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Abstract 

The predictions of photophysical parameters are of crucial practical importance for the development of functional 

organic fluorescent materials, whereas the expense of quantum mechanical calculations and the relatively low 

universality of QSAR models have challenged the task. New avenues opened up by machine learning (ML), we 

establish a database of solvated organic fluorescent dyes and develop highly efficient ML models for the predictions 

of maximum emission/absorption wavelength and photoluminescence quantum yields, providing a reliable and 

efficient approach to high-throughput screenings. Various combinations of ML algorithms and molecular 

fingerprints were investigated. For emission wavelengths, TD-DFT accuracy was achieved under real-world 

conditions. Reliable identification of strong fluorescent materials was also demonstrated. We show that the easily 

obtainable consensus fingerprint inputs combined with proper ML algorithms enables efficient re-training based on 

additional datapoints whereby systematic improvements of our ML models can be achieved.  
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Introduction 

Organic fluorescent materials, especially small-molecule organic fluorescent dyes, have been used 

extensively not only as useful tools in biological research1, 2, 3 but also as vital elements in material science4, 

5, 6, 7, 8, 9. The last decades have seen the development of novel fluorescence-based applications such as 

electrically pumped organic laser (EPOL)10 and stimulated emission depletion (STED) microscopy11, 

attracting even more attention to the rationale design of organic materials with desired photophysical 

properties. To achieve this goal, several strategies have been proposed to predict the maximum 

absorption/emission wavelengths (λem/λabs) of fluorophores, including quantitative structure-activity 

relationships (QSAR) studies12, 13 and computational quantum mechanical (QM) methods14, 15, 16. Time-

dependent density functional theory (TD-DFT) has emerged as probably the most popular electronic structure 

method for such purpose. However, compared with the satisfactory accuracy for λabs
17, the accurate prediction 

of λem by TD-DFT remains a considerable challenge due to the various approximations embodied in the 

physical model18, 19. As an example, the ignorance of vibronic couplings by assuming vertical excitation is 

typically employed due to its considerably lower cost than 0-0 energies20, 21. Furthermore, the involved 

interplay between radiative and non-radiative processes and the resulting needs for detailed and costly 

explorations of potential energy surfaces have further complicated QM predictions for the photoluminescence 

quantum yields (PLQY, ΦPL) of emissive organic molecules22, 23, 24, 25. Consequently, experimental chemists 

rarely rely on such method for the (pre-)screening of newly designed organic fluorescent materials. The 

development of a new approach with both satisfactory efficiency and high accuracy to the prediction of 

photophysical properties is thereby of great practical significance for the design and screening of novel 

organic fluorescent materials.  

As a promising method to solve the contradiction between high-cost calculations and limited 

computational power, machine learning (ML) has exhibited enormous potential as a useful tool in medicinal 

chemistry26, organic synthesis27, 28, and material chemistry29, 30, 31, and has been explored extensively in recent 

years. For organic materials, the ML-predicted properties explored so far can be roughly classified into two 

categories: (1) properties available from (TD-)DFT calculations32, 33, 34, typically single-molecular properties 

(HOMO/LUMO energies, S1-T1 gaps, dipole moments, etc.); (2) macroscopic characteristic parameters that 

can only be obtained accurately from experimental measurements, including activity, strength, durability, 
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efficiency and so forth. For the first category, the performance of a variety of molecular descriptors and ML 

algorithms has been investigated for different properties. As a successful example of ML-assisted material 

design, Aspuru-Guzik et al.32 achieved high-throughput pre-screening of thermally activated delayed 

fluorescence (TADF) organic light-emitting diodes (OLED) based on neural-network prediction of delayed 

fluorescence rate constant with data obtained from (TD-)DFT calculations. In contrast, only a few properties 

in the second category have been studied, examples being Power Conversion Efficiency (PCE)35, 36, 37, 38, 39, 

gas absorption selectivity40, 41, 42, and aggregation-induced emission (AIE) effect43. For these properties, the 

input expressions of existing ML models are usually obtained from expensive quantum mechanical 

calculations, limiting their application in large-scale fast virtual screening. More recently, Sun et al.39 has 

achieved accurate prediction of PCE with molecular fingerprints, a type of input expression that can be 

generated without any quantum calculation. Nevertheless, the prediction of macroscopic characteristic 

parameters based on easily obtainable quantum-chemistry-free inputs remains challenging and largely 

unexplored.  

In this work, we report the development of accurate and highly efficient ML models for the fast estimation 

of photophysical parameters (λabs, λem, and ΦPL) of solvated organic fluorescent materials. The expense of 

quantum mechanical calculations for molecular descriptors is bypassed by the employment of fingerprints as 

input expressions. A database with more than 4,300 experimental samples and 11,000 data (λabs, λem, and 

ΦPL) was established. With the optimal combination of regressors and molecular representations, the mean 

absolute errors (MAE) for λem and λabs were reduced to 14.30 nm/0.66 eV and 10.47 nm/0.70 eV, respectively. 

With molecular-based partition, high accuracy can still be maintained (MAE low to 17.36 nm/0.0802 eV). In 

addition, we have also developed ML regressors and classifiers for the prediction of PLQY for different 

demands. An MAE of 0.11 and accuracy of 0.86 was achieved by ML regressor and binary classifier, 

respectively, providing workable identification of strongly emissive organic materials. The universality of 

our ML models is supported by an MAE of 0.200 eV on a set of 116 emission energies gathered from TD-

DFT benchmark studies. For unseen organic dyes that are less related to our database, we demonstrate that 

by including a small number (~15%) of similar molecules into the training set, the MAE of our ML model 

can be further reduced to ~0.1 eV. In practice, the improvement of our models is further facilitated by the 

low cost of re-training (< 5 minutes per model on a personal computer). We believe that our ML approach 
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will provide an efficient and reliable platform for large-scale screening of organic materials with different 

substituent groups under realistic conditions.  

Results 

Importance of Descriptors and ML Algorithms for the Prediction of Emission and Absorption 

Wavelengths. Fig. 1a shows the statistics of absorption/emission wavelengths (>4,000 molecules with 

>8,000 wavelength data) collected from the literature. The data consist mainly of commercial fluorescent 

dyes and novel organic molecules with fluorescent activity reported in recent years (Fig. 1b), including 

various skeletons with different functional groups. Most of the emission wavelengths are distributed in the 

range of 400 – 700 nm (blue to near-infrared). One reason is that fluorescent dyes with longer emission 

wavelengths are believed conducive to the applications in biological imaging, and are synthesized extensively 

in recent years.  

 

Fig. 1 a Distribution of maximum absorption and emission wavelengths of the solvated organic fluorescent materials in our database. b 

Selective organic dyes in our database. c Illustration for the motivation of using multiple fingerprints.  

In order to develop ML models, we started by the choice of molecular and solvent descriptors. Molecular 

descriptors serve as the basis for machine learning, for it transforms molecular information into computer-

readable data. Molecular fingerprints, a subclass of molecular descriptors available without any quantum 

mechanical calculation, are used in our study due to the high potential in high-throughput screening of 

materials. A potential challenge originates from the multifold molecular features involved in fluorescence 

emission, but a single molecular fingerprint hardly covers all of them (Fig. 1c). For this reason, several kinds 

of fingerprints such as substructure key-based fingerprints and circular fingerprints as well as a handful of 

consensus fingerprints are investigated and compared. Because fluorescence properties are also sensitive to 
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solvents especially for molecules with intramolecular charge transfer (ICT) features, we use the combination 

of ET(30)44 and other four empirical scales45 as solvent descriptors in order to discern a wide spectrum of 

solvents. 

The choice of ML algorithm is key to precise prediction. In addition to Random Forest (RF)46, the most 

widely used ML algorithm, we also compared the performance and efficiency of other models including 

Support Vector Machine (SVM)47, Kernel Ridge Regression (KRR)48, Multi-Layer Perceptron (MLP)49, k-

Nearest Neighbors (kNN), Light Gradient Boosting Machine (LightGBM)50 and Gradient Boost Regression 

Tree (GBRT)51 to assess the relative merits of these approaches. 

 

Fig. 2 Testing results of (a) emission wavelength and (b) absorption wavelength different combinations of ML models with different 

descriptors as inputs. The average MAE of ten tests are shown in the center of each colored block; For each test, we randomly select 

10% of the data as the test set and use the rest as the training set. Other metrics (R2, RMSE and their confidence intervals) could be 

found in Table S1 (Supporting Information). Details about the abbreviation of the consensus fingerprints can be found in the Method 

section.  

To gain preliminary insights into the predictive powers of these ML models in conjunction with various 

molecular fingerprints, we first compared their mean absolute errors (MAE) for predicted absorption and 

emission wavelengths (Fig. 2). In terms of tendency, shorter inputs show better performance with tree-based 

algorithms (RF, LightGBM and GBRT) while kernel-based algorithms (KRR and SVM) become comparable 

to tree-based ones with long input features. MLP and kNN only show average results in our model, possibly 

because molecular fingerprints are sparse high-dimensional vectors. LightGBM, SVM and GBRT regressors 

exhibit the lowest MAEs, and are used for assessing fingerprints before further differentiation.  
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With regard to the efficacy of molecular fingerprints52, substructure key-based fingerprints (MACCS, 

PubChem), which are based on the presence of certain substructures in a limited structure list, exhibit poor 

performance according to Fig. 2. By comparison, circular fingerprints including Chemistry Development Kit 

(CDK) fingerprints and Morgan fingerprints show better performance, which implies that the representation 

of molecular structures by atom neighborhoods might be better for our purpose. In the recent study by 

Glorious et al.53, the benefits of combining multiple fingerprints features (MFFs) as a composite input 

molecular descriptor was demonstrated. However, due to the extreme lengths of MFFs (more than 70,000 

bits), the resultant increase of computation cost limits its application. We propose that the combination of 

fewer molecular fingerprints describing features directly relevant to the phenomenon of interest might 

increase the efficiency of the expressions. Therefore, we combined two circular fingerprints (CDK 

fingerprints and Morgan fingerprints) with E-state fingerprints and substructure fingerprints (presence and 

count), giving rise to E-CDKex_sub and E-Morgan_sub (Fig. 2). Meeting our expectations, such strategy 

does increase the performance for all algorithms considered here. We also applied this method to MACCS, 

the smallest fingerprint, and the resulting E-MACCS_sub also exhibits improved performance. These results 

indicate that composite inputs with multiple relevant fingerprint features improve the performance of our ML 

models. The consensus fingerprint E-CDKex_sub gives the lowest MAEs in reproducing both emission and 

absorption wavelengths, and are thereby used throughout the further assessments of ML algorithms.  

Table 1 Performance of selected algorithms a. 

Prediction object Algorithms r R2 MAE/nm RMSE/nm MAE/eV RMSE/eV 

Emission 

SVM 0.959 ± 0.009 0.918 ± 0.018 14.419 ± 0.683 25.736 ± 2.531 0.067 ± 0.003 0.126 ± 0.012 

LightGBM 0.957 ± 0.008 0.916 ± 0.016 15.295 ± 0.839 26.192 ± 2.044 0.071 ± 0.005 0.126 ± 0.013 

GBRT 0.962 ± 0.007 0.925 ± 0.014 14.307 ± 1.118 24.768 ± 2.238 0.066 ± 0.005 0.119 ± 0.012 

Absorption 

SVM 0.975 ± 0.005 0.951 ± 0.010 11.187 ± 0.984 22.217 ± 2.625 0.076 ± 0.006 0.157 ± 0.015 

LightGBM 0.973 ± 0.005 0.946 ± 0.009 11.614 ± 0.548 23.177 ± 1.845 0.077 ± 0.005 0.156 ± 0.019 

GBRT 0.977 ± 0.005 0.954 ± 0.010 10.471 ± 1.023 21.459 ± 2.565 0.070 ± 0.006 0.146 ± 0.019 

a The presented results for each algorithm are achieved by 10-fold cross validation. The standard deviation is obtained by the difference of the prediction 

of each fold. 
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To further differentiate SVM, LightGBM and GBRT to find the optimal prediction model, we further 

analyzed their performance with more performance metrics over our database with 10-fold cross-validation  

(Table 1; see Table S2 for other algorithms and Fig. S2 to Fig. S9 for scatter plots). Since in the TD-DFT 

studies, the MAE of eV is a more commonly used evaluation standard, so we transformed the test result 

through the equation E = 1240 / λ to show the MAE of our models under eV. The superior performance of 

the GBRT regressor is consistently suggested by the lowest MAEs (10.47 nm and 0.70 eV for absorption, 

14.31 nm and 0.66 eV for emission) as well as the highest coefficients of determination (R2 = 0.954 for λabs 

and 0.925 for λem).  In the prediction results of the absorption wavelength, the MAE is lower in the case of 

wavelength (nm), but higher in the case of energy (eV). This is completely acceptable and mainly due to the 

illusion brought about by the unit conversion. Due to the higher decision coefficients (R2) and correlation 

coefficients (r), we argue that the ML models perform more reliably for absorptions. It is worth noting that 

although the prediction of absorption shows a higher accuracy (by R2 and r; plausibly due to the more direct 

structure-property relationship), more attention should be paid on emission due to the greater challenge of 

accurate prediction and the significance in fluorescence-based applications. 

As described by Fig. 3a (see Fig. S1 for the rest of the algorithms), the advantage of GBRT over SVM 

and LightGBM is further supported by error distribution. The errors of more than 80% of the GBRT-predicted 

results are smaller than 20 nm, demonstrating the high accuracy of our approach for predicting molecules 

with similar backbones. Furthermore, it can be seen that GBRT has consistently larger cumulative percentage 

of error than the SVM and LightGBM. In order to further evaluate GBRT, SVM and LightGBM by their 

upgradeability and universality, the dependence of MAE on the partition ratio of training/test sets was 

examined (Fig. 3b). When the test set makes up increasingly higher portions, the MAE of all three regressors 

increases accordingly. Following this tendency, it can be inferred that our model can perform even better 

with more available training data, and the same conclusion has been suggested by the learning curve for the 

fixed dataset (Fig. S11 and Fig. S12). The GBRT regressor, whose MAE remains smaller than 20 nm even 

when the training set is reduced to 40% of the entire database, shows smaller MAE than the other two models 

at all tested partition ratios. Therefore, with the analysis on performance metrics, error distribution and model 

upgradeability, GBRT/E-CDKex_sub can be reasonably employed in further investigations to evaluate our 

ML approach.  
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Fig. 3 (a) Error distribution and (b) change of mean absolute error with the increase of test set portion for SVM, GBRT and LightGBM. 

The E-CDKex_sub fingerprint is employed in all these assessments.  

Due to the significance of solvent effects in organic photophysics, a successful model should be able to 

make predictions in the face of both new molecules and different solvents. Therefore, we have assessed our 

ML model for unlearnt organic dyes in different solvents. This is achieved by re-partitioning the database 

into training/test sets based on molecules, that is, the datapoints of the same molecules in different solvents 

will only appear in either training or test sets. In practice, we discriminate between molecules appearing only 

once (part 1) and molecules appearing for multiple times in different solvents (part 2). Then, we randomly 

and separately chosen 20% of the datapoints from part 1 and part 2 to form the test set.  The performance of 

several algorithms following this approach is described in Table S3, which suggests that GBRT is the most 

suitable model for our purpose among selected algorithms. The predictions by GBRT/E-CDKex_sub are 

shown in Fig. S13. The overall MAE (17.36 nm, 0.0802 eV) is only slightly less accurate than randomly 

sampling 20% of the entire dataset (MAE: 15.25 nm, 0.0700 eV). Although part 2 shows less satisfactory 

performance (MAE: 20.83 nm, 0.0933 eV for this part of the test set), such accuracy is still noticeable. To 

alleviate the error of part 2, we have devised and trained a stacking model using four ML models as basic 

learners and the linear regressor as meta learner (details and discussions can be found in the supporting 

information,). This ensemble model has reduced the overall error to 17.20 nm, 0.800 eV and the part 2 error 

to 19.79 nm, 0.0887 eV. The benefit of ensemble model adds to the improvability of the ML approach. 

Nevertheless, we have continued to use a single GBRT model due to the following two reasons: (1) its high 
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training efficiency (< 5 min) promote the user to increase their own datapoint which can further increase its 

accuracy, while the ensemble model needs comparably much longer training time; (2) acceptable accuracy 

can be achieved by single model, since errors at the level of 1 nm/0.005 eV is not so obvious in practical 

applications. 

Summarizing this section, we have assessed an array of ML algorithms and molecular fingerprints for the 

prediction of absorption/emission wavelengths of solvated organic dyes, leading to the development of a ML 

regressor combining the GBRT algorithm, the E-CDKex_sub consensus fingerprint, and five solvent 

descriptors. In the course of our evaluations, the GBRT algorithm shows optimal performance on our 

database according to multiple indicators, error analysis, and upgradeability comparisons. Regarding to 

feature engineering, the E-CDKex_sub consensus fingerprint has been developed by combining fingerprints 

describing features that are directly relevant to absorption and emission, and have proven effective within the 

scope of our investigations. Furthermore, it has been demonstrated that our ML approach is improvable by 

the expansion of database and the introduction of ensemble models. These results suggest the merits of our 

ML models for practical applications.  

Exploration on prediction of PLQY with ML-models. Photoluminescence quantum yield is one of the 

most critical factors affecting the fluorescence intensity of organic fluorescent materials, but attempts to its 

prediction is still limited. Oriented towards high-throughput screening of emissive organic materials, we hope 

to achieve the ML prediction of PLQY with efficient quantum-chemistry-free molecular representations. In 

our database, around 3,000 PLQY data measured in various solvents have been collected. Screening over 

several fingerprints and algorithms indicate that the LightGBM/E-CDKex_sub regressor has optimal accuracy 

in our database (Table S4 and Table S5). Reasonable accuracy is achieved with this regressor (r = 0.84, MAE 

= 0.11; see Fig. 4a), which is sufficient for applications such as pre-screening of fluorophore candidates. In 

addition, if we only focused on the samples that are a bit bright (defined as QY > 0.10 here), the MAE value 

is still 0.12, indicating the high performance of the ML model (Table S6). Moreover, the accuracy remains 

better than reported estimations with TD-DFT calculations24 even when only 10% of our database is used for 

training (Fig. S14 and Table S7), showing the superiority of our approach on this specific problem. 

In attempts to reduce the error of our model, we noticed that experimental QY can have a large error bar. 

The best measurement method (integration sphere) may still have an error of about 10%, the relative method 
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even higher. For this reason, we have investigated the effect of using only the high-quality data (~45% of the 

dataset) by relative measurement. As expected, the resultant accuracy (r = 0.86; see Fig. S15 for details) is 

slightly improved even though the dataset is considerably smaller. According to this result, it is believed that 

our model can be further improved with more available high-quality QY data.  

 

Fig. 4 Prediction of PLQY with ML regressor model. a Linear correlation between experimental PLQY and LightGBM-predicted 

values, along with the correlation coefficient (r = 0.84). Perfect positive correlation is depicted by the solid diagonal line. b Chemical 

structures and Quantum yield in different solvents of typical compounds which can be accurate predicted. 

Analogous to absorption/emission wavelengths, we have also evaluated the impact of molecule-based 

partition on QY predictions to show the predictive power of our models in the face of solvent effects. The 

reasonably higher MAE (0.131) compared with the datapoint-based approach (0.120) suggests insignificant 

overfitting in our models. However, solvent effects have a more involved influence on QY than emission 

wavelengths – even the same molecule can display distinct QYs in different solvents. Questioning whether 

our models can discriminate between large solvent effects in the same compound, we have selected several 

organic dyes whose emission shows notable solvent dependence (Fig. 4b and Fig. S18 to S20). It is shown 

that the dramatic solvent effects have been well reproduced for these examples, which is at least indicating 

the ability of our model for capturing the necessary solvent features for these molecules and suggesting the 

potential transferability to other cases. Further analysis suggests that our models can also differentiate the 

importance of solvent for different photophysical parameters. The overall importance of solvent features 
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follows the order of QY (LightGBM: 14.68%, GBRT: 11.84%) > emission (GBRT: 5.84%) > absorption 

(GBRT: 0.69%) (see Table S10 for details), which meets with our cognition on solvent effects. 

  

Fig. 5. Prediction of PLQY with ML classifier modl. a Performance of the LightGBM classifier on the test set (10% datapoints randomly 

selected from the database). b Accuracy versus the number of fractions (n) obtained by the LightGBM model with E-CDKex_sub. 

Seeking for higher reliabilities than the regressors, we have also evaluated the performance of classifier 

models. To develop binary classifiers, the median of experimental PLQY (0.25) was used as the threshold to 

equally divide the database into two groups. This threshold is also suitable in realistic applications. The 

performance of the LightGBM/E-CDKex_sub classifier is described by the confusion matrix in Fig. 5a. The 

accuracies of the best-performing models for the first (ΦPL < 0.25) and second (ΦPL > 0.25) groups are 85.5% 

and 87.7%, respectively, giving rise to a satisfactory overall accuracy (86.8%). Further assessment suggests 

that the accuracy remains greater than 80% when the training set shrinks to only 40% of the dataset (Fig. 

S21). Hence, functional organic materials with strong fluorescence (ΦPL > 0.25) can be identified by the ML 

binary classifier even when a relatively small training set is available.   

With the binary classifier in hand, we hope to increase the resolution of our classifier by introducing 

multiclass classifier models. The dependence of accuracy on the number of groups (n) is given in Fig. 5b. 

When n = 3, the overall accuracy remains at a reasonable level (73.7%; see Fig. S22 for confusion matrix). 

As n increases, the accuracy tends to decrease, but is significantly superior to random classifier. For n = 6, 

we can still obtain a 57.9% accuracy, which is around 3.5 times that of random classification. In fact, 68% 

of the incorrect predictions lie in intervals adjacent to the correct one (Fig. S23), adding to the usability of 

our classifier. It can be inferred from the results here that ML classifier models are capable of providing 

reasonable predictions to PLQYs.  
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Because the binary classifier can already be applied to large-scale pre-screening of strong light-emission 

materials, we use it as example to test the accuracy of QY prediction on 22 molecules collected from three 

recent papers54, 55, 56. Unfortunately, an average result was obtained (accuracy = 72.7%) (Fig. S24 and Table 

S12). One of the underlying reasons might be the lack of negative data, that is, materials with weak/no 

fluorescence are often reported without quantum yields. But still, the recall of strong fluorescent materials 

can be achieved 86.7%, which means that most tested molecules with strong fluorescence emission have 

been recognized by the binary classifier.  

To conclude, we believe that our ML models, including regressors and classifiers, display reasonable 

accuracy in the tests presented above. The expansion of database is likely to enable further improvements 

that facilitate the design and high-throughput virtual screening of novel organic fluorescent materials with 

high-quality ML predictions.  

Comparison between ML Models and TD-DFT Calculations for Fluorescence Wavelength Predictions. 

Whereas in principle quantum mechanical methods are efficacious as long as the physical approximations 

remains reasonable, empirical models such as QSAR and ML typically relies heavily on the scope of the 

training set and thereby lacks universality. For example, the published QSAR studies on the relationship 

between molecular structures and photophysical properties are usually limited to a maximum of hundreds of 

molecules13. It is therefore important to assess the scope of our ML model (hence the potential in real-world 

applications) for the prediction of emission wavelengths. Accordingly, we have collected 116 molecules from 

TD-DFT studies on vertical emission energies14, 15, 16, 18, 19, 22, mostly benchmark studies. The best levels of 

theories in each benchmark study were used to compare with our ML models. The ML-predicted emission 

wavelengths were translated into emission energies (eV) to be directly compared with TD-DFT. Note that 

the same level of error in wavelengths (nm) appears to be different when converted into energies (eV) due to 

the inverse proportionality (E = 1240 / λ). To alleviate such effect, the set of 116 molecules are divided into 

two categories, namely large fluorescent dyes whose emission wavelengths range from orange to red, and 

smaller ones with blue-to-green fluorescence emissions.  

The results of the assessment are summarized in Table 2. In terms of overall performance, our ML model 

displays a lower MAE than TD-DFT (0.200 eV for ML vs. 0.237 eV for TD-DFT). The ML prediction of 

large fluorescent dyes seems excellent (MAE = 0.121 eV), superior to TD-DFT for BODIPY cyanines and 
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rhodamine derivatives. In fact, these cyanines represent a particular challenge for TD-DFT calculations, 

which has been ascribed to the failure of TD-DFT for not correctly describing the difference of dynamic 

correlation between the two electronic states18. Even double-hybrid density functionals, which explicitly 

include contribution from virtual orbitals, give large errors for these molecules57. In contrast, our approach 

does not encounter such issue due to the direct statistical learning of experimental data, demonstrating the 

advantage of bypassing physical framework. Although the MAEs of our models are generally larger for small 

fluorescent dyes, the performance is still comparable with TD-DFT for benzodiazoles (MAE = 0.197 eV) 

and coumarins (MAE = 0.234 eV) and is application to realistic problems. Since most small dyes collected 

in our dataset are novel heterocyclic dyes synthesized in the last decade, thus share fewer common features 

with this test set, and the relatively worse results on these molecules can be understood accordingly. 

Table 2. Comparison between ML Models and TD-DFT Calculations for the Prediction of Emission Wavelengths
a
. 

Datasets Skeletons Range of λem 
ML Predictionsb TD-DFT Calculations 

[Ref] 
MAE/eV MAE/eV Level of Theoryc 

Large 

Fluorescent 

Dyes 

12 BODIPY-Cyanines 600-850 nm 

0.121 ± 0.006 

0.350 
TD-M06-2X/6-311+G(2d,p)/LR-PCM// 

TD-M06-2X/6-31G(d)/LR-PCM 
[18] 

11 D-π-A Dyes 470-650 nm 0.100 
TD-ωB97X-D/6-31+G(d,p)/LR-PCM// 

TD-CAM-B3LYP/6-31G(d)/LR-PCM 
[19] 

11 Rhodamine Derivatives 530-600 nm 0.155 TD-B3LYP-D/6-31+G(d,p)/CPCM [20] 

Small  

Fluorescent 

Dyes 

9 Substituted Benzoxadiazolses 370-500 nm 0.197 ± 0.016 
0.308 TD-PBE0/6-31+G(d) [14] 

With 12 related molecules included into our dataset. 0.141 ± 0.020 

49 Coumarins 350-500 nm 0.234 ± 0.017 
0.280 TD-PBE0/6-31+G(d)/LR-PCM [15] 

With 8 coumarins randomly moved from test set to training set. 0.142 ± 0.005 

24 1,8-Naphthalimides 350-550 nm 0.220 ± 0.018 

0.160 TD-PBE0/6-31+G(d)/LR-PCM [16] 

With 4 naphthalimides randomly moved from test set to training set. 0.149 ± 0.010 

Overall 

116 Organic Fluorescent Materials (Original Training Set) 0.200 ± 0.005 0.237   

104 Organic Fluorescent Materials (Augmented Training Set) 0.144 ± 0.006 0.228   

a
 See Table S14 for details. b The ML-models are constructed with GBRT/E-CDKex_sub. c Best levels are chosen for each skeleton.  

 

     Although a prediction power comparable to TD-DFT is observed on the tested examples, there are still 

chances for the ML model to exhibit larger errors for more generalized cases. To demonstrate the applicability 

of our approach under such circumstances, we have investigated the improvability of our ML models for 

molecules with lower similarity to the training set, especially newly designed ones with unprecedented 

backbone structures. Note that aside from the original training set, learnable structural features might also be 
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shared by certain subset(s) outside the training set (Fig. 6). Inspired by this idea, we tested the impact of 

including a certain number of molecules analogous to the targeted ones into the training set. Benzoxadiazole 

dyes were used for preliminary explorations because 12 characterized molecules with similar backbones were 

provided in the TD-DFT paper14. The effect of including the 12 datapoints was notable (MAE reduced to 

0.141 eV), which meets with our expectation. For coumarins and naphthalimides, a different yet similar 

approach was investigated. We tried to move a small portion (< 17%; randomly selected) of the test set into 

our training set. Again, the updated ML models show excellent performance (MAE = 0.142 eV and 0.149 

eV, respectively). According to these results, we infer that the improvement of our ML models for less-

learned backbones can be readily achieved by utilizing similar molecules as effective training data. The low 

cost of the (re-)training step (less than 5 minutes) is considerably lower than TD-DFT computations. These 

results have also motivated us to provide a python package for both predictions and further expansion of 

database for re-training.  

 

Fig. 6 Schematic illustration for the improvement of ML models. 
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Fig. 7 Fluorescence emission energies predicted by ML methods (red points) and modelled by vertical emission with TD-DFT (grey 

points). Results obtained with the original dataset (a) and the augmented database (b) are given. Perfect positive correlation (r = 1) is 

given by the blue lines for reference. The results of TD-DFT are slightly different from Table 2 because 12 molecules are moved from 

the test set to the training set.  

Fig. 7a shows the correlation between experimentally measured emission energies and vertical emission 

energies calculated by TD-DFT and predicted by ML-model directly of the 116 molecules shown in Table 2. 

Compared with TD-DFT, ML shows a smaller MAE but worse correlation coefficient. The compound with 

the largest error is 3,4-dihydroxy-2H-chromen-2-one, for which the Lewis structure might deviate from the 

real one due to tautomerization. When the training set is augmented with a few molecules that are structurally 

related to the test set, the ML model exhibits better performance than TD-DFT computations (Fig. 7b). From 

the comparison between TD-DFT and ML models, the following conclusions can be drawn: (1) By directly 

learning experimental data, ML models can predict emission wavelength with similar level of accuracy as 

TD-DFT in our tests, (2) Improvement of ML models can be readily achieved by the introduction of a sizable 

amount of data about organic dyes similar to the targeted one(s).  

 

Discussion 

In summary, we introduced machine learning method into the prediction of photophysical parameters for 

organic fluorescent materials. A database with more than 4,000 solvated organic fluorescent dyes was 

established. After screening various fingerprints and algorithms, accurate prediction of emission wavelengths 

was achieved by learning experimental data. Consensus fingerprints with features relevant to the 
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phenomenon of interest (fluorescence emission in our case) were found to be efficacious input expressions. 

Our tests have suggested a level of accuracy similar to TD-DFT calculations in the face of real-world 

problems. Moreover, notable improvements of our ML models were achieved by including additional 

characterized molecules that share less similarities with the training set and more with the molecules to be 

predicted, a feature that we encourage the users to make use of.  

Whereas emission wavelengths can be obtained from TD-DFT calculations, the prediction of quantum 

yields is more challenging. The quantum mechanical modelling of macroscopic characteristic parameters is 

difficult, often due to the multiscale nature of the system of interest as well as the physical complexity of 

various possible causes that might be coupled together in an involved manner. Bypassing the difficulties in 

physical modellings, we have shown that a simple ML-based binary classifier is already capable of offering 

reliable identification of strongly emissive organic dyes, showing good applicability to the (pre-)screening 

of organic fluorescent materials. The feasibility of achieving higher resolution (i.e. more than two groups) is 

demonstrated by the satisfactory performance of multiclass classifiers. ML regressors also display reasonably 

low MAEs. These results suggest the promising potential of ML models for quantum yield predictions of 

organic fluorescent dyes. We believe that more effective experimental PLQY data, especially negative ones, 

will greatly facilitate further improvements.  

In addition to the applications mentioned above, the ML approaches presented here should also be 

transferable to the effective prediction of other important properties based on molecular fingerprints. We 

believe that the strategies demonstrated here will not only benefit the development of new ML models, but 

also promote the interaction between computer modelling and experimental explorations.  

Method 

ML Algorithms. Several supervised ML algorithms are used in this work, including Support Vector Machine (SVM), Kernel Ridge 

Regression (KRR), Multi-Layer Perceptron (MLP), k-Nearest Neighbors (kNN), Random Forest (RF), Light Gradient Boosting Machine 

(LightGBM), and Gradient Boost Regression Tree (GBRT). All except LightGBM50 can be found in Scikit-learn58.  

Database/Selection of Training and Test Sets. The database consists of 4371 λem data, 4237 λabs data and 3079 PLQY data of organic 

fluorescent dyes solvated in different solvents gathered from published works, open directories of Dyomics59, and fluorophore60 database. 

If multiple peaks were found, the peak with the longest wavelength/largest intensity was collected for absorption/emission data, 

respectively. Detailed information about the database can be accessed on our website. For individual tests in the presenting work, the 
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database is randomly partitioned into training set (90%) and test set (10%). The standard deviation in the 10-fold cross-validation is 

performed for the results of ten folds. Error bars in this work are drawn with standard error.  

Fingerprints. Various fingerprints were investigated in this research. Most of them were obtained by PaDEL-Descriptor61, including 

MACCS (166 bits), PubChem (881 bits), Substructure (presence and count of SMARTS patterns for Laggner functional group, 614 bits), 

Estate (E-State fragments, 79 bits), CDK (Chemistry Development Kit Fingerprints, 1024 bits), and CDKex (Chemistry Development 

Kit fingerprints and extended fingerprints, 2048 bits). Morgan circular fingerprints were generated with size 2048 bits and radius 2 by 

Rdkit62. E-CDKex_sub was generated directly by Padel, combining CDK fingerprints and extended fingerprints with E-States 

fingerprints and substructure fingerprints (both presence and count). E-MACCS_sub was the combination of MACCS, E-States 

fingerprints, and substructure fingerprints (both presence and count). E-Morgan_sub was the combination of Morgan fingerprints, E-

States fingerprints, and substructure fingerprints (both presence and count). 

Website/Package for Photophysical Properties Prediction. We have deployed a website where users can predict photophysical 

properties using our ML models (http://www.chemfluor.top). ML models with optimal accuracies (GBRT for λem and λabs, LightGBM 

for ΦPL) are employed as back-end ML models of our online platform.  Users can make predictions by inputting SMILES and solvent 

information. The outputs include maximum emission wavelength, maximum absorption wavelength, and photoluminescence quantum 

yield. Although the ML models per se are fast, the translation from SMILES to fingerprints by PaDEL costs more time. As a result, it 

takes ~4 seconds to finish one prediction. In addition, some larger molecules cannot be converted into molecular fingerprints through 

PaDEL in the server. Therefore, we also provide support for an (offline) python package where new compounds can be added into the 

training dataset for re-training. We have prepared a small patch for OLED (emission), used as a tutorial to teach users how to introduce 

their own data. The python package and the patch can be found in supporting data63 or downloaded from our website. 

Data availability 

The data and codes used in this study are available on our website (http://www.chemfluor.top) or databases63. 
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