure that the

total energy of the system remains stable with the TSFF in combination with the ground state FF that

would be used for the rest of the enzyme.

Application to PmHMGR

This method described above was employed for the second hydride transfer TS of  PmHMGR.

Here, the reference data for the training of the TSFF were obtained from QM/MM calculations where the

atoms indicated in Figure 2 were treated at the ONIOM-(B3LYP/6-31G(d,p):AMBER) level of theory. 43, 44

This includes the side chains of H381, K267, D283 and E83 as well as the substrates and cofactor as

shown in Figure 3 and the hmgrqm.log example file in the Supporting Information. As the functional

form of the underlying force file to which to fit the TSFF to, AMBER99SB and GAFF for atoms on

residues and substrates were used, respectively, as seen in the ts2.frcmod file. During parameterization,

the full  size  of  the  substrates  and cofactor,  along with  the  backbone and sidechains  of  the  residues

mentioned above, were included while calculating the MM data (Figure 3B). As discussed earlier, the

bonding character and partial charges of the atoms directly involved in the TS change in going from the

ground to the transition state. Furthermore, the nicotinamide ring of the cofactor is dearomatized. To

describe these perturbations,  new atom types  were introduced as  indicated in  Figure  3A.  It  is  worth

reemphasizing that the initial parameters for these new atom types were derived from the standard ground

state  AMBER99SB  parameters  and  then  trained  to  reproduce  the  electronic  structure  results  in  the

12



training data. In this specific case, only parameters directly associated with these atoms (within 3 bonds)

were reparametrized for the TSFF.

As shown in Figure 3 B, the TSFF successfully reproduced the geometries around the reacting

center of the active site and could successfully be incorporated into the rest of the enzyme that is treated

with a traditional ground state force field. Using this, the enzyme could be simulated at the transition state

on the microsecond timescale. The results of these studies will be discussed elsewhere. 

Conclusions

In this contribution, we have discussed an automated workflow that combines the Q2MM method

with  transfer  learning-type  approaches  for  the  generation  of  fast  and  accurate  TSFFs  for  large

biomolecular systems. Application of the workflow to the second hydride transfer of HMGR, an enzyme

of  high  biomedical  importance,  shows  that  the  transition  state  of  this  reaction  can  be  accurately

reproduced by the TSFF derived by this workflow. 

The use of machine learning to generate potential energy functions that are orders of magnitude

faster to compute than their  training data,  which often are derived from accurate but  slow electronic

structure calculations, is a promising application of ML in chemistry. The work presented here uses the

philosophy of  transfer  learning  and  applies  it  to  the  parametrization  of  TSFF by retraining  of  well

validated existing force fields as oppose to creating completely new atom types and parameters, as is done

in the generation of small molecule TSFF that cover transition metal catalyzed reactions.  The results are

an  early  example  for  using  only  electronic  structure  reference  data  and  a  much  larger  number  of

parameters adjusted in the biomolecular TSFF than in the earlier cases of small molecule TSFFs.  They

show that idea derived from ML can be used to parameterize a TSFF to simulate enzymes at the transition

state ~104 times faster than the underlying electronic structure methods, allowing for molecular dynamics

simulation for system sizes and timescales well beyond the accessibility of DFT-based methods.
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