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ABSTRACT: SARS-CoV-2 rapidly infects millions of people 
worldwide since December 2019. There is still no effective 
treatment for the virus, resulting in the death of more than 
one million of patients. Inhibiting the activity of SARS-CoV-2 
main protease (Mpro), 3C-like protease (3CLP), is able to 
block the viral replication and proliferation. Although the 
dimer was shown to be the biologically active form of the 
SARS-CoV-2 Mpro, in this context, our study has revealed that 
in silico screening for inhibitors of SARS-CoV-2 Mpro can be 
reliably done using the monomeric structure of the receptor. 
Docking and fast pulling of ligand (FPL) simulations for both 
monomeric and dimeric forms correlate well with the 
corresponding experimental binding affinity data of 30 
compounds. In particular, the correlation coefficients 
between computational and experimental binding free 

energy of the monomeric SARS-CoV-2 Mpro are 𝑅Dock
Monomer =

0.59 ± 0.11 and 𝑅Work
Monomer = −0.66 ± 0.08. The metrics are 

approximately similar to the dimeric target with the 

coefficients of 𝑅Dock
Dimer = 0.52 ± 0.10 and 𝑅Work

Dimer = −0.70 ±
0.09. Moreover, the correlation coefficient between the 
rupture forces to binding free energy are roughly the same 

since 𝑅Force
Monomer = −0.64 ± 0.08 and 𝑅Force

Dimer = −0.63 ± 0.10. 
Furthermore, the correlation coefficient between calculated 
metrics of the monomeric and dimeric SARS-CoV-2 Mpro is 

𝑅Monomer
Dimer = 0.74 ± 0.09. Our study results show that it is 

possible to speed up computer-aided drug design for SARS-
CoV-2 Mpro by focusing on the monomeric form instead of 
the larger dimeric one.  

INTRODUCTION 

 The novel coronavirus (2019-nCoV or SARS-CoV-2), a 
member of the Coronaviridae virus family, has been 
reported to be able to transmit from human to human.1 The 

virus initially appeared the first case since December 2019 in 
Wuhan, Hobei province, China.2-4 It shares more than 82% 
identical RNA genome to the SARS-CoV, SARS-CoV-2 severe 
cases of respiratory syndromes.5 Although the bat has been 
thought of as the original reservoir, the intermediate host is 
still unknown.6 Moreover, it is known that the SARS-CoV-2 
can endure in aerosol for more than 3 hours,7 which may be 
a major factor behind the outbreak of COVID-19 pandemic, 
which has caused several hundred thousands of deaths 
worldwide.5 Therefore, the COVID-19 pandemic becomes an 
urgency for community health, which requires to develop an 
effective treatment or vaccine immediately.  

 Coronaviruses genomes occupy ca. 26-32 kb in length that 
is the largest sequence among RNA viruses.8, 9 The SARS-
CoV-2 genome encodes more than 20 various structural and 
non-structural proteins. Particularly, the SARS-CoV-2 main 
protease (Mpro), 3C-like protease (3CLP), is one of the most 
important viral enzymes, having more than 96% similarity 
with SARS-CoV 3CLP.9, 10 SARS-CoV-2 Mpro cleaves nascent 
polyproteins, which are generated by the translation of the 
viral RNA. During this process, 11 non-structural 
polyproteins are auto-cleaved to become polypeptides, 
which are required for the viral replication and 
transcription.9 Therefore, SARS-CoV-2 Mpro turns out to be 
an attractive target for antiviral drug aiming since blocking 
viral protease can inhibit viral replication and 
proliferation.10, 11 Numerous investigations following this 
strategy have been carried out and shown some initial 
success.12-18 However, unfortunately, an effective drug for 
COVID-19 is still unavailable until the date. 

 In addition, currently, it should be noted that the time and 
cost to develop a drug has been significantly decreased by 
using the power of computational approaches.19-22 Normally, 
the binding free energy ∆𝐺 between a ligand and an enzyme 



 

 

can be probed via computational approaches. The ∆𝐺 is 
associated with experimental inhibition constant 𝑘𝑖 via 
formula ∆𝐺bind = 𝑅𝑇𝑙𝑛(𝑘i), where 𝑅 is gas constant, 𝑇 is 
absolute temperature, and 𝑘𝑖 is a critical metric revealing the 
nature of binding between two biomolecules.19 Accurate 
determination of the ligand binding free energy is very 
important in computer-aided drug design (CADD) 
problem.23  

 Moreover, it should be noted that the dimer was shown to 
be the biologically active form of the SARS-CoV-2 Mpro but 
the interface does not contain a ligand-binding pocket.12 An 
important question which araise is that can we use 
monomeric form of SARS-CoV-2 Mpro as inhibitor-
screening target instead of the dimeric one to reduce CPU 
time consumption? Therefore, in this context, the binding 
free energy of 30 available inhibitors12-18 to the monomeric 
and dimeric SARS-CoV-2 Mpro was examined via docking 
and FPL schemes. The similar of correlation coefficients 
between computational and experimental values of 
monomeric and dimeric systems suggests that we can use 
the monomeric form of SARS-CoV-2 Mpro as CADD target 
instead of the dimeric form. The obtained results can be 
beneficial to the COVID-19 therapy by speeding up CADD 
progression. 

MATERIALS & METHODS 

Structure of Ligands and SARS-CoV-2 Mpro 
 Three-dimensional structures of the monomeric and 
dimeric SARS-COV-2 Mpro were copied from the Protein 
Data Bank with ID 6Y2F12 and 6XBG,24 respectively. Ligand 
structures were taken from PubChem database.25 The 
protonation states of the ligands were predicted by using 
chemicalize webserver, an online tool of ChemAxon. The 
ligand structure was first optimized using quantum 
chemical calculation with the B3LYP functional at 6-31G(d) 
level of basis set. 

Molecular Docking Simulations 
 The binding position and affinity of ligands to the 
monomeric and dimeric SARS-CoV-2 Mpro were predicted 
via the Autodock Vina package (cf. Figure 1).26 The docking 
parameter  was selected referring to the previous study,27-29 
in which the exhaustiveness is of 8. The best docking result 
was chosen as the highest binding affinity conformations. 
The grid center was selected as the center of mass of 𝛼-
ketoamide 13b and UAW246 compounds, which correspond 
to the monomeric and dimeric Mpro, respectively.12, 24 The 
grid size was chosen as 24 × 24 × 24 Å, which is large 
enough to cover the ligand-binding cleft of the Mpro.28, 29  

 

Figure 1. Computational scheme for evaluation of the lig-
and-binding affinity to the monomeric and dimeric SARS-
CoV-2 Mpro. 

Steered-Molecular Dynamics Simulations 
 GROMACS version 5.1.330 was employed to simulate the 
solvated complex involving the ligand and 
monomeric/dimeric SARS-COV-2 Mpro. The Amber99SB-
ILDN force field was utilized for the SARS-CoV-2 Mpro.31 
The general Amber force field (GAFF) was employed to 
parameterize the ligand by using AmberTools18 and 
ACPYPE approaches.32, 33 In particular, atomic charges of the 
ligand were assigned via the Restrained Electrostatic 
Potential (RESP) method34 through quantum chemical 
calculation using B3LYP functional at 6-31G(d,p) level of 
theory. The quantum chemical calculation was performed 
using implicit water model (with the dielectric constant of 
𝜀 = 78.4). The monomeric and dimeric SARS-CoV-2 Mpro + 
inhibitor were inserted into a rectangular periodic boundary 
(PBC) condition box with a size of  (9.83, 5.92, 8.70) and 
(9.39, 8.96, 12.05) nm, respectively. The corresponding box 
volumes of the monomeric and dimeric systems are 506.28 
and 1013.82 nm3, respectively. Therefore, the total atoms of 
these systems approximately are 50 000 and 100 000 atoms, 
respectively. 

 The MD simulations were carried out with the parameters 
denoted to the previous works.28, 29 Particularly, the MD time 
step is 2 fs. The nonbonded cutoff was set to 0.9 nm. The 
Coulomb interaction was computed using the fast Particle-
Mesh Ewald electrostatics scheme.35 The solvated system 
was then minimized and relaxed over EM, NVT, and NPT 
simulations. The NVT and NPT simulations were length of 
0.1 and 2.0 ns, respectively. During NVT and NPT simulation, 
the SARS-CoV-2 Mpro 𝐶𝛼 atoms were restrained via a small 
harmonic force with a value of 1000 kJ mol-1 nm-2 per 
dimensions. The relaxed conformation of the SARS-CoV-2 
Mpro + inhibitor was then employed as initial structure of 
FPL simulation. During which, the inhibitor was pulled out 
of the binding cleft under effect of an externally harmonic 
force with parameters of 𝑘 = 0.005 nm ps-1 and 𝑣 = 600 kJ 
mol-1 nm-2 for pulling speed and cantilever spring constant 



 

 

(cf. Figure 1), respectively.29, 36 Totally, 8 independent 
trajectories were carried out to estimate the ligand-binding 
affinity. 

RESULTS AND DISCUSSION 

 The binding pose and affinity of the trial inhibitors to the 
monomeric and dimeric SARS-CoV-2 Mpro were initially 
estimated by a molecular docking method. Autodock Vina,26 
a very efficient molecular docking approach with a 
successful-docking rate up to 81 %,27 would be able to 
complete this task. We have thus docked 30 available 
inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro 
using Autodock Vina referring to the previous study.28, 29 By 
using exhaustiveness 8 as suggested in the previous work,27 
the results were rapidly obtained in few hours (Table 1 and 
Table S1 of the Supplementary – SI file). Interestingly, the 
correlation coefficient between docking and experimental 

affinities of the monomeric target, 𝑅Dock
Monomer = 0.59 ± 0.11, 

is slightly larger than that of the dimeric target,  𝑅Dock
Dimer =

0.52 ± 0.10 (cf. Figure 2). The root mean square error 
(RMSE) between calculated and experimental values also 
indicates good consistency between monomer and dimer 
docking results. In particular, the monomeric system gives a 

value of 𝑅𝑀𝑆𝐸Dock
Monomer = 1.17 ± 0.15 kcal mol-1 and the 

dimeric system adopts a metric of 𝑅𝑀𝑆𝐸Dock
Dimer = 1.35 ± 0.18 

kcal mol-1. It should be noted that the computed error bars 
was obtained via 1000 rounds of the bootstrapping method.37 

 

 

Figure 2. Correlation between docking and experimental 
binding free energy. Computational results were obtained 
using Autodock Vina. The experimental binding free ener-
gies were estimated using IC50 value12-18 as an approximation 
for the inhibition constant 𝑘𝑖. The computed error was at-
tained via 1000 rounds of the bootstrapping method.37   

 

 

 

Table 1. Computed values of docking energy in comparison with experiments. 

N0 Name 
∆𝑮𝐃𝐨𝐜𝐤

𝐌𝐨𝐧𝐨𝐦𝐞𝐫 ∆𝑮𝐃𝐨𝐜𝐤
𝐃𝐢𝐦𝐞𝐫 

∆𝑮𝐄𝐗𝐏a 

short medium long short medium long 

1 11r -6.7 -6.4 -6.3 -7.9 -8.1 -8.3 -9.23 
2 13a -7.6 -7.6 -7.6 -8.0 -7.8 -7.8 -7.70 
3 13b -7.6 -7.8 -7.8 -7.6 -7.1 -7.8 -8.45 
4 Bazedoxifene -7.4 -7.5 -7.4 -7.4 -7.4 -7.5 -7.48 
5 Calpain inhibitor XII -6.2 -6.3 -6.3 -7.3 -7.3 -7.2 -8.69 
6 Carmofur -5.2 -5.5 -5.6 -5.7 -5.8 -6.1 -7.86 
7 Chloroquine -5.0 -5.3 -5.1 -6.6 -6.6 -6.6 -6.74 
8 Cyclosporine -5.8 -5.7 -5.7 -5.4 -5.4 -5.4 -7.17 
9 Digitoxin -8.1 -8.1 -8.2 -7.0 -7.0 -7.2 -9.09 
10 Digoxin -8.1 -8.1 -8.1 -7.1 -7.2 -7.2 -9.20 
11 Dihydrogambogic Acid -7.0 -7.0 -7.0 -7.2 -7.2 -7.2 -6.67 
12 Disulfiram -3.9 -3.8 -3.9 -4.3 -4.1 -4.1 -6.89 
13 Ebastine -5.7 -6.5 -6.1 -6.5 -6.3 -6.4 -7.06 
14 Favipiravir -4.5 -4.8 -4.8 -5.0 -5.0 -5.0 -4.52 
15 Fluspirilene -6.9 -7.2 -7.3 -8.0 -7.7 -7.6 -7.53 
16 Isoosajin -7.7 -7.7 -7.7 -8.0 -8.0 -8.0 -7.52 
17 Ivacaftor -6.7 -6.7 -6.7 -7.2 -7.6 -7.5 -7.10 
18 Lusutrombopag -6.2 -6.1 -6.8 -6.4 -6.5 -6.3 -7.42 
19 Mefloquine -6.5 -6.5 -6.5 -7.6 -7.7 -7.6 -7.34 
20 Mequitazine -6.6 -6.6 -6.6 -6.3 -6.3 -6.3 -7.03 
21 MG-132 -5.6 -6.2 -6.2 -6.1 -5.8 -6.2 -7.41 
22 Narlaprevir -7.8 -7.5 -7.4 -6.5 -6.9 -6.8 -7.18 
23 Osajin -6.8 -6.9 -6.8 -7.6 -8.0 -8.0 -7.41 
24 Oxyclozanide -6.4 -6.4 -6.4 -6.7 -6.7 -6.7 -7.44 
25 Penfluridol -7.0 -6.9 -6.9 -8.0 -8.2 -8.2 -7.26 
26 Phenazopyridine -6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.23 
27 Proscillaridin -7.7 -7.7 -7.7 -6.8 -7.3 -7.3 -7.79 
28 PX-12 -3.8 -3.8 -3.8 -4.1 -4.2 -4.5 -6.39 
29 Shikonin -6.1 -6.1 -6.1 -7.0 -6.9 -6.9 -6.58 
30 Tetrandrine -6.6 -6.6 -6.6 -6.8 -6.8 -6.8 -7.56 

aThe experimental binding free energies were gained based on IC50 value,12-18 approximating that the one equals to the inhibition 
constant 𝑘i.The unit is of kcal mol-1



 

 

 The molecular docking with larger exhaustiveness, which 
selected as 56 and 400 according to the previous study,27 
were also performed in order to validate the convergence of 
the docking scheme. In total we used three different values 
of exhaustiveness including 400, 56, and 8 which are 
denoted as long, medium, and short options, respectively. 
The accuracies of the docking simulations for monomer and 
dimer with respect to experiment are shown in Figure 3 
Figure 3. Interestingly, changing the docking 
exhaustiveness parameter from short to medium and/or long 
does not have a significant impact on the correlation 
coefficient and RMSE, which is consistent with the prior 
benchmark27. In particular, the correlation coefficients 

slightly change to 𝑅Dock
Monomer = 0.57 ± 0.11 and 𝑅Dock

Dimer =
0.50 ± 0.11 matching with the medium option Figure 3A(cf. 

Figure 3A). The metrics are of 𝑅Dock
Monomer = 0.58 ± 0.12 and 

𝑅Dock
Dimer = 0.55 ± 0.10 resembling the long option (Figure 

3A). Moreover, the calculated accuracy is also associated 
with the RMSE value. Absolutely, within computed error, 
the RMSE was unchanged over the docking options short, 

medium, and long with amounts of 𝑅𝑀𝑆𝐸Dock
Dimer = 1.17 ±

0.15, 𝑅𝑀𝑆𝐸Dock
Dimer = 1.18 ± 0.15, and 𝑅𝑀𝑆𝐸Dock

Dimer = 1.10 ±

0.15 kcal mol-1 for dimeric systems and 𝑅𝑀𝑆𝐸Dock
Monomer =

1.35 ± 0.18, 𝑅𝑀𝑆𝐸Dock
Monomer = 1.29 ± 0.19, and 

𝑅𝑀𝑆𝐸Dock
Monomer = 1.28 ± 0.19 kcal mol-1 for monomeric 

systems, respectively (cf. Figure 3B). Overall, the docking 
simulations provide slightly accurate results for monomeric 
systems than for the dimeric systems. 

 

 

Figure 3. Correlation and RMSE values between calculated 
and experimental binding affinity. 

 As mentioned above, the binding affinity of 30 available 
inhibitors12-18 to the monomeric and dimeric SARS-CoV-2 
Mpro was appropriately probed using molecular docking 
calculations. However, it should be noted that the dynamics 
of receptors were not considered in docking simulations, 
and the number of trial docking poses was small. To 
overcome this limitation we have performed MD 

simulations which serve as a validation for the docking 
results38-40. Moreover, FPL is an efficient computational 
approach to assess ligand-binding affinity with a suitable 
time-consuming calculation.41, 42 Furthermore, the scheme 
was successfully applied to the monomeric SARS-CoV-2 
Mpro system recently.28, 29 The FPL approach is thus used to 
probe the binding affinity of 30 available inhibitors to the 
monomeric and dimeric SARS-CoV-2 Mpro. In the 
simulations, the ligand binding pose was optimized over 
short canonical and isothermal-isobaric simulations. The 
equilibrated ligand was then pulled to translocate from 
bound to unbound states. The maximum of pulling force, 
called rupture force, and pulling work are typically assumed 
to correlate with ligand-binding affinity. It should be noted 
that the rupture force corresponds to the point that the non- 
covalent bond between a ligand and a receptor was 
terminated. 

 The computed values of the rupture force and pulling 
work were shown in Table 2. The denoted pulling force and 
work profiles were described in Tables S2 and S3 of the SI 
file. The shape of both pulling force and work appear reliable 
when compared to the previous exertion.41, 42 In particular, 
starting at zero, the pulling force quickly increases to the 
maximum value, then suddenly drops to zero due to the loss 
the non-covalent bond to the receptor. During this process, 
recorded-pulling work speedily rises from zero value to a 
stable value, corresponding to the distance at which the 
contact between protein and inhibitor is vanished. 

Moreover, the rupture force 𝐹Max
Monomer of monomeric Mpros 

diffuses in the range from 295.0 to 977.6 pN corresponding 

with the spreading of pulling work 𝑊Monomer from 13.7 to 
106.1 kcal mol-1. Besides that, the matching metrics of 
dimeric Mpros forms in the range from 336.1 to 769.6 pN and 
20.5 to 84.7 kcal mol-1, correspondingly. It should be noted 
that the computed works are significantly larger than the 
magnitude of experimental binding affinity, which diffuses 
in the range from 4.52 to 9.23 kcal mol-1, since applied large 
cantilever and high pulling velocity.41 Although the 
discrepancy can be reduced to zero by using a small 
cantilever and an extremely low pulling velocity, it is not 
appropriate since it requires to perform several trajectories 
with hundred nanoseconds each.43 Furthermore, previous 
investigations revealed that although reducing the 
magnitude of cantilever spring constant and pulling velocity 
was able to enlarge the accuracy of the estimations, the 
observed results are approximately the equivalent as those 
at high pulling velocity.36, 41   

 

 

 

 

 

 

 

 

 

 



 

 

Table 2. Computed values of rupture force and pulling work in comparison with experiments. 

N0 Name 𝑭𝐌𝐚𝐱
𝐌𝐨𝐧𝐨𝐦𝐞𝐫 𝑾𝐌𝐨𝐧𝐨𝐦𝐞𝐫  𝑭𝐌𝐚𝐱

𝐃𝐢𝐦𝐞𝐫 𝑾𝐃𝐢𝐦𝐞𝐫 ∆𝑮𝐄𝐗𝐏a 

1 11r 724.8 ± 57.7 77.6 ± 7.1 636.6 ± 28.2 71.5 ± 2.9 -9.23 
2 13a 526.9 ± 56.4 54.4 ± 7.3 769.6 ± 16.3 84.7 ± 3.2 -7.70 
3 13b 977.6 ± 33.7 106.1 ± 4.6 739.1 ± 28.4 81.6 ± 3.0 -8.45 
4 Bazedoxifene 460.3 ± 26 41.2 ± 3.1 471.1 ± 20.0 47.5 ± 3.6 -7.48 
5 Calpain inhibitor XII 491.6 ± 20.5 46 ± 2.3 693.6 ± 50.7 63.5 ± 4.8 -8.69 
6 Carmofur 485.5 ± 34.2 36.2 ± 2.7 436.9 ± 16.3 33.6 ± 1.8 -7.86 
7 Chloroquine 363.4 ± 32.1 28.5 ± 2.8 410.9 ± 12.5 36.0 ± 1.6 -6.74 
8 Cyclosporine 638.8 ± 33.4 67.7 ± 5.4 426.5 ± 41.6 44.1 ± 4.7 -7.17 
9 Digitoxin 667.4 ± 17.7 70.9 ± 2.1 502.6 ± 65 55.3 ± 8.3 -9.09 
10 Digoxin 637.0 ± 30.3 75.0 ± 2.5 573.1 ± 42.3 59.4 ± 4.9 -9.20 
11 Dihydrogambogic Acid 542.8 ± 37.7 59.6 ± 3.2 487.5 ± 29.9 44.0 ± 3.3 -6.67 
12 Disulfiram 364.7 ± 24.7 22.7 ± 1.9 526.2 ± 30.3 40.1 ± 1.9 -6.89 
13 Ebastine 447.5 ± 40.1 40.2 ± 3.5 389.8 ± 25.0 32.8 ± 2.8 -7.06 
14 Favipiravir 364.9 ± 26.2 21.3 ± 2.9 336.1 ± 19.1 20.5 ± 2.5 -4.52 
15 Fluspirilene 490.1 ± 23.6 43.8 ± 2.0 544.6 ± 36.3 58.0 ± 3.2 -7.53 
16 Isoosajin 393.1 ± 32.8 28.9 ± 3.2 454.4 ± 19.7 40.4 ± 2.5 -7.52 
17 Ivacaftor 347.9 ± 34.8 22.3 ± 4.4 477.5 ± 22.1 41.0 ± 2.1 -7.10 
18 Lusutrombopag 540.6 ± 37.5 59.1 ± 3.7 396.8 ± 24.3 41.8 ± 2.2 -7.42 
19 Mefloquine 523.7 ± 23.5 41.5 ± 2.3 509.6 ± 43.3 46.3 ± 3.3 -7.34 
20 Mequitazine 392.5 ± 51.3 29.5 ± 4.0 384.9 ± 24.4 29.0 ± 2.2 -7.03 
21 MG-132 543.2 ± 22.2 49.8 ± 2.1 505.7 ± 41.1 47.5 ± 6.0 -7.41 
22 Narlaprevir 601.8 ± 31.9 64.8 ± 2.8 522.0 ± 38.3 54.7 ± 4.3 -7.18 
23 Osajin 367.9 ± 20.4 30.8 ± 2.9 471.4 ± 23.9 39.8 ± 1.8 -7.41 
24 Oxyclozanide 463.7 ± 31.7 33.6 ± 3.2 468.1 ± 13.3 39.2 ± 3.5 -7.44 
25 Penfluridol 542.3 ± 33.1 53.3 ± 2.7 444.5 ± 25.0 48.0 ± 3.9 -7.26 
26 Phenazopyridine 391.7 ± 36.2 25.6 ± 2.8 384.8 ± 22.7 32.4 ± 1.4 -6.23 
27 Proscillaridin 485.6 ± 37.2 45.8 ± 3.3 512.8 ± 18.9 58.0 ± 1.6 -7.79 
28 PX-12 295.0 ± 17.4 13.7 ± 1.2 382.0 ± 25.5 27.2 ± 2.0 -6.39 
29 Shikonin 321.8 ± 29.7 19.7 ± 3.0 504.5 ± 22.8 39.1 ± 1.2 -6.58 
30 Tetrandrine 485.6 ± 37.2 45.8 ± 3.3 401.5 ± 18.5 31.6 ± 1.8 -7.56 

aThe experimental binding free energies were gained based on IC50 value,12-18 approximating that the one equals to the inhibition 
constant ki.The unit of force and energy/work are in pN and kcal mol-1, respectively.

 In practice, the rupture force has been used as a predictor 
of ligand-binding affinity based on the assumption that a 
ligand binds with a higher affinity requires a stronger pulling 
force to dissociate it from binding cleft.44 Using the rupture 
force  as a proxy to ligand-binding affinity, numerous 
investigations were successful in predicting the ligand-
binding affinity to various targets.44, 45 Here, the average of 
rupture forces were estimated over 8 independent FPL 
trajectories (cf. Table 2). The correlation coefficient, 

obtained results of monomeric systems, is 𝑅Force
Monomer =

−0.64 ± 0.08; while the analogous value of dimeric forms is 

𝑅Force
Dimer = −0.63 ± 0.10 as sketched in Figure 4. Clearly, the 

accuracy of the FPL technique is significantly larger than 
that of molecular docking calculation. Moreover, because 
the correlation coefficients appear to be the same within the 

error range, we may conclude that there is no difference 
when using monomer or dimer as a CADD target.  

 

 

Figure 4. Relationship between rupture force and experi-
mental binding free energy. Rupture forces were obtained 
via FPL calculations. The binding free energies were gained 
based on IC50 value,12-18 approximating that the one equals 
to the inhibition constant 𝑘𝑖. The computed error was at-
tained via 1000 rounds of the bootstrapping method.37   

 



 

 

 The work of pulling force was assessed via formula 𝑊 =

𝑣∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
, where 𝑣 is pulling velocity and 𝐹(𝑡) is pulling 

force. In isothermal-isobaric simulations, 𝑊 is related to the 
experimental binding affinity via Jarzynski equality.46 
Therefore, utilizing 𝑊 to estimate the ligand-binding 
affinity commonly acquires a better accurate result in 
comparison to rupture force.38, 41, 45 The obtained results 
reaffirmed this statement. The correlation coefficients of the 

monomeric and dimeric SARS-CoV-2 Mpro are 𝑅Work
Monomer =

−0.66 ± 0.09 and 𝑅Work
Dimer = −0.70 ± 0.09 as shown in Figure 

5, respectively. Although, the computational accuracy 
targeting the SARS-CoV-2 Mpro dimer is slightly larger than 
that of the monomeric system, the difference in correlation 
coefficients is small implying that the monomeric form of 
SARS-CoV-2 Mpro can be used as CADD target instead of 
the dimeric one.  

 

 

Figure 5. Association between pulling work and experi-
mental binding free energy. Pulling works were obtained via 
FPL calculations. The binding free energies were gained 
based on IC50 value,12-18 approximating that the one equals 
to the inhibition constant 𝑘𝑖. The computed error was at-
tained via 1000 rounds of the bootstrapping method.37   

 In addition, the association of computed pulling works of 
the monomeric and dimeric SARS-CoV-2 Mpro was probed 
and shown in Figure 6. Over the bootstrapping 

examination, the correlation coefficient is 𝑅Monomer
Dimer =

0.74 ± 0.09 confirming the observation above. We can 
manipulate the inhibitor screening for SARS-CoV-2 Mpro 

with smaller computing resources since targeting the 
monomeric form. 

 

Figure 6. Association between calculated pulling work of 
the monomeric and dimeric SARS-CoV-2 Mpro. The com-
puted error was attained via 1000 rounds of the bootstrap-
ping method.37 

CONCLUSIONS 

 Both of Autodock Vina and FPL simulations were 
confirmed to be able to appropriately estimate the ligand-
binding affinity of the SARS-CoV-2 Mpro in both monomeric 
and dimeric forms. The assessed results suggested that the 
monomeric form of SARS-CoV-2 Mpro can be used as a 
CADD target instead of the dimeric form. Moreover, in good 
agreement with the previous observation,27 the molecular 
docking by Vina package rapidly converged since the 
correlation coefficient between computed and experimental 
values did not change when the docking option was altered. 
The RMSE of docking results also unchanged upon these 
alterations. Furthermore, it may be concluded that for SARS-
CoV-2 Mpro system the pulling work is better than rupture 
force in predicting the ligand-binding affinity. It is well 
compatible with earlier probe various protein-ligand 
complexes.38, 41, 45  
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