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Abstract

Automated identification and classification of
ion solvation sites in diverse chemical systems
will improve the understanding and design of
polymer electrolytes for battery applications.
We introduce a machine learning approach to
classify and characterize ion solvation environ-
ments based on feature vectors extracted from
all-atom simulations. This approach is demon-
strated in poly(3,4-propylenedioxythiophene),
which is a promising candidate polymer binder
for Li-ion batteries. In the dry polymer, four
distinct Li+ solvation environments are identi-
fied close to the backbone of the polymer. Upon
swelling of the polymer with propylene carbon-
ate solvent, the nature of Li+ solvation changes
dramatically, featuring a rapid diversification
of solvation environments. This application of
machine learning can be generalized to other
polymer condensed-phase systems to elucidate
the molecular mechanisms underlying ion sol-
vation.

Introduction

Polymer binders such as polyvinylidene fluo-
ride (PVDF) are conventionally used to con-
fer chemical and mechanical stability to Li-ion
batteries. Traditionally, these materials are nei-
ther good electronic nor ionic conductors, and
their main role is to preserve the structural in-

tegrity of the electrodes.1 New efforts to explore
the use of conjugated polymers as binders2–10

are underway, promising to substantially im-
prove the efficiency of Li-ion batteries. These
conjugated polymers, when doped, exhibit
high electronic conductivities, however their
ionic conductivities are substantially lower.11

Poly(3-hexylthiophene) (P3HT), for instance,
has good electronic conductivity owing to its
π-stackings, and new studies show that func-
tionalization of its side chains could improve
its ionic conductivity as well.12,13 Another
candidate is poly(3,4-propylenedioxythiophene)
(ProDOT-2Hex), which is more stable than
P3HT and a better ionic conductor.14,15

A molecular-level explanation for the good
ionic conductivity of ProDOT-2Hex remains
elusive. Clarification of the structure-function
relationship through computational simulation
will help guide the synthesis of more efficient
ProDOT derivatives as well as the exploration
of other polymer chemistries and architectures.
However, the simulation of ion transport in
polymers using conventional all-atom molecu-
lar dynamics (MD) is hindered by the large sys-
tem sizes needed and the slow timescales of ion
diffusion,16 requiring the development of more
efficient strategies.
Extensive computational work towards under-
standing Li+ transport has been performed on
solid polymer electrolytes, of which polyethy-
lene oxide (PEO) is the canonical example.17–23
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Previous MD studies have shown that Li+ dif-
fusion in PEO takes place on multiple time
scales,24–35 featuring multiple modes of mo-
tion: intra-chain mobility, co-translation with
the polymer and inter-chain hoping. Long-
timescale MD trajectories enable the assess-
ment of the relative importance of these mo-
tions.24,25,36 Alternative approaches to investi-
gate the ion transport mechanisms include the
dynamical bond percolation (DBP) model,37–40

the chemically specific dynamical bond perco-
lation (CSDBP),36,41 and trajectory-extending
kinetic Monte Carlo (TEKMC),42–44 which em-
ploy various strategies to access long timescales
through stochastic hopping among solvation
sites. Key to the applicability of these meth-
ods is a good understanding of the Li+ ion sol-
vation environment (SE) in the polymers of in-
terest.36 While in PEO and PEO-derivatives,
the molecular mechanisms underpinning solva-
tion are well understood, in most other systems
these mechanisms are non-obvious and gener-
ally unknown.
The current work introduces an efficient ma-
chine learning (ML) strategy to achieve SE clas-
sification (SEC) in ProDOT-2Hex. We focus on
the use of ML to automate the analysis of com-
plex ion SEs, revealing in great detail the un-
derlying molecular mechanisms. This approach
can be extended to other polymer architectures
and ionic charge carriers.
There are many strategies to represent chemi-
cal environments for the regression of the po-
tential energy surfaces,45–51 or for predicting
solvation energies by supervised learning.52–55

Only recently, it has been recognized that the
unsupervised classification of chemical environ-
ments, in itself, can be useful to map out and vi-
sualize complex molecular and crystal structure
spaces56 or analyze solvation shell structures in
simple liquids.57 The current work takes the
approach of mapping chemical environments
based on simple molecular descriptors to ad-
dress the problem of classifying SEs in con-
densed phase systems like polymers, where the
richness of local structure highlights the true
benefits of the ML analysis. This is demon-
strated in ProDOT-2Hex, both dry and swollen
(realistic battery environment), revealing in de-

tail the molecular mechanisms of Li+ solvation.

Methods

The SEC approach aims to identify and char-
acterize ionic SEs in polymers with diverse
chemistries by unsupervised learning from all
atom molecular dynamics (MD) simulations.
The method uses input from equilibrium MD
trajectories of the ion in the solvent environ-
ment, where each trajectory is split into mul-
tiple windows. In each window, the molecu-
lar environment of the ion is characterized by
a radial distribution function (RDF) specific to
each atom type. These RDFs are then concate-
nated into feature vectors which serve as in-
put to ML classifiers that cluster and label the
SEs explored by the ion. The interpretation of
each SE cluster is achieved by inspecting the cu-
mulative distribution function (CDF), the dis-
tribution of Li+ binding energy (which is not
employed in learning) and the visual molecu-
lar representation (VMR). This visual represen-
tation is constructed by aligning all trajectory
windows corresponding to an SE with respect
to the atoms coordinating the Li+ ion. A fully
open-source version of the SEC code is available
at https://github.com/imagdau/SEC.

Molecular Dynamics

This section explains how the MD data is gen-
erated. The approach to SEC is first demon-
strated for Li+ solvation in neat ProDOT-2Hex
in the crystalline phase (Figure 1A), and then
extended to ProDOT-2Hex swollen with propy-
lene carbonate (PC), as well as to pure PC liq-
uid solvent. Seven independent sets of produc-
tion runs are performed, exploring the influence
of swelling and polymer morphology on the na-
ture of Li+ solvation (details in Table 1). Tra-
jectories are obtained in the dilute-ion regime,
with single Li+ ions countered by a background
charge.
All MD simulations are performed using the
LAMMPS simulation software,58 employing the
OPLS-AA force field with CM1A charges.59–61

The equations of motion are propagated with a
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Table 1: Details for the independent simulation
sets. Simulations 1, 2, 3 are performed with
both crystalline (c) and amorphous (a) phases.
Simulation 4 corresponds to the pure PC sol-
vent (liquid) simulation. The solvent concen-
tration is Csolv = Nsolv/(Nsolv +Nmon).

1(c),5(a) 2(c),6(a) 3(c),7(a) 4(l)

Npol 2× 4 2× 4 2× 4 –
Nmon 80 80 80 –
Nsolv 0 16 40 320
Natms 4176 4384 4696 4160
Csolv 0% 17% 33% 100%
Ndim 271 315 315 227

time step of 1 fs. For each condition detailed in
Table 1, the simulation box is first equilibrated
in the absence of Li+ for 5 ns in the NPT ensem-
ble at room temperature and ambient pressure.
Subsequently, for each simulation condition and
starting from the equilibrated configuration of
the neat or swollen polymer, initial positions
for Li+ are drawn at random (Figure 1A), en-
suring a spherical exclusion volume of radius 2.3
Å. An independent, 1 ns long MD simulation is
then carried out for every initial position of Li+

ion; the procedure being repeated for a total of
Ntraj = 100 initial positions per simulation con-
dition. Given that these trajectories are shorted
than the timescale of Li+ ion diffusion, it is not
expected that the resulting distribution of SEs
correspond to the Boltzmann distribution.

Construction of Feature Vectors

The feature vectors for the SEC approach are
obtained by concatenating the type-specific Li+

RDFs into vectors (Figure 1C). The atoms are
automatically divided into seven different types
(Figure 1B) based on their Lennard-Jones (LJ)
σ and ε parameters and each RDF is truncated
to a cutoff radius Rmax,j (Table 2) that depends
on the LJ parameters.
It is found that a cutoff radius Rmax,j that is
slightly larger than the distance of maximal LJ
attraction between the atom pairs yields robust
classification, specifically, Rmax,j = α × Req,j,

Table 2: Lennard-Jones parameters, as well as
RDF cutoffs and binning for each atomic type.

σj (Å) εj
(
Kcal
mol

)
Rmax,j (Å) Nbin,j

Hcap 2.42 0.030 3.38 34
H 2.50 0.030 3.52 35
C4 3.50 0.066 5.19 52
C3 3.55 0.070 5.27 53
O2 2.90 0.140 4.29 43
O1 2.96 0.210 4.39 44
S 3.60 0.355 5.36 54

where

Req,j = 6

√
2εLiσ12

Li + 2εjσ12
j

εLiσ6
Li + εjσ6

j

, (1)

εLi = 0.40 Kcal/mol, σLi = 1.40 Å and α ≈
1.33. The same binning resolution is used for
all atom types, and therefore the number of bins
that each RDF contributes to the combined fea-
ture vector depends on Rmax,j as summarized
in Table 2. The combined feature vector is of
length Ndim =

∑Ntype

j Nbin,j, which differs for
each simulation set (Table 1) based on the atom
types involved (Table 2).
Calculation of each RDF is performed by sub-
dividing each single-ion 1 ns MD trajectory into
Nwin = 50 windows of length 20 ps and by av-
eraging the RDFs within each window. The 20
ps time length was chosen to be shorter than
the residence time of the Li+ ion within each
solvation site, but long enough to provide con-
vergence of the RDFs. The total number of
RDF feature vectors calculated for each simu-
lation condition is Nwin ×Ntraj = 5000.

ML Classification of SEs

Classification of the Li+ SEs is performed in
two stages, as illustrated in Figure 2. First,
the nonlinear dimensionality reduction algo-
rithm UMAP62 is used to embed the high-
dimensional RDF feature representation into a
low-dimensional latent space. Second, the clus-
tering algorithm HDBSCAN63 is employed to
classify the embedded data into specific SEs.
Each bin in the RDF vector can be consid-
ered as a separate dimension, and the list of
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Figure 1: Construction of the feature vectors. Panel A: Li+ starting positions within the equilibrated
neat crystalline polymer. Each simulation was performed independently with a single ion. Here,
we compiled all Li+ initial coordinates into the same initial snapshot to demonstrate the uniform
sampling of the simulation cell. Panel B: solvation environments are characterized by type-specific
RDFs computed from the reference Li+ to all other atom types. Panel C: RDFs are concatenated
into a global RDF feature vector which is the input to SEC.

Figure 2: Schematic illustration of the SEC approach. Panel A shows the high-dimensional feature
space comprising of Nwin×Ntraj RDF feature vectors of length Ndim. Panel B shows the unlabeled
low-dimensional latent space obtained by dimensionality reduction. Panel C shows the clustering of
the latent space into separate types of solvation environments. Panel D: back in high-dimensional
space, each trajectory window is assigned to a SE.

all RDF values in the order of bin index cor-
respond to coordinates in a high-dimensional

Ndim-space. UMAP reduces the dimensionality
from Ndim and embeds the data in a low, two-
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dimensional latent space. Each RDF vector be-
comes a point in this new representation (Fig-
ure 2B). The proximity between these points in-
dicates the similarity of the corresponding RDF
feature vectors and, by extension, the solvation
sites represented by these vectors. The natural
clustering of sites means there is a finite number
of general solvation environments, and our SEC
approach can successfully distinguish between
them. The role of the clustering algorithm is
to label these clusters in latent space and, in
effect, classify the solvation sites into specific
SEs (Figure 2C).

Table 3: Clustering parameters for UMAP and
HDBSCAN for each simulation set.

Nnbs Dmin Nclst Pcut

1(c) 400 0.1 200 0.35
2(c) 400 0.1 100 0.5
3(c) 350 0.1 122 0.5
4(l) 400 0.01 50 0.5
5(a) 750 0.1 250 0.5
6(a) 400 0.1 100 0.35
7(a) 400 0.1 150 0.35

Both the UMAP and HDBSCAN algorithms
can be tuned to improve the clustering and
distinguishability of SEs (Table 3). The main
parameters for UMAP are Nnbs and Dmin.
Nnbs determines the trade-off between local and
global neighborhoods in the data structure,
while Dmin sets a lower bound on the distance
between points in the embedded space. The
main parameter of HDBSCAN is Nclst which
sets the minimum size for a labeled cluster.
Each data point is assigned to a cluster based
on maximum probability of membership, while
all points with probabilities less than Pcut re-
main unassigned (shown in gray in Figure 2C).

Interpretation of the SE Clusters

The classification of the SEs is obtained in an
abstract latent space. While clustering and la-
beling are useful for understanding the statis-
tics of SEs, equally important is the character-
ization of the different environments which is
achieved by inspecting the CDFs, the Li+ bind-
ing energy distribution and the VMR.

CDFs are obtained by integrating the RDFs,
and they carry information about the molecu-
lar composition of the solvation shells. The Li+

binding energy distributions are obtained by se-
lectively binning the recorded Li+ energy over
each specific SE. Finally, the VMRs are con-
structed by aligning multiple coordinate snap-
shots that belong to a given SE with respect
to the atoms involved in the Li+ solvation (a
detailed description of the algorithm is given in
the SI). These representations provide an useful
illustration of the solvation shells and help with
the molecular interpretation of the SEs.

Results and Discussions

In this section, we first discuss the results of the
SEC analysis in neat ProDOT-2Hex and then
in swollen ProDOT-2Hex. In the neat case,
four independent, well characterized SEs (Fig-
ure 2C) are identified along the polymer back-
bone. The location and binding energy distri-
butions of the solvation sites suggest a possible
intra-chain mechanism for Li+ conduction.
The SEC analysis is extended to swollen poly-
mer at various concentrations of PC, where
the SEs become increasingly more diverse. For
each simulation condition, SEC predicts an in-
dependent set of SEs which can then be re-
lated to each other and relabeled consistently
across simulations based on average CDFs, and
VMRs. Tracking the distribution of SEs upon
PC loading allows us to asses the effects of
swelling on the efficiency of Li+ ion solvation.
The results presented here focus on the crys-
talline phase, however a similar analysis can be
performed for the amorphous phase (the raw
clustering for the amorphous phase is provided
in the SI, while the relabeling could be achieved
in a similar way as for the crystalline phase –
based on CDFs and VMRs).

Neat Polymer Results

In neat ProDOT-2Hex, SEC predicts four well
delimited clusters (Figure 2C), each of which
corresponds to a distinct SE and which together
comprise 93% of the sampled configurations.
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SEs (2) and (4) are more prevalent with 44%
and 32% of the solvation sites falling within
these categories. SEs (1) and (3) are less com-
mon, comprising of 11% and 7% of all solvation
sites.

Figure 3: RDF clustering for neat ProDOT-
2Hex. Each column (presented in one color)
corresponds to a different SE as labeled by SEC,
while each row corresponds to a different atom
type, labeled on the right. The number on top
is the frequency of finding each SE. Every col-
ored dot in Figure 2C has an equivalent RDF
plotted here. The faint shaded areas in the back
represent the ±σ along the mean RDF.

Figure 3 shows the RDF feature vectors
grouped by SE and arranged according to
atom type. For each SE, there is an ensem-
ble of RDF curves for every atom-type pair,
where each RDF curve is produced by a dif-
ferent window of the MD sampling trajectory.
The observed similarity among the RDFs that
correspond to a give SE indicates that tight
clustering in the latent space leads to the iden-
tification of structurally well-defined chemical
environments. The Li-O2 RDFs are particu-
larly similar within each SE, confirming that
this is an important feature of the classifica-
tion. This conclusion is further supported by
the average Li-O2 CDFs shown in Figure 4A,
which demonstrate that SEs (1), (2), (3) and
(4) exhibit precise numbers of oxygen atoms

(two, one, two and three, respectively). It is
known that oxygen atoms play a crucial role in
Li+ solvation,13,41 however the SEC approach
identifies the oxygen atoms as the main feature
of classification without this prior knowledge,
which suggests that our approach may be used
for cases where the important solvation inter-
actions are not known a priori. Figure 3 also
shows that SEs (1) and (3), both of which have
two oxygen atoms in the immediate solvation
shell, are distinguished from each-other based
on the Li-Hcap pair; SE(1) comprises two Hcap

atoms while SE(2) contains none. This obser-
vation indicates that other atom types apart
from oxygen also contribute to classification.
The VMRs of each SE, shown in Figure 4B
are complementary to RDFs/CDFs and help us
understand the molecular interactions involved.
SE(1) sites are located in the regions between
polymer chains, where each chain contributes
one dioxepane oxygen and a number of carbon
atoms to the solvation shell. SE(2) is mani-
fested near the polymer backbone, between two
monomers which contribute one dioxepane oxy-
gen and one thiophene sulfur, respectively. The
solvation cage is completed by an hexyl side-
chain from a neighbouring polymer. SE(3) is
composed of two oxygen atoms and a few car-
bon atoms from two separate polymer chains
and is located between SE(2) and SE(4). Fi-
nally, SE(4) site are located directly above a
dioxepane ring, where both oxygen atoms in
the ring contribute to solvation and where a
neighbor polymer contributes a third oxygen to
complete the solvation shell. Based on these ob-
servations, it is apparent that all solvation sites
align close to the polymer backbone, establish-
ing a periodic and uniform 1D network of sites
(Figure 4D). This arrangement of sites suggests
a possible Li+ conduction mechanism as a hop-
ping motion along the polymer backbone.
Figure 4C shows the compilation of all Li+ ion
trajectories carried out in the neat polymer,
collected in a single density map and plotted
against the initial polymer configuration. Each
region of the isodentisy represents a solvation
site, and it is colored according to the SE mem-
bership of the underlying trajectory. This par-
tial distribution of solvation sites as sampled
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Figure 4: VMRs and spatial distribution of the four SEs found in neat crystalline ProDOT-2Hex.
Panel A: Li-O2 CDF for each SE. Panel B: the VMR of each SE obtained by aligning multiple
trajectory windows. Panel C: partial distribution of Li+ solvation sites as sampled by MD simula-
tions, each SE labeled by a different color. Panel D: schematic representation of the inferred spatial
distribution of solvation sites along the polymer backbone.

by the MD demonstrates that: first, each SE
is found at multiple sites, and second, each sol-
vation site corresponds to a single SE. These
observations indicate that the SEC approach
learns general solvation interactions based on
specific local molecular environments and this
generality can be used to infer the missing dis-
tribution of solvation sites (Figure 4D).
The characterization of SEs in neat ProDOT-
2Hex is further improved by analyzing the dis-
tribution of Li+ ion binding energies cumulated
across all trajectories. Figure 5A shows the
separation of this binding energy distribution
into individual contributions from each envi-
ronment. The binding energy is not used as
a feature in learning and therefore the predic-
tion of uniform single-peaked distributions for
each environment demonstrates that the SEs
determined through SEC are energetically well-
defined chemical environments. Additionally,
the average binding energy of each SE is corre-
lated to the number of oxygen atoms in its sol-
vation shell: SE(4) with three oxygen atoms, is

the most energetically favourable binding site,
whereas SE(2) with just one oxygen is the least
favourable.
Figure 5 also shows the time evolution of the
Li+ binding energy for a few example trajec-
tories (the rest of which can be found in the
SI). Each of the 50 windows in a trajectory is
colored according to the SE membership. Dur-
ing learning, each window is considered sepa-
rately and no information about time order-
ing is passed to the classifier. Therefore, the
color continuity of the trajectories for segments
of constant energy, and the change of color
upon hopping events demonstrates that SEs are
robustly characterized and well distinguished
from one-another.

Swollen Polymer Results

In this section, the SEC analysis was extended
to swollen polymer (which is the realistic chem-
ical environment in a battery) where PC was
used as a model solvent. Owing to its highly
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Figure 5: Li+ binding energy in neat crystalline ProDOT-2Hex for each SE. Panel A shows the
distribution of binding energies per SE (color), overall (black) and for all successfully clustered data
(gray). Panels B shows the binding energy as function of time for a few example trajectories. Each
trajectory window is assigned to an SE based on SEC. The rest of the trajectories can be found in
the SI.

polar carbonyl group , PC can form a tight
solvation shell around Li+, strongly competing
with the polymer for ion solvation. Figure 6
shows the SEC clustering obtained for swollen
ProDOT-2Hex At different degrees of swelling
(Table 1). Upon increasing PC concentration,
the number of clusters in latent space increases
substantially, indicating the polar solvent gen-
erates a rapid diversification of SEs. While
only four SE clusters can be found in the neat
phase, by 17% swelling concentration, there are
six well defined clusters and by 33%, there are
nine clusters corresponding to an equal number
of SEs. A single SE type is found in the liquid
phase of pure PC.
At first, SEC attributes a unique label to each
cluster within a given simulation set (this raw
clustering is provided in the SI). Based on aver-
age CDFs and VMRs the clusters can be com-
pared to one-another across different swelling
conditions and relabeled consistently. Clus-
ters with primed and double-primed labels have
molecular structures similar to the correspond-
ing unprimed clusters, except comprising addi-

tional PC molecules (Figure 7). For instance,
SE(2’) is analogous to SE(2), except the hexyl
side chain present in SE(2) is replaced by a PC
molecule in SE(2’); similarly, in SE(2”) the side
chain is replaced by two PC molecules. SEs (1’)
and (1”) are localized at the ends of the poly-
mer backbones just like SE(1), but in addition
their solvation shell contains one, and two PC
molecules, respectively (Figure 7). SE(4) is the
most stable environment in the neat polymer,
and it does not hybridize in the swollen cases.
Finally, clusters (5), (5’) and (5”) correspond
to pure PC solvation, with four, five and six
molecules respectively.
In pure PC liquid, there is a unique SE com-
prising six highly polar carbonyl oxygen atoms
which belong to six independent molecules.
This is clearly demonstrated by the presence of
a single cluster in the latent space (SE(5”)) and
a unique peak in the binding energy distribu-
tion (Figure 7A). This environment is not sup-
ported by the swollen polymer, instead, other
pure solvent variations with fewer molecules can
be found (SEs (5’) and (5)) in this case.
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Figure 6: Latent space classification of SEs for the neat and swollen crystalline polymer. Panel A:
neat ProDOT-2Hex, Panel B: swollen ProDOT-2Hex with 17% PC, Panel C: swollen ProDOT-2Hex
with 33% PC, and Panel D: pure PC liquid solvent. Additional simulation details can be found
in Table 1. Colors and labels are consistent throughout, such that SEs with the same color and
label, have similar VMRs and characteristic CDFs. SEs in swollen polymers, with similar but not
identical colors (prime labels), are closely related to each other. In Panels B and C, encircled with
dashes line are the pure ProDOT-2Hex SEs and with solid line, the pure PC SEs.

Figure 7: Li+ binding energy and molecular representation of SEs in the swollen crystalline poly-
mers. Panel A, top to bottom, shows the binding energy distribution for simulations 1-4 in Table
1 broken into SEs. Panel B shows the corresponding VMRs of the SEs. Labels and colors are
consistent with Figure 6.
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ProDOT-2Hex specific SEs, mainly (2) and (4),
do survive in the swollen polymer (encircled
with dashed line in Figure 6) but become gradu-
ally less frequent with increasing PC concentra-
tion. Surprisingly, their binding energy remains
largely unchanged, independent of the degree of
swelling. In fact, as shown in Figure 7A this is
the case for all SEs, as the mean position of each
energy peak remains centered around the same
value upon swelling. The increasing complexity
of the energy distribution with swelling concen-
tration is due to the emergence of new energy
peaks corresponding to hybrid environments.
Akin to the case of neat polymer, the number
of oxygen atoms in the solvation shell is the
main determinant of the average binding en-
ergy, as demonstrated for example, by the or-
dering of peaks (5), (5’) and (5”) in Figure 7A.
The carbonyl oxygens, however, are more bind-
ing than dioxepane oxygens. For instance SEs
(2”) and (3’) both contain two carbonyl oxygens
and one dioxepane oxygen and have roughly the
same binding energy, while SE(4) includes three
dioxepane oxygens and is about 10 Kcal/mol
less binding. This demonstrates that PC is sig-
nificantly more effective at solvating Li+ and
explains why swelling dramatically lowers the
binding energy distribution.
The work shown here gives a mechanistic under-
standing of solvation. Furthermore, SEC con-
stitutes a stepping stone towards quantitative
statistical methods that could access the long
time scales required to study ion diffusion. On
its own, SEC can reveal the solvation mecha-
nism of various ions and counter-ions and ex-
plore diverse polymer chemistries and architec-
tures, the method being entirely general.

Conclusions

Revealing the molecular interactions under-
pinning solvation can help understand the
structure-function relationships in conductive
polymers and guide the design of better ma-
terials for applications in photovoltaics and en-
ergy storage devices. Numerous studies have
investigated the solvation mechanisms specific
to canonical polymers such as PEO, but fewer

tools are available for efficiently and automat-
ically addressing this issue across the broad
swath of other polymer systems.
Here we introduce the solvation environment
classification (SEC) approach to identify and
characterize solvation in general molecular en-
vironments, which is based on machine learn-
ing and all-atom MD simulations. The learn-
ing is based on RDF feature vectors com-
puted from short MD trajectories. These high-
dimensionality features are first embeded in a
low-dimensionality latent space and then, based
on similarity, they are grouped and classified
into specific solvation environments (SEs).
SEC is demonstrated for the crystalline
ProDOT-2Hex polymer, both dry and swollen
phases, where PC was used as a model solvent.
Four well characterized SEs were found in the
dry phase, all localized near the backbone of the
polymer. Their placement and binding energy
distribution suggest a possible ion transport
mechanism along the polymer chain. In the
swollen polymer, the presence of polar solvent
significantly increases the variety of SEs. These
new SEs are characterized by lower binding en-
ergies owing to an increased number of oxygens
coordinating the ion.
The SEC approach presented here can be sim-
ilarly applied to other polymer materials – in
both crystalline and amorphous phases – and
can help explore the ion-solvation mechanisms
in a wide variety of ionic charge carriers. To fa-
cilitate these applications, a fully open-source
version of the SEC software is provided at
https://github.com/imagdau/SEC.
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