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X-ray absorption creates electron vacancies in the core shell. These highly excited states of-
ten relax by Auger decay—an autoionization process in which one valence electron fills the core
hole and another valence electron is ejected into the ionization continuum. Despite the important
role of Auger processes in many experimental settings, their first-principle modeling is challeng-
ing, even for small systems. The difficulty stems from the necessity to describe many-electron
continuum (unbound) states, which cannot be tackled with standard quantum-chemistry methods.
We present a novel approach to calculate Auger decay rates by combining Feshbach-Fano reso-
nance theory with the equation-of-motion coupled-cluster (EOM-CCSD) framework. We use the
core-valence separation (CVS) scheme to define projectors into the bound (square-integrable) and
unbound (continuum) subspaces of the full function space. The continuum many-body decay states
are represented by products of an appropriate EOM-CCSD state and a free-electron state, described
by a continuum orbital. The Auger rates are expressed in terms of reduced quantities, two-body
Dyson amplitudes (objects analogous to the two-particle transition density matrix), contracted with
two-electron bound-continuum integrals. Here we consider two approximate treatments of the free
electron: a plane wave and a Coulomb wave with an effective charge, which allow us to evalu-
ate all requisite integrals analytically; however, the theory can be extended to incorporate more
sophisticated description of the continuum orbital.

I. INTRODUCTION

Owing to their ability to target specific atomic sites
while being sensitive to the chemical environment, core-
level spectroscopies are powerful tools for interrogating
molecular structure[1–3]. The underlying versatile se-
lection rules governing excitation processes to the ex-
cited states in either bound or continuum part of the
spectrum enable a broad range of applications. Ad-
vances in laser technology and the development of novel
X-ray sources have opened up a new area of applica-
tions in which core-level spectroscopies can be used as
probes to study electron and nuclear dynamics with un-
precedented time and space resolution [4–9]. Recently,
X-ray spectroscopy was used to reveal the dynamics of
liquid H2O+ [10, 11], a photo-induced ring-opening re-
action [12], charge-migration and charge-transfer reac-
tions [13–15], and to interrogate an interplay between
open-shell spin-coupling and Jahn-Teller distortion in
the benzene radical cation[16, 17].

Absorption of an X-ray photon, creating a vacancy
in the core shell, leaves the molecule in a highly ex-
cited state. In molecules composed of light atoms (such
as C, N, or O), these core-level states decay predom-
inantly through a non-radiative autoionization process
called Auger decay [18]. In this process, shown schemat-
ically in Fig. 1, the core hole is filled with an electron
from a valence orbital, liberating sufficient energy to
eject another valence electron (called an Auger electron)
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FIG. 1. Different types of Auger effect: (a) regular Auger
decay, (b) resonant (participator) decay, and (c) resonant
(spectator) decay. Regular Auger decay is relevant for X-
ray photoionization spectroscopy (XPS), whereas resonant
Auger processes occur in X-ray absorption spectroscopy
(XAS).

into the continuum. Having characteristic timescale on
the order of femtoseconds, Auger processes compete
directly with electron and nuclear dynamics triggered
by prior X-ray photon absorption. Auger decay also
plays an important role in molecular imaging using ul-
trashort X-ray pulses from free-electron lasers, where
it contributes to the damage of the sample, limiting
the achievable resolution [19, 20]. By measuring the
kinetic energy of the emitted electron, Auger electron
spectroscopy is used in studies of surfaces, materials,
nanostructures, and gas-phase molecules [21–24].

The first theoretical description of Auger decay was



2

due to Wentzel, who employed a pertubative approach
to calculate transition rates into the continuum in an
atom with two active electrons [25]. The key assump-
tion was that Auger decay is a two-step process in which
the emission of the Auger electron is independent from
the preceding core-shell depletion created by means of
X-ray photoionization or absorption transition. Hence,
the initial state for the Auger decay can be treated as
an electronically metastable state, undergoing sponta-
neous ionization.

Multichannel resonance scattering theory [18, 26] pro-
vides an alternative, more sophisticated treatment of
autoionization, including the Auger effect. In this
framework, the autoionizing state appears as a pole in
the scattering matrix for complex-valued electron colli-
sion energy. The scattering wave function in the vicin-
ity of an isolated resonance state can be decomposed
into two parts: bound-like and continuum-like. The
former is square-integrable and it closely resembles a
regular bound state, whereas the latter is non-square
integrable and fully determines the asymptotic behav-
ior of the state.
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FIG. 2. In Feshbach-Fano framework, a resonance state is
described in terms of the interaction between bound and
continuum states. These zero-order states form a diabatic
basis in which the solution of the full Schrödinger equation
can be represented. Feshbach introduced projector opera-
tors Q and P , which define the separation of the full function
space into the the bound and continuum domains. The di-
abatic zero-order states are the solutions of the Schrödinger
equation in these artificially decoupled subspaces.

Such a decomposition of the wave function is the
essence of the Feshbach-Fano approach[27, 28] for treat-
ing autoionizing states (resonances). As originally for-
mulated by Fano[27], and shown in Fig. 2, the autoion-
ization can be described in terms of mixing between
discrete and continuum diabatic electronic states, cou-
pled by the off-diagonal (i.e., continuum-bound) ma-
trix elements of the many-body Hamiltonian. Fesh-
bach put this idea on a more rigorous mathematical
basis by using projector operators and the partitioning
approach[28], known in the quantum chemistry com-
munity as the Löwdin partitioning technique[29]. This
approach is the basis of our theoretical framework. Fes-
hbach projection operators Q and P divide the full
function space into the bound and continuum domains.
Similar to Fano’s picture, in Feshbach’s construction
the resonance state is described as a bound state from

the discrete subspace Q coupled to the continuum sub-
space P . By using the partitioning technique[29, 30],
the Schrödinger equation can be mapped into an eigen-
problem in the Q-space with an effective Hamiltonian
incorporating the P -space. Most often, one treats the
bound part of the Hamiltonian and the respective eigen-
states as zero-order states and includes the effect of the
continuum at the first-order perturbation, as was done
in the original Feshbach paper[28]. The critical aspect
of Feshbach-Fano formalism is that the quality of the
results depends strongly on the choice of the projector
operators, which are not rigorously defined. This is the
main stumbling block for quantitative applications of
the Feshbach-Fano formalism to many-body autoioniza-
tion problems. Among recent attempts to develop phys-
ically and theoretically justified projectors, the work of
Martin and co-workers[31] and Kunitsa and Bravaya[32]
are notable.

Fortunately, in the case of the Auger decay, one can
easily separate the bound and continuum many-body
configurations in the Fock space. This is possible be-
cause (i) the core-level states are Feshbach resonances,
which can only decay by a two-electron process, and (ii)
the core orbitals are well separated from the valence or-
bitals. Thus, Slater determinants, in which at least one
core orbital is active, form the bound domain, which can
only couple to the continuum by pure valence excited
determinants. This is exploited in the core-valence sepa-
ration (CVS) [33] scheme commonly used to adapt stan-
dard electronic structure methods for treating core-level
states[34–43]. The CVS ansatz decouples core-excited
and core-ionized states from the valence continua, es-
sentially acting as the Feshbach Q projector. In stan-
dard applications of the CVS scheme, the continuum is
simply ignored and the core-level states are treated as
bound states (in terms of perturbation theory, one can
think of these CVS states as zero-order states). Here
we extend the theory and include the effect of the con-
tinuum by explicitly constructing the decay states and
evaluating the matrix elements between the bound and
continuum many-body states. In this way, we obtain
first-order corrections to the energies of the core-level
states: the real part of the correction adjusts the posi-
tion of the resonance and the imaginary part gives its
width.

The construction of the many-body decay states
poses greater difficulties for the theory than the con-
struction of the initial states (which can be treated by
CVS) because the decay states belong to the contin-
uum (Feshbach P subspace) and cannot be properly

represented with L2-integrable functions used in elec-
tronic structure calculations. The inherent difficulty of
treating unbound many-electron systems[44–47] is the
reason why calculations of the Auger decay rates are
still not routine, even for small molecules. The exist-
ing approaches can be divided into three categories: (i)
methods that do not consider the state of the emitted
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Auger electron, (ii) methods that treat the Auger elec-
tron implicitly, without the continuum functions, and
(iii) methods that describe the Auger electron explic-
itly with a true continuum orbital.

The first category includes electron population analy-
sis [48], in which the relative Auger rates are computed
from the densities of the valence molecular orbitals on
the atom with the core hole. In a similar spirit, statis-
tical approaches estimate Auger spectra from the dis-
tribution of final products of the decay and their de-
composition in terms of the weights of electronic con-
figurations [49, 50]. These methods are useful for larger
systems with high density of the final states.

The second category comprises methods that treat
the many-electron continuum states implicitly, by
means of L2-integrable wave functions. This is done in
the Green’s operator formalism [51], non-Hermitian the-
ories such as complex absorbing potential approach [52],
or in the Stieltjes imaging procedure [53, 54]. Stieltjes
imaging entails calculations of bound-continuum cou-
plings by using a discretized representation of the con-
tinuum spectrum by an L2-integrable basis set. This
approach has been combined with algebraic diagram-
matic construction (ADC) within the Fano ansatz to
compute Auger rates in atoms and small molecules [55–
57].

In the third category of methods, the continuum char-
acter of the Auger electron is treated explicitly. The
wave function for the final state is represented by an
antisymmetrized product of a function for the bound
molecular ion and a continuum orbital for the outgo-
ing electron. In the early days, the bound ion was
treated at the self-consistent mean-field level [58, 59].
More recently, various flavors of configuration interac-
tion (CI) methods have been employed to calculate the
bound part of the multi-electron wave function [60–
63]. The continuum orbital for each decay channel can
be computed using a single-center expansion method
and performing numerical integration of the effective
one-electron Schrödinger equation with proper scatter-
ing boundary conditions [64]. These approaches have
been shown to yield accurate results for Auger spec-
tra of small systems such as Ne and H2O [60, 62].
For molecules, a one-center approximation is com-
monly employed, where it is assumed that the contin-
uum orbital has the same form as in an atom bearing
the core hole and relevant two-electron integrals have
contributions only from the orbitals centered on that
atom [59, 65]. This approach is employed, for example,
in the XMOLECULE package for modeling ultrafast dy-
namics in strong fields [66].

Although quite a few methods and algorithms for cal-
culations of Auger spectra have been reported so far,
their scope of applicability remains limited and their
predictive power depends on the underlying ab initio
method. For example, for atoms, elaborate calcula-
tions of the Auger widths can be carried out with the

multi-configurational Dirac-Fock method implemented
in the RATIP program [67]. However, the results de-
pend strongly on the manual selection of configura-
tions included in the subspace for the initial and final
states. For molecules, the most advanced method today
is the Fano-ADC-Stieltjes approach [55, 56]. The draw-
backs of this approach are that it requires large, non-
standard orbital basis sets and that it relies on some-
what arbitrary division of the electronic configurations
into bound and continuum subspaces. Clearly, there is a
need for more-universal computational tools for reliable
treatment of Auger decay. Ideally, such new computa-
tional protocols should be cost-effective, easy to setup,
and take advantage of the already available, highly ac-
curate methods and algorithms of standard quantum
chemistry.

Here, we propose a methodology to calculate Auger
decay rates based on equation-of-motion coupled clus-
ter (EOM-CC) theory [68–71]. We use EOM-CC to
describe the bound part of the wave function in the
initial and final states of the Auger decay and use con-
tinuum orbitals to represent the Auger electrons. The
EOM-CC framework provides effective and robust tools
for computing energies and properties of excited, ion-
ized, and electron-attached states [68–71]. The flexibil-
ity of the EOM-CC single-reference ansatz allows one
to tackle states of open-shell and multi-configurational
character with high and controllable accuracy. EOM-
CC methods have been combined with complex ab-
sorbing potentials to study properties of metastable
states [47, 72, 73]. To enable access to core-level states,
EOM-CC methods have been combined with CVS, re-
sulting in a highly effective CVS-EOM-CC scheme. The
CVS-EOM-CCSD approach has been used to compute
energies and properties of core-ionized and core-excited
states, as well as X-ray non-linear properties such as
RIXS[34–36, 38, 39, 42]. Here we extend the EOM-CC
methodology to describe the autoionization properties
of core-ionized and core-excited states.

We combine many-electronic states described by
CVS-EOM-CCSD with a continuum orbital, which we
approximate by a plane wave or a Coulomb wave. This
allows us to avoid numerical integration in the calcula-
tions of mixed bound-continuum electron-repulsion in-
tegrals. The working equations for the calculations of
the partial autoionization widths are expressed in terms
of one- and two-body Dyson functions, contracted with
the bound-continuum integrals. While Dyson orbitals
have been utilized in the theory of one-photon photoion-
ization [74–81], here we extend this concept to two-body
functions, which enables a compact representation of
autoionization widths obtained from correlated many-
electron states. In this paper, we describe the theoret-
ical approach and its implementation in an electronic
structure code. In a companion paper[82], we illustrate
the performance of the theory by simulating normal and
resonant Auger decay spectra in a set of benchmark
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atomic and molecular systems, including Ne, H2O, CH4,
and CO2.

II. FESHBACH-FANO-LÖWDIN
FRAMEWORK

As outlined above, our treatment of the autoioniza-
tion process is based on the concepts originally formu-
lated by Feshbach to describe nuclear reactions [28].
This is an application of the Löwdin partitioning
technique[29] to treat the bound-continuum problem.
While the focus of this paper is on the Auger effect, the
theory is general and can be applied to other resonance
phenomena[32].

Let us start by reviewing the key concepts of the ap-
proach. The principal idea[28, 29] is the introduction of
two Hermitian, mutually orthogonal, projection opera-
tors Q and P , such that:

Q + P = 1, QP = PQ = 0. (1)

The operators Q and P divide the full function space
into two subspaces: the Q−space, characterizing the in-
teraction region with the discrete spectrum, and the
P−space, characterizing the asymptotic region with the
continuous spectrum. The projection operators can be
expressed as:

Q =∑
n

∣ψn⟩⟨ψn∣, P =∑
µ
∫

∞

0
dE∣χ±µ,E⟩⟨χ±µ,E ∣ (2)

where the representing functions are the eigenstates of
the respective projected Hamiltonians:

HQQψn = Enψn, HPPχ
±

µ,E = (E +Eµ)χ±µ,E (3)

with HQQ ≡ QHQ and HPP ≡ PHP . These functions
are subject to the following normalization conditions:

⟨ψn∣ψk⟩ = δnk, ⟨χ±µ,E ∣χ±µ′,E′⟩ = δµµ′δ(E −E′). (4)

Thus, functions forming the Q-space are L2-normalized,
whereas the P -space comprises scattering (unbound)
states with Dirac’s δ normalization. For the unbound
states χ±µ,E the index µ denotes a distinct open chan-
nel and the superscript ± refers to either outgoing or
incoming asymptotic boundary conditions imposed on
the scattering wave function. In Eq. (3) we introduced
Eµ which denotes the threshold energy of a given chan-
nel, i.e., Eµ corresponds to the internal energies of the
two subsystems formed after the break-up. Similarly to
the Fano picture[27], a resonance in the Feshbach theory
can be seen as an isolated bound state from the Q-space,
interacting with a bath of continuum states from the P -
space. This interaction (or coupling) is responsible for
the decay of the resonance. For this construction to be
valid, the operator P must include the summation over

all possible open channels µ contributing to the decay
of the given resonant state.

TheQ and P operators transform the full Schrödinger
equation

HΨ = EΨ (5)

into an equivalent set of two sets of coupled equations,
represented as

[HQQ HQP

HPQ HPP
] [QΨ
PΨ

] = E [QΨ
PΨ

] . (6)

These two equations can be rearranged to define two
effective Hamiltonians, HPP and HQQ:

HPP =HPP +HPQGQ(E)HQP (7)

HQQ =HQQ +HQPG
(+)

P (E)HPQ (8)

where GQ and G
(+)

P are the Green’s functions in the Q-
and P -spaces:

GQ(E) = 1

E −HQQ
, (9)

G
(+)

P (E) = lim
ε→0

1

E + iε −HPP
. (10)

Both HPP and HQQ are energy-dependent and non-
local[30]. They act only in their respective subspaces,
yet, due to the presence of the coupling HPQ/QP , they
include also the effect of the complementary subspace.
Apparently equivalent, the HPP and HQQ effective
Hamiltonians have different properties and applications.
HPP is sufficient to obtain the asymptotic form of the
total wave function, Eq. (5), and thus to calculate all
scattering properties of the system.

By construction, the effective Hamiltonian HQQ is
non-Hermitian and has complex eigenvalues. These
eigenvalues are not equal to the eigenvalues of the origi-
nal Hamiltonian, Eq. (5), solved with normal boundary
conditions. Rather, they represent the solution of the
Siegert-type problem[83] using modified boundary con-
ditions, as in other incarnations of the non-Hermitian
quantum mechanics[46] designed to describe resonance
states by using L2 representation of the wave function.

Indeed, if P and Q operators are defined in an ade-
quate way, then the eigenstates of HQQ

HQQψ̃n = Ẽnψ̃n (11)

can be identified with true resonances and their respec-
tive eigenvalues

Ẽn = En − i
Γn
2

(12)

correspond to physical observables, i.e., the position
(En) and the width (Γn) of the resonance.
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As in the context of electron correlation, the exact so-
lution ofHQQ is impractical. Instead, perturbation the-
ory can employed, taking HQQ as the zero-order Hamil-
tonian and treating the rest as a perturbation[30, 84–
86]. Thus, the eigenstates of HQQ are zero-order wave-
functions:

HQQψn = Enψn (13)

and En is zero-oder energy of the resonance (because
HQQ is Hermitian, En is real). The first-order correc-

tion to the energy is then:

E(1)n = ⟨ψn∣HQPG
(+)

P HPQ∣ψn⟩. (14)

By using the distribution property:

lim
ε→0

1

x ± iε = P.V.
1

x
∓ iπδ(x), (15)

we arrive at the following expressions for the resonance
position:

En = Re⟨ψn∣HQQ∣ψn⟩ = En +∆n = En +∑
µ

P.V.∫
∞

0
dE

⟨ψn∣HQP ∣χ±µ,E⟩⟨χ±µ,E ∣HPQ∣ψn⟩
En −Eµ −E

≡ En +∑
µ

∆µ,n, (16)

and for the resonance width

Γn = −2Im⟨ψn∣HQQ∣ψn⟩ =∑
µ

2π⟨ψn∣HQP ∣χ±µ,En−Eµ⟩⟨χ
±

µ,En−Eµ ∣HPQ∣ψn⟩ ≡∑
µ

Γµ,n, (17)

in the first order of the perturbation theory. The sec-
ond term in Eq. (16) represents shift to the position of
the resonance due to the coupling with the continuum.
Both the energy shift ∆n and the width Γn are sums
over partial contributions from each open channel µ.

We note that this treatment is meaningful only if ψn
provides a good approximation to the resonance wave-
function and the perturbation does not change its char-
acter. In other words, this treatment is justified for
isolated, non-overlapping resonances. In the above ex-
pression, the coupling HQP /PQ are the matrix elements
of the Hamiltonian between the Q- and P -spaces and ψn
and χ±µ,En−Eµ are eigenstates of the zero-order Hamilto-

nian comprising the uncoupled HQQ and HPP blocks.

III. AUGER TRANSITION AMPLITUDES
AND ONE- AND TWO-BODY DYSON

FUNCTIONS

Let us now discuss how to generate bound and con-
tinuum zero-order electronic states within EOM-CC
framework and how to effectively compute the tran-
sition amplitudes ⟨ψn∣HQP ∣χµ,E⟩ = ⟨ψn∣H − En∣χµ,E⟩
entering the expressions for the partial widths and en-
ergy shifts. Our derivation follows, to some extent,
the work of Manne and Ågren [87], who derived gen-
eral expressions for the Auger amplitudes from many-
electron wave functions, albeit adjusted to accommo-
date coupled-cluster theory and our assumption about
the continuum orbital. We denote the initial (bound)
state from the Q-space as

∣ψn⟩ = ∣S,MSΨN
n ⟩ (18)

where S and MS are spin quantum numbers, and the
superscript N is the number of electrons. The final
(continuum) states of the N−electron system after the
autoionization can be represented as:

∣χµ,E⟩ = cα â†
k,α∣

S′,MS−
1
2 ΨN−1

µ ⟩ + cβ â†
k,β ∣

S′,MS+
1
2 ΨN−1

µ ⟩,
(19)

where ∣S′,MS−
1
2 ΨN−1

µ ⟩ denotes a stable, N − 1 electron

core, and â†
k,σ are creation operators of the free electron

of energy E = k2

2
and spin σ. If the initial resonant state

has energy En, then the energy of the ejected electron
fulfills the following condition (in atomic units)

En =
k2

2
+Eµ (20)

where Eµ is the energy of the stable ion. Constants
cα and cβ are determined by spin adaptation and are
expressed in terms of the Clebsch-Gordan coefficients
as

cα = ⟨1

2
,
1

2
;S′,MS −

1

2
∣S,MS⟩ , cβ = ⟨1

2
,−1

2
;S′,MS +

1

2
∣S,MS⟩ .

In this way the final continuum state χ has the same to-
tal spin S as the initial state, which is the consequence of
the spin conservation in the course of auto-ionization.
From the angular momentum algebra, we know that
possible spins of the final ion states are S′ = S ± 1

2
.

Without loss of generality, we can assume that the ini-
tial state has non-negative spin projection, i.e., MS ≥ 0,
and in the following we consider the continuum state in
the simplified form as

∣χµ,E⟩ = â†
k,α∣

S′,MS−
1
2 ΨN−1

µ ⟩ (21)
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where there is only one component with α spin of the
free electron. To account for the properly spin-adapted
form of χ, Eq. (19), a degeneracy factor defined as:

gα = 1

c2α
(22)

is included in the final expressions for partial widths
Γn,µ and energy shifts ∆n,µ. Thus, from now on, we
assume that the Auger electron has spin α and drop all
spin quantum numbers in states labeling as they only
enter the final expressions via the degeneracy factor gα.

In what follows we assume strong orthogonality con-
dition — that is, that the continuum orbital correspond-
ing to âk operator is orthogonal to all orbitals from the
bound domain present in ∣ΨN

n ⟩ or ∣ΨN−1
µ ⟩ states. This

“killer condition” can be formally expressed as:

âk∣ΨN
n ⟩ = âk∣ΨN−1

µ ⟩ = 0, ⟨ΨN
n ∣â†

k = ⟨ΨN−1
µ ∣â†

k = 0. (23)

In the derivation of transition amplitudes, we express
the Hamiltonian in the second quantization form:

H = Ô1+Ô2 = ⨋
pq
hpqâ

†
pâq+

1

2
⨋
pqrs

gpqrsâ
†
pâ

†
qâsâr, (24)

where hpq denotes the one-electron integrals (kinetic
energy and nuclear-electron interaction), gpqrs denotes
electron-repulsion integrals ⟨pq∣rs⟩, and the symbol ⨋
signifies that this summation includes spin-orbitals from
both the bound and continuum domains. The creation
and annihilation operators fulfill the anti-commutation
relation:

â†
pâq + âqâ†

p = δpq. (25)

By employing strong orthogonality and using anti-
commutation properties, the one-electron part of the
right transition amplitude assumes the following form

⟨ΨN
n ∣Ô1∣â†

kΨN−1
µ ⟩ = ⟨ΨN

n ∣⨋
pq
hpqâ

†
pâqâ

†
k∣Ψ

N−1
µ ⟩

=∑
p

hpk
nµγp (26)

where we have introduced one-body (right) Dyson am-
plitudes nµγp defined as

nµγp = ⟨ΨN
n ∣â†

p∣ΨN−1
µ ⟩, (27)

which connect the N and N − 1 electron states. The
last summation in Eq. (26) is now restricted to the spin-
orbitals from the bound domain only (no superimposed
integral sign). nµγp are the coefficients of Dyson orbital
φd expressed in the molecular orbital basis set:

φd(x1) =∑
p

nµγp φ∗p(x1), (28)

or, equivalently, as a generalized overlap integral in the
first quantization:

φd(x1) =
√
N ∫ (ΨN

n (x1,x2, . . . ,xN))∗

× ΨN−1
µ (x2, . . . ,xN) dx2 . . . dxN . (29)

Likewise, the one-electron part of the left amplitude is

⟨ΨN−1
µ ∣âkÔ1∣ΨN

n ⟩ = ⟨ΨN−1
µ ∣âk ⨋

pq
hpqâ

†
pâq ∣ΨN

n ⟩

=∑
p

hkp
µnγp (30)

where one-body (left) Dyson amplitudes µnγp

µnγp = ⟨ΨN−1
µ ∣âp∣ΨN

n ⟩ (31)

have been introduced. Following the same procedure,
the two-electron part of the right transition amplitude
can be expressed as

⟨ΨN
n ∣Ô2∣â†

kΨN−1
µ ⟩ = ⟨ΨN

n ∣1
2
⨋
pqrs

gpqrsâ
†
pâ

†
qâsârâ

†
k∣Ψ

N−1
µ ⟩

= 1

2
∑
pqr

⟨pq∣∣kr⟩nµΓpqr (32)

where we used the symmetrized two-electron integrals

⟨pq∣∣kr⟩ = gpqkr − gpqrk (33)

and two-body (right) Dyson amplitudes nµΓpqr defined
as

nµΓpqr = ⟨ΨN
n ∣â†

pâ
†
qâr ∣ΨN−1

µ ⟩. (34)

Analogously to Dyson orbitals, nµΓpqr are the coeffi-
cients of the two-body Dyson function:

gd(x1,x2,x2′) =∑
pqr

RΓpqr φp(x1)∗φq(x2)∗φr(x2′),

(35)
which, again, can be equivalently written down in the
first-quantization formalism as the following overlap in-
tegral:

gd(x1,x2,x2′) =
√
N(N − 1)

2
∫ (ΨN

n (x1,x2, . . . ,xN))∗

×ΨN−1
µ (x2′ ,x3, . . . ,xN) dx3 . . . dxN . (36)

The left counterpart of the two-electron transition am-
plitude is

⟨ΨN−1
µ ∣âkÔ2∣ΨN

n ⟩ = ⟨ΨN−1
µ ∣âk

1

2
⨋
pqrs

gpqrsâ
†
pâ

†
qârâs∣ΨN

n ⟩

= 1

2
∑
pqr

⟨kr∣∣pq⟩µnΓrpq (37)

where the (left) two-body Dyson amplitudes µnΓpqr are

µnΓpqr = ⟨ΨN−1
µ ∣â†

pâqâr ∣ΨN
n ⟩. (38)
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One- and two-body Dyson amplitudes, as defined by
Eqs. (27) and (34), are analogous objects. The one-
body Dyson function can be obtained by integrating
the two-body Dyson function; respectively, the one-
body Dyson amplitudes can be obtained by tracing the
two-body amplitudes. Eqs. (29) and (36) also highlight
the relationship between Dyson amplitudes and one-
and two-body transition density matrices, commonly
used objects in the electronic structure theory[81]. The
difference between the transition density matrices and
Dyson amplitudes is that the former connect the states
with the same number of electrons, whereas the latter
connect the states with a different number of electrons.
Obviously, in the context of autoionization, one- and
two-body Dyson functions are the key quantities, as
they show how the initial resonance state is coupled
with stable decay products. In the context of pho-
toionization, the norms of one-body Dyson orbitals pro-
vide estimates of the strength of the transition (pole
strengths)[75, 76, 80, 81], i.e., they are close to one for

primary Koopmans-like transitions and are small for
transitions with two-electron character (satellite tran-
sitions). In the same fashion, the norms of the two-
body Dyson orbitals can be used to estimate relative
Auger rates, in the spirit of electron population analy-
sis approach[48] and density-matrix based estimates of
electronic couplings[88, 89].

One- and two-body Dyson functions provide all the
information about the resonance decay that can be dis-
tilled from L2-integrable wave functions. One- and two-
body Dyson functions are bound-domain properties and
can be calculated with electronic structure methods de-
signed to tackle regular bound states. The remain-
ing piece of the information about the resonance decay
(from the unbound domain) is contained in the state of
the emitted Auger electron, φk.

By combining all expressions for one- and two-
electron transition amplitudes and inserting them into
Eq. (17) we arrive at the following formula for the res-
onance partial width:

Γn,µ = 2πgα ∫ dΩk

⎛
⎝∑p

hpk
nµγp + 1

2
∑
pqr

⟨pq∣∣kr⟩nµΓpqr
⎞
⎠
⎛
⎝∑p

hkp
µnγp +

1

2
∑
pqr

⟨kr∣∣pq⟩µnΓrpq
⎞
⎠

(39)

and the correction for the resonance position:

∆n,µ = gαP.V.∫ dE ∫ dΩk

(∑p hpknµγp + 1
2 ∑pqr⟨pq∣∣kr⟩

nµΓpqr ) (∑p hkpµnγp + 1
2 ∑pqr⟨kr∣∣pq⟩

µnΓrpq)
En −Eµ −E

(40)

where we have included also the degeneracy factor gα,
and an explicit integration over the angles Ωk of the
emitted electron with the momentum k.

One and two-electron integrals, hpk and ⟨pq∣∣kr⟩, are
mixed integrals between the orbitals from the bound
domain and the continuum orbital φk describing the
emitted electron. Explicit expression for one-electron
mixed integrals reads:

hpk = ⟨φp∣ −
1

2
∇2

r +∑
i

Zi
∣r −Ai∣

−En∣φk⟩, (41)

and for two-electron mixed integrals:

⟨pq∣∣kr⟩ = ⟨φp(1)φq(2)∣
1

∣r1 − r2∣
φk(1)φr(2)⟩

− ⟨φp(1)φq(2)∣
1

∣r1 − r2∣
φr(1)φk(2)⟩ . (42)

Importantly, the orbitals from the bound domain and
the continuum orbital are subject to different normal-
ization:

⟨φp∣φq⟩ = δpq, ⟨φk∣φk′⟩ = δ(E −E′) (43)

in order to fulfill the normalization conditions im-
posed on the many-body electronic states, as defined
in Eq. (4).

Eqs. (39) and (40) use left and right Dyson functions,
which are not simple conjugates of each other in non-
Hermitian frameworks, such as CC/EOM-CC. In the
case of Hermitian approaches, these equations reduce
to contain the absolute squares of one amplitude.

IV. EOM-CCSD STATES FOR REGULAR AND
RESONANT AUGER EFFECTS

Let us now discuss how to employ EOM-CC methods
to compute necessary electronic states and the corre-
sponding one and two-body Dyson functions for Auger
phenomena. Within the EOM-CC framework, the tar-
get state is parameterized as

∣ΨI⟩ = R̂IeT̂ ∣Φ0⟩ (44)

where ∣Φ0⟩ is a reference determinant, T̂ is the exci-

tation cluster operator from the CC ansatz, and R̂I is
a generalized EOM excitation operator. Different types
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FIG. 3. Target spaces accessed by different EOM-CC mod-
els (only singly excited configurations are shown) from the
closed-shell reference state (Φ0).

of R̂ (electron-conserving excitation, electron attaching,
electron-removing, etc) allow access to different sectors
of the Fock space[68], as illustrated in Fig. 3. Appropri-

ate selection of R̂I operator is a crucial step in the cal-
culations, because R̂I determines the initial resonance
state (ψn, Eq. (18)) and its possible decay channels.

Here we employ the CCSD ansatz (coupled-cluster
with single and double excitations) in which the cluster

operator T̂ is restricted to single and double excitations:

T̂ = T̂1 + T̂2 =∑
ia

tai â
†
aâi +

1

4
∑
ijab

tabij â
†
aâ

†
bâj âi. (45)

Following standard notations, occupied and unoccu-
pied spin-orbitals in ∣Φ0⟩ are denoted by i, j, k . . . and
a, b, c . . . indices, respectively. The level of excitation
in the EOM-CC operators is chosen appropriately, e.g.,
1h1p and 2h2p in EOM-EE, 1h and 2h1p in EOM-IP, 2h
and 3h1p in EOM-DIP, and so on (here h and p denote
hole and particle).

To compute transition properties within EOM-CC
theory, we need also left EOM states, defined as:

⟨ΨI ∣ = ⟨Φ0∣L̂Ie−T̂ (46)

where L̂I is a generalized EOM deexcitation operator.
The EOM-CC operators R and L are the eigenstates

of the non-Hermitian similarity-transformed Hamilto-
nian H̄:

H̄ = e−T̂HeT̂ . (47)

Diagonalization of H̄ in the space of target configura-
tions, determined by a specific choice of R, yields EOM
eigenvalues En, together with the corresponding left

and right eigenvectors, satisfying the following equa-
tions:

H̄R̂I = EnR̂I , L̂IH̄ = EnL̂I . (48)

Because of the non-Hermiticity of H̄, the EOM-CC
eigenvectors are not orthonormal in the usual sense, but
are chosen to form a bioorthonormal set

⟨ΨI ∣ΨJ⟩ = ⟨Φ0∣L̂IR̂JΦ0⟩ = δIJ . (49)

The choice of the EOM operator R̂I depends on the
physical process we aim to describe. Different types
of Auger processes are illustrated in Fig. 1. We as-
sume that the Auger effect can be treated as a two-
step process, with the first step (core-ionization or core-
excitation) being independent from the second step at
which the Auger electron is emitted.

In regular Auger decay (Fig. 1a), which is relevant
to XPS experiments, the initial state is a core-ionized
state and target (decay) states are doubly ionized va-
lence states. These states can be accessed by CVS-
EOM-IP and EOM-DIP, respectively, as illustrated in
Fig. 3.

The CVS scheme restricts the target EOM-IP mani-
fold to include only the configurations in which at least
one core electron is active; in this way the coupling with
the pseudo-continuum is removed and the core state be-
comes bound. This is achieved by splitting the occupied
spin-orbitals into the core (denoted by capital indices
I, J . . . ) and valence (denoted by lower-case indices)
sets. In our variant[36] of CVS-EOM-CC approach, we
also use frozen-core approximation, such that the clus-
ter operator in Eq. (45) is restricted to excitations from
the valence shell only.

The CVS-IP-CCSD states are

∣ΨN−1
n ⟩ = R̂CV SIP eT̂ ∣ΦN0 ⟩, ⟨ΨN−1

n ∣ = ⟨ΦN0 ∣L̂CV SIP e−T̂ (50)

where the right and left operators are

R̂CV SIP =∑
I

rI âI +
1

2
∑
IJa

raIJ â
†
aâJ âI +∑

Ija

raIj â
†
aâj âI (51)

and

L̂CV SIP =∑
I

lI â†
I +

1

2
∑
IJa

lIJa â†
I â

†
J âa +∑

Ija

lIja â
†
I â

†
j âa. (52)

The products of the Auger decay correspond to dou-
bly ionized states with two holes in the valence shell,
described by EOM-DIP-CCSD:

∣ΨN−2
µ ⟩ = R̂DIP eT̂ ∣ΦN0 ⟩, ⟨ΨN−2

µ ∣ = ⟨ΦN0 ∣L̂DIP e−T̂ , (53)

where the right and left EOM operators are given by

R̂DIP = 1

2
∑
ij

rij âj âi +
1

6
∑
ijka

raijkâ
†
aâkâj âi (54)
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and

L̂DIP = 1

2
∑
ij

lij â†
i â

†
j +

1

6
∑
ijka

lijka â†
i â

†
j â

†
kâa. (55)

Here we can point out some major advantages of the
EOM-CC approach. First, the EOM-CC ansatz nat-
urally captures multi-configurational character of the
initial and product states by treating leading electronic
configurations on the same footing. When using closed-
shell references, the EOM-CC wave-functions are nat-
urally spin-adapted[90]. Second, both the initial and
final product states include dynamical correlation ef-
fects, described by higher-order excitation operators, cf.
Eqs (51), (52), (54), (55). Third, both the initial and
final product states are calculated by diagonalization
of the same model Hamiltonian H̄ and using the same
set of orthogonal spin-orbitals from the bound domain,
which significantly simplifies the formalism and leads to
a balanced description of the states involved. Fourth,
this consistent treatment of the resonance and its decay
channels guarantees that we properly identify the open
channels.

As explained above, the only properties needed from
the bound-domain calculations are one- and two-body
Dyson functions. With the initial state and final chan-
nel states defined by Eqs. (50) and (53) one-body Dyson
functions vanish, which reflects the fact that the Auger
decay is a two-electron process. Two-body Dyson func-
tions for the regular Auger decay are given by the fol-
lowing expressions:

nµΓpqr = ⟨ΦN0 ∣L̂CV SIP e−T̂ â†
pâ

†
qârR̂DIP e

T̂ ∣ΦN0 ⟩,
µnΓpqr = ⟨ΦN0 ∣L̂DIP e−T̂ â†

pâqârR̂
CV S
IP eT̂ ∣ΦN0 ⟩. (56)

The programmable expressions for these matrix ele-
ments within the EOM-CCSD model are given in the
Appendix.

The second example is the resonant Auger effect, rel-
evant for XAS experiments. The difference from the
regular Auger effect is that now the initial resonance
state is created by core-valence excitation rather than
by core ionization (see Fig. 1b,c). The initial states are,
therefore, described by CVS-EOM-EE-CCSD (see Fig.
3), with left and right target states given by

∣ΨN
n ⟩ = R̂CV SEE eT̂ ∣ΦN0 ⟩, ⟨ΨN

n ∣ = ⟨ΦN0 ∣L̂CV SEE e−T̂ , (57)

with the CVS-EOM-EE-CCSD operators

R̂CV SEE = r0 +∑
Ia

raI â
†
aâI +

1

4
∑
IJab

rabIJ â
†
aâ

†
bâJ âI

+1

2
∑
Ijab

rabIj â
†
aâ

†
bâj âI , (58)

L̂CV SEE =∑
Ia

lIaâ
†
I âa +

1

4
∑
IJab

lIJab â
†
I â

†
J âbâa

+1

2
∑
Ijab

lIjabâ
†
I â

†
j âbâa. (59)

The final states in this case are described by EOM-IP-
CCSD

∣ΨN−1
µ ⟩ = R̂IP eT̂ ∣ΦN0 ⟩, ⟨ΨN−1

µ ∣ = ⟨ΦN0 ∣L̂IP e−T̂ , (60)

where the right and left EOM-IP-CCSD operators are
given by

R̂IP =∑
i

riâi +
1

2
∑
ija

raij â
†
aâj âi, (61)

L̂IP =∑
i

liâ†
i +

1

2
∑
ija

lija â
†
i â

†
j âa. (62)

In resonant Auger effect, one distinguishes between
participator and spectator decay. In the former, the
electron originally excited from the core-shell takes part
also in the decay process (Fig. 1b), whereas in the lat-
ter this electron remains in the excited orbital (Fig. 1c).
The channels for the spectator decay require at least
2h1p configurations, therefore, within the EOM-CCSD
ansatz, they are described less accurately than the par-
ticipator channels (requiring only 1h configurations).

As in the case of the regular Auger effect, all what
is needed to compute Γ and ∆ are one- and two-body
Dyson functions. Because of the r0 term in the R̂CV SEE
operator, this time there is a non-vanishing contribution
to the left one-body Dyson function (see Appendix);
the right one-body Dyson function is zero. The main
contribution to the decay amplitude comes, again, from
the two-body Dyson functions, represented as:

nµΓpqr = ⟨ΦN0 ∣L̂CV SEE e−T̂ â†
pâ

†
qârR̂IP e

T̂ ∣ΦN0 ⟩,
µnΓpqr = ⟨ΦN0 ∣L̂IP e−T̂ â†

pâqârR̂
CV S
EE eT̂ ∣ΦN0 ⟩. (63)

The programmable expressions for these Dyson func-
tions in terms of the CC and EOM amplitudes are given
in the Appendix.

V. CONTINUUM ORBITAL AND MIXED
BOUND-FREE MOLECULAR INTEGRALS

Let us now discuss the issue of the continuum orbital
φk, and evaluation of mixed bound-continuum one- and
two-electron integrals. With the definition of the many-
body continuum wave function as given in Eq. (21),
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the continuum orbital φk describes the motion of the
ejected electron in the field created by the residual ion
∣Ψµ⟩. φk can be obtained by solving a Hartree-Fock like
equation (rigorously derived from the Kohn variational
method) [87, 91]:

[−1

2
∇2

r −∑
A

ZA
∣r −RA∣ + Ĵ[Ψµ](r) − K̂[Ψµ](r)]φk(r)

= k
2

2
φk(r), (64)

subject to the strong orthogonality and normalization
conditions as given by Eqs. (23, 43). In this equation,
the Coulomb and the exchange operators are defined as

Ĵ[Ψµ](r)φk(r) = ∫ dr′
µ

∑
pq

ρpq
φ∗p(r′)φq(r′)

∣r − r′∣ φk(r) (65)

and

K̂[Ψµ](r)φk(r) = ∫ dr′
µ

∑
pq

ρpq
φ∗p(r′)φk(r′)

∣r − r′∣ φq(r),

(66)

respectively. Operators Ĵ and K̂ depend on the state
of the residual ion ∣Ψµ⟩ through the one-particle state
density matrix:

µρpq = ⟨Ψµ∣â†
pâq ∣Ψµ⟩. (67)

State density matrix µρpq comprises two blocks (µραα
and µρββ) depending on the spin functions of p and q

spin-orbitals. The Coulomb operator Ĵ has contribu-
tion from both components, whereas the exchange op-
erator K̂ has contribution only from µραα component
(assuming that the ejected electron has α spin).

The most common approach to solve Eq. (64) is
to apply partial wave decomposition to φk, and then
to approximate the exchange potential K̂[Ψµ](r) with
some simple model such as from homogeneous electron
gas [60, 64]. As a result, one arrives with a set of
coupled second-order differential equations, which are
solved numerically. Although such procedure works well
for small atoms, it becomes impractical for larger, non-
symmetric molecules, in which one needs to account
for non-spherical potential and deal with a slow conver-
gence of the partial wave expansion. In the present work
we do not attempt to solve Eq. (64) explicitly. Rather,
we assume a simple form of the continuum function φk,
either as a plane wave or a Coulomb wave.

Our first model for continuum orbital φk is a plane
wave:

φPWk (r) =
√

k

(2π)3 e
ik⋅r (68)

where the prefactor
√
k/(2π)3 results from normaliza-

tion condition, Eq. (43). Continuum orbital in the form

of a plane wave corresponds to the solution of Eq. (64)
where we neglect all the potential terms. Although this
might seem as a drastic approximation, one can argue
that in the case of the Auger effect, the energy of ejected
electron is so large (hundreds of eV) that the potential
of the ionized core may turn out to be small relative
to the kinetic energy. Validity of this argument is dis-
cussed in the companion paper[82], where we present
numeric results illustrating different treatments of the
Auger electron.

The major advantage of approximating φk with a
plane wave is that we can directly perform analytic
evaluation of all mixed one- and two-electron integrals,
Eqs.(41, 42), provided that the orbitals from the bound
domain are expanded in terms of Gaussian functions of
the form

φG(r) = (x −Ax)i(y −Ay)j(z −Az)le−α∣r−A∣
2

, (69)

which is the usual case. In the analytic evaluation of
mixed Gaussian/plane-wave integrals we make use of
the following property,

e−α∣r−A∣
2

eik⋅r = eik⋅Ae− k
2

2α e−
α
2 ∣r−A∣

2

e−
α
2 ∣r−A−i kα ∣

2

(70)

which shows that the product of a Gaussian and a plane-
wave functions can be expressed as a product of two
Gaussians with one of them centered in the complex
plane. In this way, we can mimic a plane wave with a
single s−type Gaussian, shifted to the complex plane.
Thus, in the evaluation of mixed integrals, we can reuse
the integral codes designed for Gaussian functions, after
some simple modifications, based on the Eq. (70). In-
deed, directly from Eq. (70) one can see that the overlap
between a Gaussian and a plane wave is equal to the
overlap of two (modified) Gaussians. Mixed integral
with the kinetic energy operator can be simply reduced
to the overlap integral since

∫ drφG(r) (−1

2
∇2

r) eik⋅r =
1

2
k2 ∫ drφG(r)eik⋅r. (71)

For the evaluation of one and two-electron Coulomb
mixed integrals with the plane wave, we can use again
Eq. (70) and replace a plane wave with a single s Gaus-
sian. The only complication arising for Coulomb inte-
grals with a plane wave is that now we need to compute
Boys function for a complex argument, as a consequence
of positioning one Gaussian in the complex plane. In
our implementation we have used the algorithm from
Ref. [92] to evaluate complex-valued Boys function.

In our second model we approximate φk with a
Coulomb wave of the form

φCWk (r) =
√

k

(2π)3 e
ik⋅rΓ(1 − iη)e−

πη
2

×1F1 (iη,1,−ikr − ik ⋅ r) (72)
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where η = −Z/k is the Sommerfeld parameter, Z is the
nuclear charge, 1F1 is the Kummer confluent hypergeo-
metric function, and the incoming wave boundary con-
ditions are implied. This form of φk corresponds to the
assumption that the potential part from Eq. (64) can
be approximated as V (r) = −Z

r
, where Z is an effective

Coulomb charge (Zeff ); its optimal value is discussed
in the accompanying paper[82]. For Z = 0 the Coulomb
wave reduces to the plane wave.

As with the plane wave, we aim to evaluate mixed
bound-continuum integrals analytically, without nu-
merical integration. To do so, we employ the approach
from Ref. [93], which provides a recipe for an efficient
decomposition of the Coulomb wave in terms of prod-
ucts of Gaussian and plane-wave functions:

φCWk (r) =∑ ckφ
GPW
k (r), (73)

where φGPWk (r) basis functions are in the form

φGPWk (r) = (x−Ax)i(y−Ay)j(z−Az)le−α∣r−A∣
2

eik⋅(r−A).
(74)

The main idea behind the method of Ref. [93] is to
rewrite the Coulomb wave as

φCWk (r) =
√

k

(2π)3 e
ik⋅r

∞

∑
l=0

l

∑
m=−l

Okl(r)R∗

lm(r)Rlm(k),

(75)
where Okl(r) are the l-th pseudo-partial waves given by

Okl(r) = Γ(1−iη)e−
πη
2 (iη)l

(−2i)l
(2l)! 1F1(l+iη,2l+2,−2ikr)

(76)
and Rlm(v) are solid spherical harmonics of vector v.
The pseudo-partial waves Okl(r) are functions that can
be easily approximated with a small set of primitive
Gaussians,

Okl(r) ≈
Nc

∑
i=i

clie
−ξlir

2

(77)

where the exponents ξli and expansion coefficients cli
are determined via optimization procedure (done sep-
arately for each value of k). The advantages of this
approach over the standard partial-wave expansion are
two-fold. First, the major oscillatory part of the
Coulomb wave is contained already in the eik⋅r term,
making Okl(r) smooth and slowly varying functions.
Consequently, the expansion from Eq. (77) is very com-
pact, even for very high energy (as we encounter in the
Auger effect). Second, pseudo-partial wave convergence
is substantially faster than for standard partial waves,
again, owing to the explicit presence of eik⋅r factor in
Eq. (75). Inserting Okl(r) from Eq. (77) into defini-
tion from Eq. (75) leads directly to the expansion of
the Coulomb wave in terms of φGPWk (r) functions. The
next step is to evaluate the necessary mixed bound-
free integrals with φGPWk (r) as a continuum orbital

and Gaussian functions as remaining orbitals from the
bound domain. For φGPWk (r) functions we make use of
the following identity

e−α∣r−A∣
2

eik⋅(r−A) = e− k
2

4α e−α∣r−A−i k
2α ∣

2

, (78)

which shows that the s−type φGPWk (r) is equivalent to
a regular s−type Gaussian, however, shifted to the com-
plex plane. If φGPWk (r) is purely of s−type, the prop-
erty above is sufficient to evaluate all mixed overlap
and one and two-electron Coulomb integrals using stan-
dard integral codes for Gaussian functions (as for the
plane wave, we need complex-valued Boys function for
Coulomb integrals). If φGPWk (r) has non-zero angular
momentum (in any direction), then mixed overlap and
Coulomb integrals can be obtained from the horizontal
recurrence relation, which allows to shift the angular
momentum from one orbital centered on A to another
orbital centered on B. Standard horizontal recurrence
for one-electron integral (iA∣iB) can be schematically
written as (assuming the shift is done along the X axis):

(iA∣iB + 1) = (iA + 1∣iB) + (Ax −Bx) ⋅ (iA∣iB). (79)

For mixed (φG∣φGPW ) integrals this horizontal recur-
rence needs to be modified to

(iA∣iB + 1) = (iA + 1∣iB) +Re (Ax −Bx) ⋅ (iA∣iB), (80)

so while s−type φGPW function is positioned in the com-
plex plane (according to Eq. (78)), the horizontal shift
to build angular momentum in φGPW is done only along
the real axis. Separate treatment is needed for mixed
kinetic energy integrals with φGPW function. For these
integrals we can use the following property:

∫ drφG(r)(−1

2
∇2

r)φGPWk (r) =

∫ drφGPW∗

k (r) (−1

2
∇2

r)φG(r), (81)

and then by analyzing the action of differentiation op-
erator onto the regular Gaussian function:

∂2

∂x2
φG(r) =

[i(i − 1) 1

(x −Ax)2
+ 4α2(x −Ax)2 − α(4i + 2)]φG(r),

we show that the mixed kinetic energy integral can be
simply related to the sum of overlap integrals.

Thus, by approximating the continuum orbital with
either a plane or a Coulomb wave, we are able to eval-
uate all necessary mixed bound-continuum integrals by
reusing standard integral codes for pure Gaussian func-
tions (with some simple modifications). Therefore, all
these integrals can be effectively computed using highly
optimized codes developed for Gaussian integrals. Con-
sequently, we will be able to apply our methodology
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to larger molecules, with sizable one-electron basis set,
without additional cost due to numerical integration.

In our derivations, we assumed strong orthogonality
of the continuum orbital, and it is clear that a plane
wave or a Coulomb wave do not fulfill that condition
without additional orthogonalization. However, as it
was shown in Ref. [94], this orthogonalization is not nec-
essary if the initial and final states are obtained from
the same set of orthogonal bound-domain orbitals in a
variational-like procedure (which is true for EOM-CC
states). Therefore, we do not impose additional orthog-
onalization on the continuum orbital in our calculations.

VI. IMPLEMENTATION

We implemented the calculation of one- and two-body
Dyson amplitudes and mixed Gaussian-plane wave inte-
grals in the developer’s version of the Q-Chem quantum
chemistry package[95, 96]. Our implementation used
libtensor library[97] and the suite of CVS-EOM-EE
codes recently developed by Coriani and co-workers[36].

All mixed Gaussian/plane-waves integrals were im-
plemented using the libqint infrastructure. The two-
electron Coulomb integrals were computed by modify-
ing the Head-Gordon-Pople algorithm [98] for electron-
repulsion integrals and utilizing the implementation of
White et al. [92] to calculate Boys function for a com-
plex argument. Numerical integration over the angles
of the emitted electron (Eq. 39) was done with Lebedev
quadrature. Additional computational details are given
in the companion paper[82].

VII. CONCLUSIONS

We have presented the extension of the EOM-CCSD
formalism to compute Auger decay rates in atoms and
molecules. This work is a natural extension of previ-
ous developments based on the EOM-CCSD framework
combined with the CVS scheme, and concerned with
description of core-ionized and core-excited states. In
the context of modeling autoionization, the advantages
of the EOM-CC methods are: (i) balanced description
of the initial and final bound-domain wave functions

with one set of orthogonal orbitals and the same effec-
tive Hamiltonian, (ii) simple, black-box computational
setup, with no system-dependent parameterization, and
(iii) flexibility to treat states of different electronic
character, including multi-configurational and open-
shell wave-functions. To calculate Auger decay rates us-
ing the Feshbach-Fano ansatz, we have combined many-
electron CVS-EOM-IP/EE-CCSD states with a contin-
uum orbital describing the outgoing electron, approxi-
mated by either a plane wave or a Coulomb wave.

In our companion paper[82], we present numeric ex-
amples, which illustrate the performance of the theory
and highlight the consequence of approximate treat-
ment of the free electron.

We conclude by noting that our methodology to cal-
culate Auger widths is quite general and can be adapted
to other problems concerned with autoionization, such
as iteratomic Coulombic decay, electron-transfer medi-
ated decay, or Penning ionization. Also, the theory can
be particularly useful to generate smooth complex po-
tential energy surfaces to study coupled electronic and
nuclear dynamics in the presence of autoionization.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Sci-
ence Foundation (No. CHE-1856342). We thank Dr.
Evgeny Epifanovsky from Q-Chem, Inc for his help and
guidance in the implementation of mixed gaussian-plane
wave integrals.

CONFLICTS OF INTEREST

A.I.K. is the president and a part-owner of Q-Chem,
Inc.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are
available within the article and its supplementary ma-
terial.

APPENDIX

Below we present EOM-CCSD programmable expressions for different blocks of one- (nµγp ≡ Rγp, µnγp ≡ Lγp)
and two-body (nµΓpqr ≡ RΓpqr , µnΓpqr ≡ LΓpqr) Dyson amplitudes for the relevant combinations of the EOM models.
Two-body Dyson functions have the following permutational symmetry:

RΓpqr = −RΓqpr and LΓpqr = −LΓprq. (82)

In the following, we make use of the symmetrizing/anti-symmetrizing operator P±(i, j) defined as:

P±(i, j) [f(i, j)] = f(i, j) ± f(j, i), (83)
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and adapt notation for right and left one- and two-body Dyson amplitudes:

nµγp ≡ Rγp, µnγp ≡ Lγp, nµΓpqr ≡ RΓpqr ,
µnΓpqr ≡ LΓpqr. (84)

CVS-EOM-IP-CCSD to EOM-DIP-CCSD Dyson amplitudes

Rγp = ⟨Φ0∣L̂CV SIP e−T̂ â†
pe
T̂ R̂DIP ∣Φ0⟩ = 0 (85)

RΓaiJ = ⟨Φ0∣L̂CV SIP e−T̂ â†
aâ

†
i âJe

T̂ R̂DIP ∣Φ0⟩ = −∑
k

lJka rik, (86)

RΓijK = ⟨Φ0∣L̂CV SIP e−T̂ â†
i â

†
j âKe

T̂ R̂DIP ∣Φ0⟩ =∑
la

lKla raijl + lKrij +∑
la

lKla tai rjl −∑
la

lKla taj ril. (87)

EOM-DIP-CCSD to CVS-EOM-IP-CCSD Dyson amplitudes

Lγp = ⟨Φ0∣L̂DIP e−T̂ âpeT̂ R̂CV SIP ∣Φ0⟩ = 0 (88)

LΓIjk = ⟨Φ0∣L̂DIP e−T̂ â†
I âj âke

T̂ R̂CV SIP ∣Φ0⟩ = −∑
la

ljkla raIl − ljkrI , (89)

LΓIaj =⟨Φ0∣L̂DIP e−T̂ â†
I âaâje

T̂ R̂CV SIP ∣Φ0⟩ =∑
k

ljkraIk +∑
klb

(ljklb ⋅ rbIl) tak

+ rI∑
k

takl
jk + 1

2
rI∑

klb

ljklb tabkl , (90)

LΓIab =⟨Φ0∣L̂DIP e−T̂ â†
I âaâbe

T̂ R̂CV SIP ∣Φ0⟩

= − 1

2
rI∑

jk

ljktabjk +∑
jk

taj t
b
k
LΓIjk −

1

2
∑
jklc

ljklc rcIjt
ab
kl

+P−(a, b)
⎡⎢⎢⎢⎢⎣

1

2
∑
jklc

(ljklc ⋅ tackl ) (rbIj + rItbj) +∑
jk

(ljk ⋅ tbj) raIk
⎤⎥⎥⎥⎥⎦

(91)

CVS-EOM-EE-CCSD to EOM-IP-CCSD Dyson amplitudes

Rγp = ⟨Φ0∣L̂CV SEE e−T̂ â†
pe
T̂ R̂IP ∣Φ0⟩ = 0 (92)

RΓabI = ⟨Φ0∣L̂CV SEE e−T̂ â†
aâ

†
bâIe

T̂ R̂IP ∣Φ0⟩ = −∑
j

lIjabrj . (93)

RΓaiJ = ⟨Φ0∣L̂CV SEE e−T̂ â†
aâ

†
i âJe

T̂ R̂IP ∣Φ0⟩ = −lJa ri −∑
kb

lJkab r
b
ik −∑

b

tbi
RΓabJ
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RΓijK =⟨Φ0∣L̂CV SEE e−T̂ â†
i â

†
j âKe

T̂ R̂IP ∣Φ0⟩ = −∑
a

lKa r
a
ij −

1

2
∑
lab

(lKlab ⋅ rl) ⋅ tabij +∑
ab

tbjt
a
i
RΓabK

+P−(i, j) [1

2
rj∑
lab

lKlab t
ab
il − ri∑

a

lKa t
a
j −∑

lab

taj ⋅ (lKlab ⋅ rbil)] . (94)

EOM-IP-CCSD to CVS-EE-CCSD Dyson amplitudes

Lγi = ⟨Φ0∣L̂IP e−T̂ âieT̂ R̂CV SEE ∣Φ0⟩ = lir0, (95)

LγI = ⟨Φ0∣L̂IP e−T̂ âIeT̂ R̂CV SEE ∣Φ0⟩ = 0, (96)

Lγa = ⟨Φ0∣L̂IP e−T̂ âaeT̂ R̂CV SEE ∣Φ0⟩ =∑
i

tai
Lγi + 1

2
r0∑

ijb

lijb t
ab
ij . (97)

LΓaij = ⟨Φ0∣L̂IP e−T̂ â†
aâiâje

T̂ R̂CV SEE ∣Φ0⟩ = −lija r0. (98)

LΓijk = ⟨Φ0∣L̂IP e−T̂ â†
i âj âke

T̂ R̂CV SEE ∣Φ0⟩ = LΓ̃ijk +P−(j, k) [δij Lγk] (99)

LΓ̃ijk =∑
a

ljka t
a
i r0 (100)

LΓIjk = ⟨Φ0∣L̂IP e−T̂ â†
I âj âke

T̂ R̂CV SEE ∣Φ0⟩ =∑
a

ljka r
a
I (101)

LΓIJk = ⟨Φ0∣L̂IP e−T̂ â†
I âJ âke

T̂ R̂CV SEE ∣Φ0⟩ = δIJ Lγk (102)

LΓIjK = ⟨Φ0∣L̂IP e−T̂ â†
I âj âKe

T̂ R̂CV SEE ∣Φ0⟩ = −δIK Lγj (103)

LΓaib = ⟨Φ0∣L̂IP e−T̂ â†
aâiâbe

T̂ R̂CV SEE ∣Φ0⟩ = −∑
j

lija t
b
jr0 (104)

LΓabc = ⟨Φ0∣L̂IP e−T̂ â†
aâbâce

T̂ R̂CV SEE ∣Φ0⟩ = r0∑
ij

lija (−1

2
tbcij − tbi tcj) (105)

LΓiaj = ⟨Φ0∣L̂IP e−T̂ â†
i âaâje

T̂ R̂CV SEE ∣Φ0⟩ = LΓ̃iaj + δij(−Lγa) (106)

LΓ̃iaj = r0ljtai + r0∑
kb

ljkb (tabik − tbi tak) (107)

LΓIaj = ⟨Φ0∣L̂IP e−T̂ â†
I âaâje

T̂ R̂CV SEE ∣Φ0⟩ = ljraI +∑
kb

ljkb (rabIk − takrbI) (108)

LΓIaJ = ⟨Φ0∣L̂IP e−T̂ â†
I âaâJe

T̂ R̂CV SEE ∣Φ0⟩ = δIJ(−Lγa) (109)
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LΓiab =⟨Φ0∣L̂IP e−T̂ â†
i âaâbe

T̂ R̂CV SEE ∣Φ0⟩

=r0∑
j

ljtabij +
1

2
r0∑
jkc

(ljkc ⋅ tabjk) ⋅ tci + r0∑
jk

taj t
b
k
LΓijk

+ r0P−(a, b)
⎡⎢⎢⎢⎢⎣
−∑
jkc

(ljkc ⋅ tacij ) ⋅ tbk −
1

2
tbi ∑
jkc

ljkc t
ac
jk

⎤⎥⎥⎥⎥⎦
. (110)

LΓIab =⟨Φ0∣L̂IP e−T̂ â†
I âaâbe

T̂ R̂CV SEE ∣Φ0⟩

=∑
j

ljrabIj +
1

2
∑
jkc

(ljkc ⋅ tabjk) ⋅ rcI +∑
jk

taj t
b
k
LΓIjk

+P−(a, b)
⎡⎢⎢⎢⎢⎣
−rbI∑

j

taj l
j −∑

jkc

(ljkc ⋅ taj ) ⋅ rbcIk −
1

2
rbI∑
jkc

ljkc t
ac
jk

⎤⎥⎥⎥⎥⎦
. (111)
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[26] T. Åberg and G. Howat, Theory of Auger effect, in En-
cyclopedia of Physics, edited by S. Flügge, volume 31.
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[62] G. Grell, O. Kühn, and S. I. Bokarev, Multireference
quantum chemistry protocol for simulating autoioniza-
tion spectra: Test of ionization continuum models for
the neon atom, Phys. Rev. A 100, 042512 (2019).

[63] G. Grell and S. I. Bokarev, Multi-reference protocol for
(auto) ionization spectra: Application to molecules, J.
Chem. Phys. 152, 074108 (2020).

[64] Ph. V. Demekhin, A. Ehresmann, and V. L. Sukho-
rukov, Single center method: A computational tool for
ionization and electronic excitation studies of molecules,
J. Chem. Phys. 134, 024113 (2011).

[65] F. P. Larkins, L. C. Tulea, and E. Z. Chelkowska, Auger
electron spectra of molecules: the first row hydrides,
Australian J. Phys. 43, 625 (1990).

[66] Y. Hao, L. Inhester, K. Hanasaki, S.-K. Son, and
R. Santra, Efficient electronic structure calculation for
molecular ionization dynamics at high x-ray intensity,
Struct. Dyn. 2, 041707 (2015).

[67] S. Fritzsche, The RATIP program for relativistic calcu-
lations of atomic transition, ionization and recombina-
tion properties, Comp. Phys. Comm. 183, 1525 (2012).

[68] A. I. Krylov, Equation-of-motion coupled-cluster meth-
ods for open-shell and electronically excited species:
The hitchhiker’s guide to Fock space, Annu. Rev. Phys.
Chem. 59, 433 (2008).

[69] J. F. Stanton and R. J. Bartlett, The equation of motion
coupled-cluster method. A systematic biorthogonal ap-
proach to molecular excitation energies, transition prob-
abilities, and excited state properties, J. Chem. Phys.
98, 7029 (1993).

[70] R. J. Bartlett, Coupled-cluster theory and its equation-
of-motion extensions, WIREs: Comput. Mol. Sci. 2, 126
(2012).

[71] K. Sneskov and O. Christiansen, Excited state coupled
cluster methods, WIREs: Comput. Mol. Sci. 2, 566
(2012).

[72] T.-C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky,
and A. I. Krylov, A fresh look at resonances and com-
plex absorbing potentials: Density matrix based ap-
proach, J. Phys. Chem. Lett. 5, 310 (2014).

[73] D. Zuev, T.-C. Jagau, K. B. Bravaya, E. Epifanovsky,
Y. Shao, E. Sundstrom, M. Head-Gordon, and A. I.
Krylov, Complex absorbing potentials within EOM-
CC family of methods: Theory, implementation, and
benchmarks, J. Chem. Phys. 141, 024102 (2014).

[74] O. Goscinski and P. Lindner, Natural spin-orbitals and
generalized overlap amplitudes, J. Math. Phys. 11, 1313
(1970).

[75] J. Linderberg and Y. Öhrn, Propagators in quantum
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