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Abstract

The theory of open quantum systems (OQSs) is applied to partition the squared

spin operator into fragment (local spin) and interfragment (spin-coupling) contributions

in a molecular system. An atomic or fragment subsystem is described by a quantum

mechanical mixed density operator composed of sectors, characterized by different in-

teger number of electrons that appear with specific probabilities. The fragment spin

operators coincide with those defined by Clark and Davidson in their seminal paper

on local spins (J. Chem. Phys. 2001, 115, 7382). OQSs provide a unique way to

rationalize the non-zero values of local spins found in closed-shell molecules, a fact that

has led to propose a large number of modified definitions, which we show suffer from

inconsistencies. The OQS viewpoint makes it easy to build models for localized and

itinerant spins. These models are used to classify possible local spin arrangements. The

role of electron correlation is also studied through the analysis of the Hubbard Hamil-

tonian in small chains. Local spins result from a game played differently by localized

and delocalized electrons. A number of examples exemplifying the ability of the OQS

local spin perspective to uncover simple chemical patterns is examined.
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1 Introduction

No other conceptual framework in the history of human thought has been interpreted in so

many mutually exclusive ways as Quantum Mechanics (QM).1,2 In a way, interpreting QM

has become a discipline on its own, and although most practicing physicists simply take

Copenhaguen’s interpretation for granted and apply the take the money and run aphorism,

trying to understand what lies deep in a wavefunction is still a way of making a living in

Physics. Applying QM to Chemistry adds a new source of noise to this situation. Chemists

think locally in real space. However, as soon as two otherwise isolated fragments start to

interact with each other locality disappears in the overall state vector. Atoms dissolve on

forming molecules, and molecules dissolve on forming molecular aggregates. Yet, chemists

know that atoms, functional groups and other entities like bonds or lone pairs persist in

molecules, endowing systems with properties that can be subtly tuned.

Extracting local information from global wavefunctions is thus essential to theoretical

chemistry. As in QM, many different, again mutually exclusive routes to analyze (i.e. inter-

pret) wavefunctions have been proposed. Sooner or later, these techniques need to cope with

how to decompose a quantum mechanical expectation value into its chemical constituents,

which must be first isolated from the wavefunction. We thus partition binding or reaction

energies, giving rise to energy decomposition analyses,3 the number of electrons of a system

into its atoms or fragments, providing what we call population analyses,4 and so on. Liter-

ally dozens of techniques give different answers to these questions. Those answers are then

used to guide the synthesis of new materials, for instance.5

A particularly relevant issue that has received quite a lot of attention in recent years is the

partition of the total electronic spin of a system into fragment and interfragment contribu-

tions.6–18 Although maybe not immediately obvious, much of our current digital technology

is based on the control of local magnetic interactions in crystals.19 These have been inter-

preted historically through model Hamiltonians, which almost invariable deal with local (i.e.

localized) spins. For instance, in the Heisenberg Hamiltonian, H = −
∑

A<B JABŜA · ŜB,
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local spins are associated to magnetic centers that interact in a pairwise manner. In Chem-

istry, the presence of localized spins leads to radicals, which have been used in very many

different ways. When the total spin of the system vanishes, 〈Ŝ2〉 = 0, and with it the spin

density ρs(r) at each point in space, a partitioning technique for the spin-square operator Ŝ2

becomes urgent. This is the case of e.g. antiferromagnets in solid state physics, or of singlet

diradicals or polyradicals in chemistry.

Clear as this need is, it was only with the beginning of this century that the problem was

first attacked. In a set of papers, Clark and Davidson (CD),6–8,12 showed how to rigourously

partition the electron spin into local contributions by means of projection operators. Aside

from the arbitrariness of the atomic projectors, their approach is exact, and it was initially

applied with Löwdin’s symmetric projections. Since then, CD local spins have been used

rather commonly in the physical literature.20 In chemistry, however, the CD approach was

soon criticized,9 for some extra requirements for a spin partition to be physically meaningful

were added that were not satisfied by the local spins of CD. In particular, it was suggested

that local atomic spins 〈Ŝ2
A〉 of closed-shell wavefunctions should be zero. After all, how

could the atomic local spin of an otherwise perfectly diamagnetic single molecule get a non-

zero value? Little later, Mayer11,13,14,16 insisted on this shortcoming of Clark and Davidson

approach and proposed an alternative definition that enforced zero local spins for restricted

single-determinant wavefunctions (SDW). A rapid succession of proposals followed. Alcoba

et al15,21 generalized Mayer’s approach to correlated wavefunctions, but forcing zero local

atomic spins even at dissociation, Mayer and Matito14 solved this inconsistency, and in a

final round, Ramos-Cordoba et al (RC)17 proposed a set of four conditions that any theory of

local spins should satisfy. Namely, (i) closed-shell restricted wavefunctions should lead to zero

local spins; (ii) local spins should behave properly in asymptotic (i.e. dissociation) limits,

tending to the 〈Ŝ2〉 value of the isolated fragments; (iii) correlated formulas should tend to

single-determinant ones in the absence of correlation; (iv) local spins of one-electron systems

should be proportional to the electron population of the center considered. Ramos-Cordoba
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et al also showed that a one-parameter linear combination of the expressions proposed by

CD and Alcoba et al leads to a continuous family of local spins, from which only one member

satisfies the four conditions, together with a non-negativity constraint, simultaneously. Since

then, this proposal has been used repeatedly to deal with the quantification of di- and poly-

radical character in molecules,22,23 etc.

Here we show that regardless the choice in the atomic projections, the CD local spins

provide a fully rigorous decomposition of 〈Ŝ2〉. To show this, we start by considering atoms

in molecules as open quantum systems (OQSs), characterized by well-defined subsystem

density operators obtained by tracing out the degrees of freedom of the rest of the system.

An atom-in-the-molecule has a fluctuating number of electrons (each possibility gives rise to

a so-called sector, equipped with its own set of density matrices). The CD local spins turn

out to be weighted sums of squared-spin expectation values that run over all possible sectors

and sector spin states.

As an easy to understand example, the H atom in a H2 molecule cannot have a zero local

spin. At the single-determinant level, with any symmetry-preserving atomic partitioning, we

find either 0, 1, or 2 electrons in it with probabilities 1/4, 1/2, and 1/4, respectively.24 This

results from the 50/50 covalent/ionic mixing enforced by the wavefunction structure. Since

S in these three situations is forced to be 0, 1/2 and 0, respectively, this leads, inevitably, to

〈Ŝ2
H〉 = 1/4× 0(0 + 1) + 1/2× 1/2(1/2 + 1) + 1/4× 0(0 + 1) = 3/8, which is the CD result.

There is no inconsistency here. Much on the contrary, what we find inconsistent is to assign a

null local spin value to this H atom. This requisite is summarized by Mayer’s reasoning that

the absence of free spins should lead to null local spins for single-determinants. However,

this ignores that the electrons of a Lewis pair delocalize. Actually, they delocalize freely

over the two atoms for a pure covalent pair. Since we can find an isolated electron in our H

atom-in-the-molecule, its local spin is not null.

Local spins are thus non-vanishing in general in closed-shell molecules. We will fully

unveil their relation to covalency and to the localization and delocalization of electrons,
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showing that the OQS point of view tells a fully consistent, rigorous story. This by no means

implies that Ramos-Cordoba et al formalism is not useful. In fact, it is compatible with

our present findings once we understand where the non-vanishing spins are hidden in their

proposal.

The OQS perspective sheds much light on how spin and spin interactions evolve as

electrons delocalize and as electron correlation becomes significant. The Heisenberg-like

image of a magnetic material, for instance, is rather obvious in localized cases, dissolving as

the magnetic electrons delocalize. We think that the Hubbard model may be very useful to

identify several local spin regimes, and offer a couple of examples with it.

We start by presenting Clark and Davidson projectors, as well as Löwdin’s density matrix

formalism. We then turn to show how the sequence of requirements imposed by Mayer led to

a number of algebraic operations which are not legitimate in our opinion. In the end, these

are the basis of Ramos-Cordoba et al formula, which we also show to provide non-physical

results in cases not considered up to now. Then we briefly review the real space open systems

formalism, and demonstrate how the CD local spin acquires its full sense after it. A number

of academic examples is then examined.

2 Local spin formulations

Let us briefly consider the different formulations of the local spin concept, starting from

the projection formalism proposed by Clark and Davidson.6 The total vector spin operator

of an N electron system is defined as the sum of the spins for each electron, Ŝ =
∑N

i Ŝi.

Now consider a one-electron projection for each atom or fragment A in which we divide the

system, such that
∑

A P̂
A = 1̂ and P̂AP̂B = δABP̂

A, and assign a fragment spin operator

as ŜA =
∑N

i ŜiP̂
A
i . With this, it is easy to show that ŜA is a proper angular momentum
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operator, and with it,

Ŝ2 =
∑
A,B

ŜA · ŜB =
∑
A

Ŝ2
A +

∑
A

∑
B 6=A

ŜA · ŜB, (1)

so that the squared spin operator is a sum of intra- and inter-fragment terms, the latter

measuring the coupling of the spins associated to each pair of fragments. To compute the

expectation value of each of these terms, we notice that (ŜA · ŜA = Ŝ2
A)

ŜA · ŜB =
∑
i,j

Ŝi · ŜjP̂A
i P̂

B
j = δAB

∑
i

Ŝ2
i P̂

A
i +

∑
i

∑
j 6=i

Ŝi · ŜjP̂A
i P̂

B
j , (2)

which is a sum of one- and two-electron operators. Using the one- and two-particle reduced

density matrices ρ1 and ρ2,

〈ŜA · ŜB〉 =
3

4
δABTr(P̂A

1 ρ1) + Tr(P̂A
1 P̂

B
2 Ŝ1 · Ŝ2ρ2). (3)

In the above expression we have used the fact that the spin of each electron is s = 1/2. Now

it is clear that, since for any fragment partition Tr(P̂A
1 ρ1) = NA, the fragment’s electron

population, the first term in Eq. 3 just adds the squares of the spins of the electrons associated

to the fragment, while the second takes into account their mutual coupling.

As it can be seen, the approach up to now is completely rigorous and univocal. The

only arbitrariness lies in the choice of the fragment projectors. One can use either Fock

or real space approaches. For instance, if a local basis set {|µ〉} is used to build the one-

electron functions used to construct the wavefunction, then a proper Hermitian Löwdin

projector can be defined by using the Löwdin-orthogonalized basis |µ′〉 =
∑

ν |ν〉S−1
νµ : P̂A =∑

µ′∈A |µ′〉〈µ′|.9 Any Fock projector is dependent on the details of the basis set and the

way in which one-electron functions are constructed. In exhaustive real space partitionings

with fragment regions satisfying
⋃
A ΩA = R3, the projector is simply equal to the standard

Heaviside-like indicator function or atomic weight P̂A(r) = ωA(r), where ωA(r) is equal to
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one within the A region and zero outside. Real space projectors lead to expectation values

invariant under orbital transformations, and should be favoured. For this reason we will use

the following general notation, which is explicit in the case of real space partitions:

Tr(P̂A
1 ô1ρ1) ≡

∫
A

ôρ(x;x′)|x′→xdx and

Tr(P̂A
1 P̂

B
2 ĝ1,2ρ2) ≡

∫
A

∫
B

ĝρ2(x1,x2;x′1,x
′
2)| x′1→x1

x′2→x2

dx1dx2,

where x ≡ rσ gathers spin-space electron coordinates, while r refers to the spatial-only

components. We will use in our examples the partition provided by the quantum theory of

atoms in molecules of Bader and coworkers,25 but our conclusions are completely general.

It only remains to compute the effect of the Ŝ1 · Ŝ2 operator on the two-particle density

matrix (2RDM). As we will be showing, several unfortunate misinterprations around this step

lie at the root of the very many different routes taken by different authors. In a collinear spin

regime, it was Dirac26 in 1929 who showed, with the help of very simple arguments, that for

two different electron spins, Ŝ1 · Ŝ2 = (2p̂σ12− 1)/4, where p̂σ12 is a permutation operator that

exchanges only the electron spin coordinates of electrons 1 and 2 (i.e. their Sz projections).

It is clear that this operation acts on pairs of electrons. Now,

p̂σ12ρ2(r1σ1, r2σ2; r′1σ
′
1, r
′
2σ
′
2) = ρ2(r1σ2, r2σ1; r′1σ

′
1, r
′
2σ
′
2) = −ρ2(r2σ1, r1σ2; r′1σ

′
1, r
′
2σ
′
2), (4)

where we have used the antisymmetry properties of the 2RDM. Integrating out the spin

variables, we can thus write17

∑
i

∑
j 6=i

〈Ŝi · Ŝj〉 = −1

4

∫∫
ρ2(r1, r2; r1, r2)dr1dr2 −

1

2

∫∫
ρ2(r1, r2; r2, r1)dr1dr2. (5)

Straightforward manipulation also leads to

〈ŜA · ŜB〉 =
3

4
δAB

∫
A

ρ(r)dr − 1

4

∫
A

∫
B

{ρ2(r1, r2; r1, r2) + 2ρ2(r1, r2; r2, r1)} dr1dr2, (6)
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which is Clark and Davidson expression written in density matrix language. Since ŜA is a

Hermitian operator, local spins and spin couplings satisfy all rules of well-behaved operators

in QM. For instance, 〈S2
A〉 ≥ 0. It can be shown that (see the supporting information

(SI)) for a single-determinant description of H2 with Ψ = |σg(1)σ̄g(2)|, 〈Ŝ2
A〉 = 3/8 and

〈ŜA · ŜB〉 = −3/8 (A 6= B). This fact "makes a physical interpretation ... in terms of local

spins difficult, because closed-shell molecules by definition have no spin excess at any point

in space" for Podewitz et al,27 an argument which is an invalid extrapolation of the behavior

of the spin density, and is a result that "looks for me intuitively not appealing" for Mayer.13

The path taken by Mayer11 leading directly to recent local spin expressions starts from

Löwdin’s representation for Ŝ2,28

Ŝ2 = −N(N − 4)

4
+
∑
i<j

p̂σij, (7)

who acknowledges Dirac’s paper.26 The first term of this expression condenses the contribu-

tion coming from the integration to R3 of ρ(r) in Eq. 6 (N × 3/4), together with the first

term in the double integral of Eq. 6 (−N(N − 1)/4), that gives N × 3/4 − N(N − 1)/4 =

−N(N −4)/4. It thus mixes one-particle and two-particle counts. Adding them is legitimate

when obtaining a global expectation value, but it is not when using fragment projectors,

since the number of intra- and inter-fragment electron pairs is not obvious and needs be

computed. In other words, writing Ŝ2 = −N̂2/4 + N̂ +
∑

i<j p̂
σ
ij as in Eq. 2 of Ref. 13

should not be allowed in a rigorous local spin definition. Doing so, some two-electron terms

(which would end up in AB spin-coupling contributions) become effectively embedded in

the one-electron contributions (which are necessarily absorbed in the local spin, one-center

terms).

A different route was followed by Alcoba and coworkers,15 who used spinless quanti-

ties such as the effectively unpaired density matrix u introduced by Takatsuka, Fueno and
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Yamaguchi29 and later by Staroverov and Davidson,30–32

u(r1; r′1) = 2ρ(r1; r′1)−
∫
ρ(r1; r2)ρ(r2; r′1)dr2. (8)

The u diagonal density has been repeteadly used as a local (or global, when integrated)

measure of the number of unpaired electrons, an interpretation which is made clear after

an expansion in terms of spinless natural orbitals, u(r) =
∑

i ni(2 − ni)χ
∗
i (r)χi(r). The

occupation number of natural orbital χi satisfies 0 ≤ ni ≤ 2. For unrestricted determinants

with ni = 0, 1, 2, the trace of u counts singly occupied orbitals, and the u(r) density the sum

of the densities provided by those singly occupied functions. The properties of u have been

extensively studied,31 and unveil how its interpretation in terms of unpaired electrons suffers

from severe shortcomings in the case of multideterminant wavefunctions. For instance, its

trace can grow twice as large as the total number of electrons, 0 ≤ Tr(u) ≤ 2N , and when

partitioned into fragments, the use of u may lead to a non-integer number of unpaired

electrons for a fragment in the dissociation limit. In the supporting information (SI) we also

show that a CAS[2,2] description of the first 1Σ+
g excited state in H2, which at dissociation

describes the pure ionic resonance H+−H– ←−→ H– −H+, leads to one effectively unpaired

electron per H atom. This results from the one-particle density matrix (1RDM) being unable

to tell the sign of the linear combination λ|σgσ̄g| ± µ|σuσ̄u|, with both λ, µ ≥ 0. In both

cases we obtain two ni = 1 natural occupations at dissociation. The state described with a

minus sign dissociates to two ground state H atoms, with one unpaired electron on each H.

However, the state bearing the plus sign dissociates to the ionic resonance with no unpaired

electrons whatsoever on any of the two H atoms.

Since the CD partition (Eq. 6) provides non-zero local spins in restricted single determi-

nants, Ramos-Cordoba et al17 (RC) proposed to use u as a simplification tool. To that end,
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the 2RDM is expanded à la Fock-Dirac,

ρ2(r1, r2; r′1, r
′
2) = ρ(r1; r′1)ρ(r2; r′2)− 1

2
ρ(r1; r′2)ρ(r2; r′1)

− 1

2
ρs(r1; r′2)ρs(r2; r′1) + Γ(r1, r2; r′1, r

′
2), (9)

where ρs(r1; r′2) = ρα(r1; r′2) − ρβ(r1; r′2) is the spin-density matrix, and Γ(r1, r2; r′1, r
′
2) is

the spinless cumulant. Introducing Eq. 9 into Eq. 5 one can recognize the integral in Eq. 8,

which is thus used to recover u and to obtain,

〈Ŝ2〉 =
3

8

∫
u(r)dr − 1

4

∫∫
[Γ(r1, r2) + 2Γ(r1, r2; r2, r1)

−1

2
ρs(r1; r2)ρs(r2; r1)− ρs(r1)ρs(r2)]dr1dr2, (10)

with Γ(r1, r2) ≡ Γ(r1, r2; r1, r2) and ρs(r) ≡ ρs(r; r). This expression is now subjected to

fragment projection, giving rise to one- and two-center contributions. Notice that all the

terms in the second integrand vanish for a closed-shell single-determinant, so that no local

spins appear in this case. This procedure satisfies Mayer’s condition (i). Our point, again, is

that the u substitution operation just is algebraically admissible but not physically sound,

in the sense that it should be performed after projection (i.e. in Eq. 6), not before. The

origin of the difference between the CD and the RC results is now crystal clear: a one-center

A contribution obtained from the
∫
A

∫
ρ(r1; r2)ρ(r2; r1)dr1dr2 term in Eq 8 sums up a set

of two-fragment contributions in Eq. 6:
∑

B

∫
A

∫
B
ρ(r1; r2)ρ(r2; r1)dr1dr2. Since the latter

are inter-fragment exchange-like terms, describing much of the covalent delocalization be-

tween centers A and B, the procedure destroys the local spins due to covalent delocalization.

Explicitly, the part of 〈Ŝ2〉 that depends exclusively on u(r) lacks only apparently interfrag-

ment terms. They have been absorbed by an algebraically correct, yet physically unjustified

procedure into intra-fragment contributions.

On trying to satisfy the rest of the conditions imposed on local spins, a new twist was
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envisaged by taking advantage of the expression (Eq. 10 in Ref. 15)

∫ [
Γ(r1, r2)− 1

2
ρs(r1; r2)ρs(r2, r1)

]
dr2 = −1

2
u(r1), (11)

which is an independent condition on u that was used to propose a one-parameter family

RCa of expressions for 〈Ŝ2〉:

〈Ŝ2〉RCa = a

∫
u(r1) dr1 + (2a− 1)

∫∫
Λ(r1, r2; r1, r2) dr1dr2

− 1

2

∫∫
Λ(r1, r2; r2, r1) dr1dr2. (12)

where Λ(r1, r2; r′1, r
′
2) = Γ(r1, r2; r′1, r

′
2) − 1

2
ρs(r1; r′2)ρs(r2, r

′
1), and a is a free parameter

that modulates the weight of one- and two-electron terms, which are fragment-partitioned

afterwards. The value a = 3/8 corresponds to Eq. 8 of Ref. 17, and a = 1/2 to the expression

derived by Alcoba et al in Ref. 15. All fulfil Mayer’s conditions (ii) (correct behavior at the

dissociation limit) and (iii) (correlated results should reduce to uncorrelated ones in the case

of single-determinant wave functions). All suffer from the same collapse of two-center terms

into one-center contributions already described.

At this point, RC advocate for using a = 3/4 in order to satisfy condition (iv). This is

the only a that provides a correct 〈Ŝ2〉 = 3/4 for a single electron system, and also the only

value of the parameter a that guarantees the non-negativity of 〈Ŝ2
A〉 along the full dissociation

curve of H2 in a minimal basis full-CI calculation.

The winding road taken by the scientific community in search of a chemically meaningful

definition of local spins has been guided by trying to satisfy a set of more and more stringent

constraints while maintaing some non-negotiable properties. This has led to the extremely

clever a = 3/4 RC proposal, which has provided much insight in the last years. We claim that

simplicity is better, for one can never sure that the set of imposed constraints is complete.

For instance, as shown in the SI, the RC3/4 recipe provides a local spin for the excited 1Σ+
g

state of H2 equal to 〈Ŝ2
A〉 = 3/4 at dissociation. This is a completely wrong assignment from
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our point of view, which will become clearer in the following.

We will now show how an open quantum systems perspective clarifies the meaning of the

local spin as proposed by Clark and Davidson, opening whole new avenues to understand

the role of electron localization and delocalization on magnetism and spin-related chemical

reactivity.

3 Quantum fragments as open quantum (sub)systems

Whatever observable we may decide to partition into chemically relevant components, be

it the electron count that leads to population analyses, the energy of the system and the

plethora of energy decomposition techniques, or the electronic spin and the local spin ma-

chinery that we are analyzing, we face the extraction of an observable for a subsystem that is

quantum mechanically coupled to an environment. This leads to the theory of open quantum

systems (OQSs), an expanding discipline crucial to quantum control or quantum comput-

ing.33,34 We have already shown how OQSs can be used to understand chemical bonding

issues in Ref. 35, where a more detailed account of what follows can be found.

Very succinctly, if a quantum system U is described by a general mixed density operator

ρ̂ =
∑

i |Ψi〉 pi〈Ψi| and we are interested in a subsystem A (A ∪ Ā = U , B ≡ Ā), then the

subsystem expectation value of an operator Ô can be obtained as 〈OA〉 = Tr(Ôρ̂A), where

ρ̂A is the A subsystem reduced density operator, obtained by tracing out all the degrees

of freedom of Ā from the full density operator, ρ̂A = TrĀρ̂. Even when the full system

U is described by a pure state |Ψ〉 the A subsystem reduced density operator is that of a

mixed state (which is usually called a pseudo-mixed state). This means that its expectation

values will be statistical mixtures of those of pseudo-pure states. For instance, as already

explained, a subsystem has not a definite number of electrons, and the expectation value of

the number operator, 〈N̂A〉 = NA has to be understood in terms of the probabilities pA(ni)

that A displays an integer electron count ni, NA =
∑

i p
A(ni) × ni. In more general terms,
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once a partition of real space into (say) m fragments has been chosen, the probability of

finding an exact integer number of electrons n1, n2, · · · , nm in regions 1, 2, · · · , m, can be

obtained.24,36–39 This is the key to rationalize the meaning of the CD local spin formulation.

The subsystem reduced density operators of pure systems with ρ̂ ≡ Ψ∗(x′)Ψ(x), where

x = x1 . . .xN , can be obtained easily by constructing multielectron fragment projection

operators, starting from the P̂A objects of Section 2. Since we prefer orbital invariant real

space fragments, we will use their real space analogs,35 but all of our arguments are general.

Our n-electron projector will thus be 1An =
∏n

i=1 ωA(xi). By noting that 1 = ωA(x) +ωB(x)

for each electron, an N -electron unit operator 1N =
∏N

i=1[ωA(xi) + ωB(xi)] is immediately

defined. Applying it to the ρ̂ operator, 22N terms in which primed and unprimed coordinates

are separated into A and B regions appear. The trace over B is obtained by integrating all

coordinates over the B region, leaving only 2N surviving terms.35 Each contains a given

number of alpha and beta electrons in A, a so-called spin sector, which can be grouped by

the total number of electrons, a sector:

ρ̂A =
N⊕
n=0

ρ̂An , (13)

with ρ̂A0 =
∫
B

Ψ?(x1 . . .xN)Ψ(x1 . . .xN)dx1 . . . dxN and, for n ≥ 1

ρ̂An (xi≤n;x′i≤n) = 1
′A
n 1An ×

(
N

n

)∫
B

Ψ?(x′i≤n,xi>n)Ψ(xi≤n,xi>n)dxi>n, (14)

where xi≤n = x1 . . .xn and xi>n = xn+1 . . .xN . To simplify the notation, we will assume

that, before doing any integration, the x′i → xi identification has been performed for all the

integrated variables, for instance, x′i>n → xi>n in eq 14.

Subsystem A is thus described by a mixed density operator with N + 1 possible sector

densities ρAn (n = 0, · · · , N), each integrating to pA(n), the probability that n and only

n electrons reside in domain A and the remaining N − n electrons in the domain B, i.e.

TrρAn =
∫
A
ρAn (xi≤n;x′i≤n)dxi≤n = pA(n). Normalized sector densities can be defined as
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ρ̃An = ρAn/p
A(n), so that Trρ̃An = 1 and ρ̂A =

⊕
n p

A(n)ρ̃An . Then, each ρ̃An can be dealt with

as a pseudo-pure system operator.

Besides the subsystem reduced density operator, we can define standard reduced density

matrices for each electron sector. The reduced density matrix of order m ≤ n (mRDM) of

sector n is

ρA,mn (xi≤m;x′i≤m) =
n!

(n−m)!

∫
ρAn (xi≤n;x′i≤n)dxi>m, (15)

with the spinlessmth order RDM given by ρA,mn (ri≤m; r′i≤m) =
∫
ρA,mn (xi≤m;x′i≤m)|σ′i→σidσi≤m.

Using eq 14, ρA,mn can also be put in the form

ρA,mn (xi≤m;x′i≤m) = 1
′A
m 1AmΛm

N,n

∫
D
ρ(x;x′)dxi>m, (16)

where Λm
N,n = N !/[(N − n)!(n − m)!], D is a domain such that electrons m + 1 to n are

integrated over A, and electrons n+ 1 to N over B. Adding Λm
N,n

∫
D ρ(x;x′)xi>m for values

of n between 0 and N one obtains ρm(xi≤m;x′i≤m), the mRDM of the full A + B system.

As a consequence, the sum of the mRDMs of all sectors n of domain A is given by ρA,m =∑
n ρ

A,m
n = 1

′A
m 1Amρ

m. Sectors behave as pseudo-pure systems. For instance, the trace of

the normalized mRDM of sector n is n!/(n −m)!, so that 1RDMs integrate to the number

of electrons of the sector, 2RDMs to the number of (ordered) pairs of electrons, and so on.

Expressions for the first and second order sector RDMs for single- and multideterminant

wavefunctions can be derived, and are found in the SI.

Each of the sector nRDMs can be independently diagonalized to obtain a set of sector

natural orbitals, geminals and, in general, n-electron natural bases which allow to compact

the description as much as possible. In the case of single-derminant wavefunctions (SDWs),

it can be shown that all the natural bases are built from the same set of one-electron natural

functions φi, which are related to Ponec’s domain natural orbitals (DNO) ϕi 35,40,41 by φi =

s
−1/2
i ϕi, where si =

∫
A
|ϕi(r)|2dr denotes the fragment overlap integral of orbital ϕi (see

the SI for more details). In this sense, if the SDW is written in the φ basis as |Ψ〉 =
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(N !)−1/2 det |φ1(x1) . . . φN(xn)|, and k = {k1, . . . , kn} is a set of n ordered integers k1 <

· · · < kn, n ≤ N , then

ρAn (xi≤n;x′i≤n) = 1′An 1An ×
∑
k

|φk〉 pkn 〈φk|, where (17)

|φk〉 =
1√
n!
|φk1(x1) · · ·φkn(xn)〉. (18)

This expression shows that for a SDW, the n-sector is described as a mixture of all the

n-electron subdeterminants that can be drawn from the original SDW, with weights pkn that

add to the total sector weight,
∑

k p
k
n = pA(n). As shown,35 pkn =

∏N
i pi, where pi = si

if i ∈ k and pi = (1 − si) otherwise. Normalized sector densities ρ̃An can also be used

if coupled to normalized weights, p̃kn = pkn/p
A(n). The multi-determinant case is more

complex, but follows the same agenda (see the SI). The n-sector is a mixture of pseudo-pure

n-electron determinant states, now built from all the configuration state functions populating

the wavefunction expansion.

4 Local spin from an OQS perspective

The previous account allows us to cope easily with the squared spin operator Ŝ2. The flow

of ideas is simple. The CD local spin expectation value for a fragment A, 〈Ŝ2
A〉, is obviously

equivalent to that obtained from an OQS viewpoint: 〈Ŝ2
A〉 = Tr

(
Ŝ2ρ̂A

)
. By partitioning ρ̂A

into itsN+1 sectors, 〈Ŝ2
A〉 =

∑
n p

A(n)〈Ŝ2
A,n〉, where we use normalized sectors. As with other

OQS observables, the snapshot analogy is revealing. If we imagine a multitude of snapshots

of the electron system, then the local spin of a fragment is a statistical average of the spins of

each electron configuration of the fragment with weights equal to the probabilities of finding

those configurations. This is a fully rigorous result. If a fragment displays a probability

greater than zero of hosting one and only one electron, its local spin will not be zero (since

this contribution will provide 3/4 to the local spin). This solves the problem of non-zero
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local spins for closed-shells.

Using the previous machinery,

〈Ŝ2
A,n〉 =

3

4

∫
ρ̃A,1n (r)dr − 1

4

∫∫ [
ρ̃A,2n (r1, r2; r1, r2) + 2ρ̃A,2n (r1, r2; r2, r1)

]
dr1dr2.(19)

In the SDW case with restricted orbitals, as shown in the SI,

〈Ŝ2
A,n〉 =

∑
k

p̃kn
[
M2

k + nd/2
]

=
∑
k

p̃kn〈Ŝ2
A,n,k〉, (20)

whereMk = (nα−nβ)/2 is the eigenvalue of Ŝz for the each k determinant, and nd is the num-

ber of not-matched orbitals from either spin, i.e. the total number of orbitals which have not

an opposite spin couple in the determinant.12 For instance, if k = {φ1, φ2, φ3, φ4, φ5, φ̄4, φ̄5, φ6, φ7},

nd = 5. As shown by Clark and Davidson, M2
k + nd/2 is the expectation value of Ŝ2 for

a standard Slater determinant. More general expressions are found in the SI, which also

covers MDW cases. It is also clear that nd is the trace of the density of effectively unpaired

electrons u(r). Then, a high spin determinant in which every β orbital is equal to a single α

one orbital and orthogonal to all the other α orbitals has nd = 2×|Mk|, and its contribution

to the local spin is nd/2(nd/2 + 1), which corresponds naïvely to the expected spin from nd

upaired electrons.

Notice that spin symmetry guarantees that appropriate linear combinations of subdeter-

minants k which are spin eigenfunctions can always be found, so that the local spin can be

written as
∑

i piSi(Si + 1), a weighted sum of proper S(S + 1) squared spins. We will show

how to do this in examples below, and a general framework will be published elsewhere.

This remark answers the criticism regarding the difficulty to interpret the CD local spin as

SA(SA + 1).

Finally, we will point out that the k sets in Eq. 20 can be grouped into as many sub-

sets as the number of ways of choosing nα and nβ such that nα + nβ = n, i.e. 〈Ŝ2
A,n〉 =∑′

nα, nβ

∑′
k p̃

k
n [M2

k + nd/2], where the prime (′) in the first sum means than only terms with
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nAα + nAβ = n are included, and in the second that only k’s associated to these nα and nβ

have to be considered. This allows to consider spin-resolved sectors.

5 Gaining insight through models

We will devote this Section to examine the behavior of local spins in the light of our OQS

viewpoint. We will examine several models to gain intuition on what we may expect from

CD local spins.

5.1 Local spin and bond order

It was already Clark and Davidson who noticed the intimate link between Wiberg-Mayer

bond orders42,43 and the 〈ŜA · ŜB〉 values. It is useful to show the origin of this relation in

density matrix language. For a closed-shell restricted determinant (RHF) the Γ cumulant in

Eq. 9 vanishes, as well as the spin-density matrix ρs. Substituting Eq. 9 into Eq. 6 results in

〈ŜA · ŜB〉 =
3

4
δAB

∫
A

ρ(r)dr − 3

8

∫
A

∫
B

ρ(r1; r2)ρ(r2; r1)dr1dr2. (21)

We immediately recognize ρ(r1; r2)ρ(r2; r1) as 2ρxc(r1; r2) for a RHF function, with ρxc being

the exchange-correlation density,25 so that

〈ŜA · ŜB〉 = −3

8
δAB B 6= A,

〈ŜA · ŜA〉 = 〈Ŝ2
A〉 =

3

4
(NA − λA). (22)

Here, δAB is the so-called delocalization index between the fragments (the Wiberg-Mayer

bond-order in Fock projections), and λA is the localization index of fragment A. The former

measures the number of delocalized electron (pairs) between regions, the latter the number of

localized electrons in a fragment. These are simply the covariance and variance, respectively,
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of the electron populations in our OQS description,

δAB = −2× cov(nA, nB) =
∑
nA,nB

p(nA, nB)× (nA − n̄A)(nB − n̄B),

λA = var(nA) =
∑
nA

p(nA)× (nA − n̄A)2. (23)

p(nA, nB) is the joint probability of finding nA electrons in A and nB electrons in B, and

p(nA) = pA(nA).24 Using the symbol cov(nA, nA) as a proxy for the variance, then 〈ŜA·ŜB〉 =

3/4× cov(nA, nB).

At the RHF level, the local spin and the spin couplings simply measure how localized

(or delocalized) the electrons are. This leads to large atomic local spins which are deemed

as unphysical by many, as we have explained. From our point of view, on the contrary,

this is particularly illuminating. To show it, we could use Eq. 20 to gain insight, but the

combinatorial number of k possibilities makes this choice not appropriate for models.

5.2 Localized and itinerant spin models: Aufbau rules

For a simple N electron SDW with real orbitals ui, and using Slater rules for the 2RDM, it

is not difficult to find that

〈ŜA · ŜB〉 =
3

4
NAδAB −

1

4

N∑
ij

{
SAiiS

B
jj(1− 2δσiσj) + SAijS

B
ij (2− δσiσj)

}
, (24)

valid for both A = B and A 6= B. In the above equation, which expresses in a less compact

way Eq. 20, we sum over spinorbitals, σi is the spin variable of the spatial orbital ui and

SAij = 〈ui|uj〉A is the (spatial only) overlap between orbitals, projected onto fragment A (the

atomic or fragment overlap if in real space). Notice that the i = j terms cancel out, since the

Coulomb-like terms are equal to the exchange-like contributions. Eq. 24 can be applied both

when the determinant is expressed with canonical or localized orbitals, including Ponec’s

ones. Localized descriptions lead to a smaller number of non-cancelling terms, and are thus
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easier to use for back of the envelope calculations. As we are showing, much insight can be

obtained from manipulating Eq. 24 in simple cases.

Let us then consider two interacting atoms, A and B, described by a (non-necessarily

closed-shell) SDW. To ease manual calculations, we consider the two atoms at large distances,

so that an SAij overlap will vanish for two localized orbitals centered on different atoms.

Residual overlaps at general geometries will alter the results quantitatively, but not the rules

that will emerge.

A B A B

1sa 1sb 1σg

1σg

H2
3Σ+

u H2
1Σ+

g
a b

A B A B

1sa 1sb

He2
1Σ+

g Li2
1Σ+

g

1sa 1sb

2σg

2σg

1sa 1sb

1sa 1sb

c d

Figure 1: Structure of the localized SDW spinorbitals for the first singlet and triplet states
of H2, and for the ground states of He2 and Li2, all at large internuclear distance. Red and
blue identify the α and β spin projection, for instance.

Fig. 1 shows the structure of the localized orbitals in the first triplet (a) and singlet (b)

states of dihydrogen, and in the ground state of He2 (c) and Li2 (d). The |σgσu| determinant

describing the 3Σ+
u state of H2 can be subjected to a unitary rotation that leaves two strictly

localized 1s functions at each center. This cannot be done in the singlet, since the two

electrons belong to different spin symmetry. Similarly, in He2 one can rotate the α and

β sets and come to a completely localized description, while in dilithium the 2σg orbitals

remain delocalized.

Application of Eq. 24 to case (a) shows that the sum vanishes if A = B, and that it

leaves only one term otherwise, in which i = 1sa and j = 1sb, with SAii = SBii = 1, SA,Bij = 0.

Thus, 〈Ŝ2
A〉 = 3/4 + 0 = 3/4, 〈ŜA · ŜB〉 = 1/4. In case (b), since 1σg ≈ (1sa + 1sb)/

√
(2),

all the overlap integrals are equal to 1/2, 〈Ŝ2
A〉 = 3/4 − 3/8 = 3/8, and 〈ŜA · ŜB〉 = −3/8.
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When shifting to He2, with full localization of the 1s block, it is interesting to examine the

contributions to the local spin for each atom (A = B). Only contributions from φi and φj

localized in A will contribute in Eq. 24: i = 1sa, j = 1̄sa and viceversa. Each pair will add

−1/4(1 + 2) = −3/4, cancelling the 1RDM contributions of each electrons. The local spin

vanishes. It is easy to grasp how this also occurs when different subshells become filled. In

Be2, for instance, the block coming from the 2s orbitals get also localized, and all i, j pairs

mixing 1s and 2s orbitals do not contribute due to 1s, 2s orthogonality. Different subshells

are then isolated from each other, and behave as independent electron blocks. This ceases to

be so if residual overlaps are allowed, so that in actual calculations at actual geometries, this

picture will be slightly altered. Moving to Li2, the 2σg orbital cannot be localized. However,

the mixed atomic overlaps 〈2σg|1sa,b〉A still vanish due to 1s, 2s orthogonality, so that, again,

the 2s block is isolated from the 1s set of functions. Li2 behaves as H2.

This draws a very simple picture that also rationalizes the link between local spin cou-

plings and bond orders. Again, it is the delocalization of electrons that causes non-zero

local spins in closed-shells. Each ideal, symmetric electron-pair covalent bond includes two

opposite spin delocalizable electrons. Each of these pairs provide a 3/8 local spin and a −3/8

AB coupling. Localized pairs do not contribute at all. An interesting exercise is that of

describing the local spin of O2 in its triplet ground state. A model SDW may be written as

Ψ = |KK2σ2
g2σ

2
u3σ

2
g1π

2
ux1π

2
uy1πgx1πgy|. Following our Aufbau rules, the 1σ and 2σ subshells

are closed, can be localized, and do not participate. Similarly, the α 1π subshell is full. This

leads the 3σg electrons as well as two independent (orthogonal) 1πx,y electrons as delocalized

entities. With the help of Eq. 24 one can easily find that two orthogonal same-spin electrons

coupled to a triplet SDW provide 〈Ŝ2
A〉 = 3/4 + 1/8 = 7/8. Adding the independent σ and

π contributions we get that 〈Ŝ2
O〉 = 3/8 + 7/8 = 10/8.

The above rules are illuminating when mean-field solutions are reasonable, describing our

expectation in the case of itinerant electrons. SDWs however fail when electron correlation

is necessary. We can yet propose simple models for strong static correlation, like that found
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in the homolytic dissociation of an electron pair, or in situations where correlation-induced

localization appears. The OQS approach makes this extremely easy. In this Section we will

examine the prototype cases of local spin couplings for a symmetric two-center two-electron

case. We notice that only global singlet and triplet squared-spin are allowed. To simplify,

only the limiting cases of totally (spatially) localized and completely delocalized electrons

will be considered.

If the pair of electrons is ideally delocalized, the two electrons act on average as if they

were statistically independent objects. For symmetric fragments (A,B) ≡ (left,right) this im-

plies that the probability that any of them is found in each is p = 1/2. p(1, 0) = p(0, 1) = 1/2

in the language of fragment populations. The joint probability distribution is the direct prod-

uct of the above, so that p(2, 0) = p(0, 2) = 1/4 and p(1, 1) = 1/2, the binomial distribution

well known from the theory of electron distribution functions.24,38 On the contrary, if the

electrons are localized in the two fragments, then p(2, 0) = p(0, 2) = 0, and p(1, 1) = 1. If two

opposite spins are considered, the delocalized setup can be matched with a single delocalized

canonical orbital, for instance through a |σσ̄| determinant. For two same-spin electrons, we

need two independent (i.e. orthogonal) functions, like in a |πxπy| state. Another symmetric

delocalization possibility exists, in which p(2, 0) = p(0, 2) = 1/2, and p(1, 1) = 0. This cor-

responds to the ionic resonance that has been commented before for the excited 1Σ+
g state

of H2. The two electrons behave as a bosonic entity, and are found together, either on one

center or on the other. This situation cannot be modeled at the SDW level. We distinguish

these states with the z label (zwitterionic).

With those probabilities at hand, we can now couple the two electrons either to a singlet

or to a triplet, and apply Eq. 20, which is trivial since the sums have just one or at most

two components. We have

〈S2
A〉 = p(1, 1)〈Ŝ2

A,(1,1)〉+ p(2, 0)〈Ŝ2
A,(2,0)〉+ p(0, 2)〈Ŝ2

A,(0,2)〉. (25)
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We only need to consider the following cases: (i) if no electron lies in A, no local spin exists;

(ii) if one electron lies in A, then 〈Ŝ2〉 = 3/4 necessarily; (iii) If the two electrons are in A,

they have to be coupled as the full two-electron system, so 〈S2〉 = 2 in the triplet and zero

in the singlet. Nothing else is needed, just appropriate snapshots of the spatial location of

electrons.

Table 1: Local spin analysis of ideal localized and delocalized singlet and triplet states in a
symmetric two-electron AB system. S is used for singlet, T for triplet, n− z labels a normal
versus a zwitterionic resonance, and D,L a delocalized from a localized situation. δ is the
intercenter delocalization index.

〈Ŝ2
A〉 〈ŜA · ŜB〉 δAB

SzD 0 0 2
SnD 3/8 -3/8 1
SnL 3/4 -3/4 0
Tn
L 3/4 +1/4 0

Tn
D 7/8 +1/8 1

Tz
D 1 0 2

Plugging in these numbers we get the results shown in Table 1 There is a considerable

amount of information summarized there. First, it is interesting to check that singlets

display negative couplings while the contrary is true for triplets, whatever the case. This is a

particularly appealing, physically consequent result. Second, all states can be distinguished

nominally from comparing local spins and spin couplings. This is not the case if plain electron

delocalization is used, which just separates three categories: localized, normal-delocalized,

zwitterionic-delocalized. The use of u or of RC3/4 would fail to provide physically consistent

results in some of these cases.

Even more interesting is the identification of chemical species from the Table. We have

localized singlets, which are chemically diradicals, delocalized singlets or covalent bonds,

zwitterionic singlets and triplets, and itinerant triplets. All categorized through simple de-

scriptors. We find this extremely appealing, although actual results will be considerably

more difficult to classify appropriately when the indicators of this Table evolve continuously.

We hope to examine how well real systems fit this scheme in the near future.
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5.3 Localized polyelectronic spin couplings

Once the role of localization and delocalization in the building of local spins has been clarified,

we recognize that local spin applications in chemistry are to be expected mainly to recognize

radicals or polyradicals, particularly in singlet states for which standard spin densities are

useless. These states are expected to bear localized unpaired electrons, where the RC and

CD results should not differ considerably, at least in ground states.

It is therefore relevant to examine the local spins and spin couplings of sets of N fully

localized electrons in N different sites. The electronic label i is thus equivalent to the site

index A. This problem is equivalent to that of computing the expectation value of the

〈Ŝi · Ŝj〉 operators over N -electron eigenfunctions of S2. These can be constructed easily, or

taken from monographs like that of Pauncz.44 We have examined couplings from N = 3 to

N = 6, non-exhaustively, and also the limiting infinite spin chain. Notice that since electrons

are fully localized, 〈Ŝ2
A〉 is fixed to 3/4, and only the ij couplings contain information. It

is known44 that there are (2S + 1)N !/(N/2 + S + 1)!/(N/2 − S)! independent eigenstates

of spin S for an N electron system, each composed of 2S + 1 MS projections. Thus we

have one quartet and two independent doublets for N = 3, two singlets, three triplets and

one quintuplet for N = 4, and so on. The functions examined are summarized on Table 2.

Expectation values of the Ŝi · Ŝj operators are easily found with the help of the standard

ladder formalism.

The maximum S = N/2 single-component (α . . . α) functions are easily shown to have

〈Ŝi · Ŝj〉 couplings equal to 1/4 between all electron pairs. Recall that our results are

independent on the spin projection. Localized polyradicals in their maximum S states would

thus be easy to identify. The situation becomes more interesting as S decreases. For instance,

the local spin analysis of the two N = 3 doublets reflects the genealogy of the states examined

very clearly. It is customary44 to build spin eigenfunctions sequentially, such that the (n +

1)-electron state is constructed through Clebsch-Gordan coupling a well-defined n-electron

eigenfunction with spin S to a new electron to form the two possible S ± 1/2 final states,

23



Table 2: Spin eigenfunctions examined in this work. The maximum MS = S multiplicity
state is shown in the standard genealogical notation in which the total spin of each newly
added electron is depicted. The final number is the total spin of the state. |1/2, 1, 3/2〉 is
thus read as one electron that couples to a second as a triplet and to the third as a quartet.

State |ψ〉
|1/2, 1, 3/2〉 ααα

|1/2, 1, 1/2〉
√

2
3ααβ −

√
1
6αβα−

√
1
6βαα

|1/2, 0, 1/2〉
√

1
2αβα−

√
1
2βαα

|1/2, 1, 3/2, 2〉 αααα

|1/2, 1, 3/2, 1〉
√

3
4αααβ −

√
1
12ααβα−

√
1
12αβαα−

√
1
12βααα

|1/2, 1, 1/2, 1〉
√

2
3ααβα−

√
1
6αβαα−

√
1
6βααα

|1/2, 0, 1/2, 1〉
√

1
2αβαα−

√
1
2βααα

|1/2, 1, 1/2, 0〉
√

1
3ααββ −

√
1
12αβαβ −

√
1
12αββα−

√
1
12βααβ −

√
1
12βαβα+

√
1
3ββαα

|1/2, 0, 1/2, 0〉
√

1
4αβαβ −

√
1
4αββα−

√
1
4βααβ +

√
1
4βαβα

that we will call the plus-coupled and the minus-coupled states, if S 6= 0, or the final doublet

if S = 0. This is how the states in Table 2 are labeled.

For a triradical, there are two non-trivial doublets beyond the maximal S quartet. In

the first, two electrons are coupled to a triplet that then couple to a final doublet, while in

the second, the first coupling gives rise to a singlet. Fig. 2 provides a pictorial sketch. We

use Q for quartets, etc, and order the states by decreasing value of the total S that couples

to the final electron in the genealogical notation. D1 is the first doublet, corresponding

to |1/2, 1, 1/2〉, and D2 the second. The pictures show very clearly the genealogy. In D1,

we see two spins with a positive coupling linked negatively to the third. One can very

easily group the spins into sets by adding the local spin and interspin couplings. In D1,

for instance, the first two spins on the base of the triangle give rise to a triplet: 〈Ŝ2〉 =

3/4 + 3/4 + 2 × (1/4) = 2, which now minus-couples to the remaining doublet, so that

〈Ŝ2〉 = 2 + 3/4 + 2× (−1/2− 1/2) = 3/4. In D2, the analysis shows that a singlet has zero

couplings to the rest of the spin system, a result that is general.

Analysis of the N = 4 case allows to isolate rather general patterns. For instance, T1

is made of an N = 3 Q1 spin group that minus-couples with an isolated electron spin. All
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the negative couplings are symmetric, and warrant the final triplet state. Similarly, T2 is a

D1 plus-coupling to the final spin, and T3 is two-electron triplet coupling to a two-electron

singlet. Whenever one group of electrons coupled to a singlet interacts with a second group,

like in the D2, T3, and S2 cases, we think that we should better consider these two groups as

two independent sets of lower-rank polyradicals better than a full N -electron radical species.
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Figure 2: Spin couplings 〈Ŝi ·Ŝj〉 between all pairs of localized spins for the cases N = 3 and
N = 4. The state is identified as explained in the main text. Intermediate spin couplings
are sketched pictorially. The quintet in the N = 4 case is not shown, since it is equivalent
to the quartet for the N = 3 situation.

Nothing precludes us from extending this analysis further. Adding a certain character

of itinerancy for all or some of the electrons is also possible by considering OQS models, as

done in the previous Section, but we will not pursue this further in this introductory paper.
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We end up the Section by mentioning that for even N , the maximally entangled singlet (the

first in our labeling), can be understood as coming from the annihilation of two S = N/2

subsystems found in their maximum spin states. For instance, in the N = 4, the S1 state

comes from two triplets that couple to a singlet. General analytical formulas for this state

exist:44 for an even number of electrons N , if |M〉1 is the |S,M〉 state with S = N/2 for

the first of these subsystems and |M〉2 its equivalent for the second, the coupled singlet

is written as
∑M=+S

M=−S(−1)S−M |M〉1| −M〉2. We can thus star the alternating nodes of an

even number of node chain and consider the antiferromagnetic coupling of two opposite spin

ferromagnetic N/2 subchains to form a maximally entangled singlet. Each of the subsystems

is in its maximal S state, so that the spin couplings between all the possible pairs of its nodes

(electrons) is equal to +1/4. Since the two subsystems couple to a singlet and all the pairs

in which one electron belongs to the fist and the other to the second are equivalent, a simple

calculation shows that the inter-subsystem spin couplings have to be equal to −1/4− 1/N .

5.4 Evolution of local spins with electron correlation: the Hubbard

model

Electron correlation may impact both the magnitude and the couplings of local spins in

several ways. Since we are here interested in gaining insight through simple models, the

Hubbard Hamiltonian,45 offers an appealing possibility to change from a mean-field situation

to a strongly correlated regime continuously.45 In its simplest formulation, the Hubbard

Hamiltonian models a one-dimensional chain of identical single energy level sites with only

nearest neighbor interactions. In the half-filled case, each site bears one electron on average,

can hold up to two electrons with opposite spin, and we talk of an N -sites N -electron (N/2 α

electrons and N/2 β electrons) problem. Periodic boundary conditions can be imposed, and

in this case, N is usually made to tend to infinity. When two electrons lie at the same site

they are subjected to an interaction energy U (usually repulsive), which is called the on-site

Coulomb repulsion. Electrons can delocalize to neighboring sites via a hopping parameter t,
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which acts as a kind of site overlap. In second quantized form,

Ĥ = −t
∑
〈i,j〉,σ

(ĉ+
iσ ĉjσ + ĉ+

jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓, (26)

where ĉ+
iσ (ĉiσ) is the standard fermionic creation (annihilation) operator at site i and spin

projection σ, and n̂iσ = ĉ+
iσ ĉiσ counts the number of electrons with spin projection σ at site

i. The 〈i, j〉 sum runs over first neighbors, with each term describing the hopping of an

electron from site j to site i. The second sum includes the Coulombic repulsion energy (a

positive energy U), added to each doubly occupied site. t and U play drive the system in

opposite ways, and there is only one effective U/t adimensional correlating parameter. Small

U/t values favor hopping, thus delocalized solutions. In the infinite U/t limit, the chain fully

localizes, with one electron per site and no hopping at all. At U/t = 0, the Hubbard model

converges to the tight-binding mean-field single-determinant solution.

We have previously shown how the usual real space delocalization indices are nothing but

the order parameters used to detect phase transitions in strongly correlated systems.46 Given

the relation between the expectation value of spin couplings and DIs for restricted SDWs,

the general behavior of these parameters both for open and closed finite and infinite chains

(that approximate the π system of alternating hydrocarbons) is thus known. For instance,47

in a linear chain with sites i starting at position i = 1,

〈Ŝi · Ŝj〉 = − 6

π2

j2

(i2 − j2)2
, (i+ j) odd

〈Ŝi · Ŝj〉 = 0, (i+ j) even. (27)

which shows a squared-distance algebraic decay of spin correlations in the case of these

metallic-like systems. Spin correlation shows the same type of mesomeric oscillation as bond

orders in conjugated systems. If periodic boundary conditions are imposed, the first relation

in the above expression becomes simply −3/(2π2), and bond equalization leads to a uniform
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distribution of spin coupling over the chain.

Increasing the r = U/(4t) correlating parameter allows to follow the transition from the

fully delocalized tight-binding solution to the fully localized state. Lieb48 showed that there

is no phase transition in the 1D Hubbard chain, and that the ground state is an isolating

antiferromagnet at any r value. In N = 4n + 2 Hückel-aromatic cyclic Hubbard lattices,

for instance, it was found46 that at about r = 1 a clear change from the oscillatory decay

of the delocalization indices δ1j (see Eq. 27) changed to its long-range exponential decay.

Mesomeric or resonance effects disappear as correlation increases.

Table 3: Evolution of 〈Ŝ1 · Ŝj〉 couplings for Hubbard benzene as r = U/(4t) increases.

r j = 1 j = 2 j = 3 j = 4
0.000 0.417 -0.167 0.000 -0.042
0.250 0.426 -0.200 0.016 -0.058
1.000 0.583 -0.327 0.106 -0.147
2.500 0.711 -0.435 0.186 -0.213
12.50 0.748 -0.466 0.207 -0.231

Table 3 shows the evolution of 〈Ŝi ·Ŝj〉 in the Hubbard analog of the benzene π system, an

N = 6 cyclic chain. The calculations have been performed after reconstructing the Hubbard

2RDMs with the pySCF suite.49 It is apparent how each site’s local spin moves from its SDW

value, equal to 5/12, to its fully localized 3/4 counterpart. Similar changes are found for

the meta couplings, which vanish only at U/t = 0, and the para one, which starts at −1/24

for the mean-field solution. We stress that the closed-shell tight-binding SDW cannot show

positive spin couplings, but that as soon as this restriction is liberated, the meta couplings

become positive and grow with r, leading to a clear antiferromagnetic spin alternation. We

notice that the mean-field coupling for the ortho pair in a full SDW of benzene can be well

approximated by adding the tight-binding result −0.17 to the standard coupling of a normal

σ bond, which is close to −0.4. This gives a coupling of about −0.57, in close agreement

with that initially published by Clark and Davidson.6

We think that this simple Hubbad example sheds light on how electron correlation can

grow polyradicals by localizing electrons at specific sites. A full account of these and other
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results will be presented elsewhere. We now leave models and turn to actual calculations.

6 Examples

We have selected in this Section a small number of simple, yet representative examples of

results that show the insights that can be obtained from the OQS viewpoint described in

this work.

6.1 The H2 molecule

Although the dihydrogen molecule is always used as the basic model in the theory of chemical

bonding, it is still today a continuous source of inspiration. We gather here results in the

the 1Σ+
g ground and first excited states of the H2 molecule, as well as in the first excited

3Σ+
u triplet. The first two are described at the simplest correlated level, i.e. with CAS[2,2]

wavefunctions given by Ψ = c1|σgσ̄g| + c2|σuσ̄u|, with c1 and c2 having opposite and equal

signs for the ground and excited states, respectively. For comparison purposes, we also add

a full configuration interaction calculation (FCI) of the ground state. The basis set used is

6-311G(p) in all the cases.

The value of 〈Ŝ2
H〉 for both singlet states as a function of the internuclear distance RH−H is

plotted in Fig. 3. Since H2 dissociates homolytically, each hydrogen atom in the ground state

at large internuclear distances must be a doublet, so that limRH−H→∞〈Ŝ2
H〉 = 3

4
. As RH−H de-

creases, 〈Ŝ2
H〉 changes in tune with pH(1), the probability that each hydrogen atom harbors a

single electron. At the equilibrium distance, pH(1) ' 0.5833 and pH(1)× 3
4
' 0.4375. The sec-

tors (or real space resonance structures) that assign zero or two electrons to the same H, with

a probability 0.5833/2 ' 0.292 each, do not contribute to 〈Ŝ2
H〉. The 1Σ+

g excited state disso-

ciates to a half-and-half mixture of the ionic configurations 1sA(1)1sA(2) and 1sB(1)1sB(2),

which implies pH(1) = 0, pH(2) = 1
2
, and pH(0) = 1

2
, so that limRH−H→∞〈Ŝ2

H〉 = 0, in

agreement with what should be expected from a resonant singlet electron pair. Moreover,
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Figure 3: Value of 〈Ŝ2
H〉 for the H2 molecule at the CAS[2,2] level in the 1Σ+

g ground (GS) and
excited (ES) electronic states, as well as full-CI value of 〈Ŝ2

H〉 in the 1Σ+
g GS. The vertical line

signals the GS equilibirum distance. The CAS[2,2] curves coincide exactly with pH(1)× 3
4
.

as in the 1Σ+
g ground state, 〈Ŝ2

H〉 at any RH−H is also given by pH(1)× 3
4
. Actually, for any

atom or fragment (say A) of any molecule described at any level of theory, the equation

〈Ŝ2
A,n=1〉 = pA(1) × 3

4
holds. This means that the contribution to the local spin of A of the

sector n = 1 is always 3
4
times the probability that A contains a single electron.

The behavior observed in Fig. 3 can be fully understood in an analytical way. Calling A

and B the left and right hydrogen atoms of H2, respectively, 〈Ŝ2
A〉, in terms of c1, c2, and

the atomic overlap integral s = 〈g|u〉A, is given by 〈Ŝ2
A〉 = 3/8 − 3c1c2s

2. In any closed-

shell molecule divided in two fragments A and B, 〈ŜA · ŜB〉 = −〈Ŝ2
A〉, so that 〈ŜA · ŜB〉 =

−3/8 + 3c1c2s
2. On the other hand, the bond-order between A and B, measured through the

delocalization index, defined as δ = 2
∫
A

∫
B

[ρ(r1)ρ(r2)− ρ2(r1, r2)] dr1dr2, takes in this case

the form δ = 1+8c1c2s
2. This gives 〈ŜA·ŜB〉 = 3/8(δ−2). Using covariances, δ = 2[1−pH(1)].

In the 1Σ+
g ground state, c1 = −c2 = 1/

√
2 and pH(1) = 1 in the RH−H → ∞ limit. This

leads to 〈ŜA · ŜB〉 = −〈Ŝ2
A〉 = −3

4
and δ = 0 at large internuclear distances. However,
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in the 1Σ+
g excited state, c1 = c2 = 1/

√
2 and pH(1) = 0 in the RH−H → ∞ limit, giving

〈ŜA · ŜB〉 = −〈Ŝ2
A〉 = 0, as well as δ = 2. All this is in perfect agreement with our previous

insights.

A FCI calculation in the 1Σ+
g electronic ground state of the H2 molecule gives 〈Ŝ2

H〉 values

marginally lower than those in the CAS[2,2] calculation (Fig. 3). The small differences are

due to the slightly different value of pH(1) in the CAS[2,2] and full-CI calculations, and

show that good qualitative evolutions can be predicted from wavefunctions as soon as the

limitations of the SDW are liberated.
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Figure 4: Value of 〈Ŝ2
H〉 for the H2 molecule in the first 3Σ+

u excited electronic state. This
is the direct sum of the n = 1 and n = 2 contributions, equal to S(S + 1)pH(n = 1) and
S(S + 1)pH(n = 2), with S = 1/2 and S = 1, respectively.

The local spin for the 3Σ+
u state of the H2 molecule is very well described at the ROHF

level, and is plotted as a function RH−H in Fig. 4. At variance with the ground state, both

electrons are coupled to a triplet, so that the contribution coming from sector n = 2 to 〈Ŝ2
H〉

is not zero but is given by S(S + 1)× pH(2) with S = 1. The sector n = 1 has an analogous

expression, i.e. S(S + 1) × pH(1) with S = 1
2
. However, the pH(n) probabilities are now

different. In the triplet state, the antisymmetry (Pauli) requirement keeps the equal-spin
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electrons further apart than in the singlet state. Actually, for a one-state site Hamiltonian,

the probability to occupy the same site would be exactly zero. This results in a pH(1)

probability that is greater for the triplet than for the singlet at any internuclear distance,

although it correctly approaches the value 1.0 at long distances in both cases. Consequently,

as in the ground state, limR→∞〈Ŝ2
H〉 = 3

4
. The progressive decrease of pH(2) with R causes

the sector n = 2 to be less an less important as comparared to the sector n = 1 as the

internuclear distance increases. However, at the shortest computed distance both sectors

are equally important. Finally, it is worth noticing that the above behaviors of pH(1) and

pH(2) are responsible for the local spin being a continuously decreasing function of R in the

3Σ+
u excited state of H2. It is interesting that a partial statistical argument was already put

forward to understand the local spin of this triplet state by Ramos-Cordoba, Salvador and

Reiher et al.50 Here we put it on firm grounds.

6.2 The H –
3 molecule

This anion allows us to show the emergence of new phenomena without leaving simplicity. We

have performed a RHF//6-311G(p) calculation of the linear H –
3 anion in its ground singlet

state and analyzed the local spin components. The SDW can be written as |σgσ̄gσuσ̄u|,

and we have 5 sectors and 9 spin-sectors. If we use a minimal basis set model with zero

differential overlap, this is the Pimentel-Rundle three-center four-electron bond,51,52 where

σg = 1/2(1sb +
√

21sa + 1sc) and σu = 1/
√

2(1sb − 1sc), with the central H atom labeled as

a. As soon as overlap is allowed, the atomic overlap integral 〈σg|σu〉A ceases to be negligible,

with interesting outcomes. We have collected in Table 4 the local spin components of the

two non-equivalent H atoms in H –
3 : A ≡ Ha and A ≡ Hb.

Let us first comment on the probabilities of the different sectors. It is a straighforward,

yet interesting exercise to build the atomic charges of the central and terminal H atoms from

the sector probabilities (NA =
∑

n p
A(n)×n). Ha is positively charged, and the extra anionic

electron is accumulated in the terminal Hb and Hc atoms, with Q(Hb) = Q(Hc) = −0.633

32



au. It is easy to check that the squared spin is fixed in all the possible distributions of

electrons in the five sectors, except in one, when nα = nβ = 1. For instance, if there are

no electrons, the contribution of this sector to the local spin is 〈Ŝ2〉 = 0. Similarly, if there

is one, be it described by an α or β subdeterminant, its squared spin contribution will be

3/4, 2 if we have two same spin electrons. However, when we consider a spin sector with

two opposite spin electrons, these can be coupled either as a singlet or as a triplet, and the

local spin contribution ceases to be symmetry fixed. A much more detailed view is possible,

since a look at the weighted contributions (LS in the Table) shows that the (0, 2), (1, 1) and

(2, 0) contributions are equal (although different in Ha and Hb). This is due to the fact that

one can only build triplets in this system from σgσu subdeterminants, since the use of two

σg functions must lead to a singlet. Spin-adapted sectors are thus also possible, a general

formulation of which will be developed in the near future.

We can thus state that the central/terminal H atoms have a probability 0.412/0.041 of

being found with no electrons, a probability 0.449/0.315 of being found with one electron in

a S = 1/2 state, with its two MS = ±1/2 constituents, a probability 0.017/0.012 of being

found in a two-electron triplet and 0.117/0.602 in a singlet, 0.006/0.030 in a three-electron

doublet, and an almost negligible value of a four-electron singlet. Interatomic couplings can

be analyzed in an equivalent way. We stress that all this complexity is lost in RC analyses

which mix inter- with intra-fragment couplings. For instance, the preference for singlet

coupling of the n = 2 sector is considerably larger in the terminal atoms, which are behaving

as a singlet hydride. In the end, as evidenced in the last column of Table 4, the local spin

of each H atom is clearly dominated by the n = 1 sector. Being pA(1) larger in the central

hydrogen, its local spin is consequently larger.

We have previously shown24 that the above-mentioned zero differential overlap model for

this system leads to a neutral central atom and two Q = −0.5 terminal ones. The model

distribution functions for the full system, p(nc, na, nb), are p(2, 0, 2) = 1/4, p(2, 2, 0) =

p(0, 2, 2) = 1/16, p(2, 1, 1) = p(1, 1, 2) = 1/4, and p(2, 1, 1) = 1/8 with zero probability of
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triplet coupled electrons at the same atom due to Pauli exclusion, so that two ones in the

above trios, like in (1, 1, 2) implies opposite spins for them. It is immediate to show that

this model leads to 〈Ŝ2
Ha
〉 = 1/2 × 3/4 = 0.375, and to 〈Ŝ2

Hb
〉 = 3/8 × 3/4 = 0.281, which

are rather close to the results in Table 4. As it is starting to become clear, it is electron

localization and delocalization patterns which govern local spins.

Table 4: Local spin components of a single H atom of the H−3 molecule at the restricted
Hartree-Fock (RHF) level. nα and nβ are the number of α and β electrons in H, respectively,
n = nα + nβ, and LS(nα, nβ) = pH(nα, nβ)× 〈Ŝ2

A,nα,nβ
〉. Data for the central and terminal H

atoms are found in the upper and lower parts of the Table, respectively.

nα nβ pH(nα, nβ) 〈Ŝ2
A,nα,nβ

〉 LS(nα, nβ) n 〈Ŝ2
H,n〉

0 0 0.4119 0 0.0000 0 0.0000
0 1 0.2243 3/4 0.1683 1 0.3365
0 2 0.0056 2 0.0111 2 0.0333
1 0 0.2243 3/4 0.1683 3 0.0045
1 1 0.1222 0.0910 0.0111 4 0.0000
1 2 0.0030 3/4 0.0023 Total 0.3744
2 0 0.0056 2 0.0111
2 1 0.0030 3/4 0.0023
2 2 0.0001 0 0.0000
nα nβ pH(nα, nβ) 〈Ŝ2

A,nα,nβ
〉 LS(nα, nβ) n 〈Ŝ2

H,n〉
0 0 0.0410 0 0.0000 0 0.0000
0 1 0.1576 3/4 0.1182 1 0.2364
0 2 0.0039 2 0.0077 2 0.0231
1 0 0.1576 3/4 0.1182 3 0.0222
1 1 0.6061 0.0127 0.0077 4 0.0000
1 2 0.0148 3/4 0.0111 Total 0.2818
2 0 0.0039 2 0.0077
2 1 0.0148 3/4 0.0111
2 2 0.0004 0 0.0000

6.3 The NaF and Ne2 molecules

Small, or even negligible local spins can be found in closed-shell molecules even though the

CD and not Mayer’s or RC’s approaches are used. From what we have said up to now,

this will be clearly the case when the fragments are spin paired and there is little covalent

delocalization among them. This is the situation expected in largely ionic or van der Waals
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molecules. Since the local spins of this type of systems will not be impacted much by electron

correlation, we show here RHF data on the NaF and Ne2 molecules. Only spinless sectors

with non-negligible probabilities are shown in Table 5.

Table 5: Local spin components of the Na atom in the NaF molecule (left), and of the Ne
atom in Ne2 at the RHF level. Only results for sectors n = 8− 12 of NaF and n = 9− 11 of
Ne2 are shown.

n pNa(n) 〈Ŝ2
Na,n〉 n pNe(n) 〈Ŝ2

Ne,n〉
8 0.0001 0.0001 9 0.0005 0.0004
9 0.0186 0.0140 10 0.9990 0.0000
10 0.9113 0.0021 11 0.0005 0.0004
11 0.0681 0.0511 Total 0.0008
12 0.0018 0.0017

Total 0.0690

In NaF, the Na atom has only three contributing sectors, with 9, 10 and 11 electrons.

The electron distribution is vastly dominated by the Na+ cation, which is clearly almost

fully closed-shell paired, since the sector with n = 10 provides a very small squared-spin.

There is a 7% probability to find the neutral Na atom distribution, and about 2% to find the

Na2+ cation. In both cases, 3/4× p provides a very good match with the spin contributions

found in the Table, which demonstrates that the n − 1 remaining electrons (ten or eight,

respectively) are coupled to a singlet, leaving a double behind. The situation in dineon is

taken to the limit. The ten electrons of each atom form a singlet. We think that these

two simple cases demonstrate that there are strong theoretical reasons supporting the use of

non-zero local spins in closed-shell systems.

6.4 Subdeterminant partition in LiH

We consider here an even thinner partition of the local spin in the LiH molecule. At the

RHF//6-311G(d,p) level the local spin of each atom is small, 0.073, showing the largely

ionic character of the system. The SDW takes the form |1σ1σ̄2σ2σ̄|, with rather localized

1σ and 2σ functions on the Li and H atoms, respectively. There are several subdeterminants
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comprising each spin sector. For instance, if we deal with one β electron, we have two

subdeterminants (in this case one electron functions): 1σ̄, 2σ̄. Their contributions, in the

notation already commented, are found in entries 2 and 3 of the left panel of Table 6. The

first of these two determinants contributes negligibly to the H local spin. The second, 2σ̄,

together with its one-electron α counterpart (k = 6), make 90% of it. In orbital parlance,

single electrons described by a 2σ-like function, which are part of the neutral LiH resonant

structure, build the local spin of the sytem.

Table 6: Local spin components of the H atom of the LiH molecule, 〈Ŝ2
H〉, at the restricted

Hartree-Fock (RHF) level. Ψk is the subdeterminant, nα and nβ are the number of α and β
electrons in H, respectively, n = nα + nβ, Mk = 1

2
(nα− nβ), nd has been defined in the text,

and sum = nd/2 +M2
k ≡ 〈Ŝ2

H,n,k〉. 〈Ŝ2
H〉 =

∑4
n=0〈Ŝ2

H,n〉 = 0.072979.

k Ψk n/2 M2
k nd/2 sum pkn pkn × sum nα nβ 〈Ŝ2

A,nα,nβ
〉 n 〈Ŝ2

A,n〉
1 || 0 0 0 0 0.002205 0.000000 0 0 0.000000 0 0.000000
2 |1σ| 1/2 1/4 1/2 3/4 0.000008 0.000006 0 1 0.033439 1 0.066878
3 |1σ̄| 1/2 1/4 1/2 3/4 0.000008 0.000006 1 0 0.033439 2 0.001008
4 |2σ| 1/2 1/4 1/2 3/4 0.044577 0.033433 1 1 0.000336 3 0.005094
5 |2σ̄| 1/2 1/4 1/2 3/4 0.044577 0.033433 0 2 0.000336 4 0.000000
6 |1σ2σ| 1 1 1 2 0.000168 0.000336 2 0 0.000336
7 |1σ2σ̄| 1 0 1 1 0.000168 0.000168 1 2 0.002547
8 |1σ1σ̄| 1 0 0 0 0.000000 0.000000 2 1 0.002547
9 |2σ2σ̄| 1 0 0 0 0.901148 0.000000 2 2 0.000000
10 |1σ̄2σ| 1 0 1 1 0.000168 0.000168
11 |1σ̄2σ̄| 1 1 1 2 0.000168 0.000336
12 |1σ1σ̄2σ| 3/2 1/4 1/2 3/4 0.003395 0.002546
13 |1σ1σ̄2σ̄| 3/2 1/4 1/2 3/4 0.000001 0.000000
14 |1σ1σ̄2σ̄| 3/2 1/4 1/2 3/4 0.003395 0.002546
15 |1σ̄2σ2σ̄| 3/2 1/4 1/2 3/4 0.000001 0.000000
16 |1σ1σ̄2σ̄2σ̄| 2 0 0 0 0.000013 0.000000

The rest of the table can be interpreted easily. For instance, there is only one subde-

terminant with either two α or two β electrons, |1σ2σ| and |1σ̄2σ̄|, respectively. Being its

probability negligible, it does not contribute to the local spin. The two subdeterminants

|1σ1̄σ|, and |2σ2̄σ| contribute zero to 〈S2
H〉 (k = 8, 9, respectively). Interestingly, the second

one, in which the two electrons are singlet-coupled in the 2σ function, accounts for about

90% of all the possible electron distributions. Finally, it is also relevant to consider entries
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7 and 10, each contributing 1 to the local spin. This value is not a valid S(S + 1) squared

spin. The first of these two subdeterminants is |1σ2̄σ|, while the second becomes |2σ1̄σ|,

and we face here the same situation already commented. Spin adapted sector would lead

to triplet/singlet plus/minus linear combinations of the above, respectively. The first would

contribute 2 and the second 0 to the local spin.

Although we leave a detailed account of the following for future works, an electron-hole

analogy is apparent at this point. Each electron subdeterminant for the H atom in Table 6 can

be associated to a hole counterpart in the Li atom that completes the global wavefunction.

We have organized them such that ke + kh = 17 in the table. The first and the last entries,

or entries 4 and 13. An electron in determinant as k = 4 contributes with its probability

pkn ≈ 0.04 and spin 3/4 to 〈S2
H〉. These numbers correspond to the probability of finding

a 2σ electron in H contributing with its single-electron squared spin. Its hole companion

determinant k = 13 would also contribute with the same probability and spin to 〈S2
Li〉, since

it now describes the three remaining electrons in the other region, an event which has of

course the same probability and carries the same squared spin.

In other words, Table 6 for the Li atom is obtained by changing the determinants in the

Ψk column by those of the Ψ17−k one. This is another demonstration that the local spins

of the two atoms of diatomic singlets are equal. Another interesting look focuses in the

interatomic spin couplings. The n = 1 spin doublet formed by the k = 2, 5 subdeterminants

in H couples to a singlet with its hole equivalent doublet in Li, formed by the k = 14, 11

subdeterminants. Similarly, the n = 2 H triplet formed by entries k = 4, 13 and the plus

linear combination of 7 and 9 couples also to a singlet with its equivalent hole entries in

Li. More complex rules needing from simple Clebsch-Gordan algebra can be found in more

general cases. Going to the middle panel of Table 6, we also recognize that the A ≡H (nα, nβ)

local spin contributions will be equal to the (N/2− nα, N/2− nβ) ones in Li, or that in the

rightmost panel the local spin of each n-electron sector in the H atom is equal to that of the

partner (N − n)-electron sector in Li. We find this symmetry particularly appealing.
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Figure 5: CAS[2,2] values of 〈Ŝ2
H〉, (1 + QH)× 3

4
, and pH(1)× 3

4
for the H atom of the LiH

molecule in the ground electronic state as a function of the Li−H distance, RLi−H.

We also analyze here the evolution of the local spins in LiH at the simple CAS[2,2] level,

which allows for a correct molecular dissociation, maintaining the basis set. We have already

shown,53 that the LiH dissociation can be well understood by a one-parameter ionization.

An electron from the Li atom is transfered as the interatomic distance decreases to the H

moiety. In the process, only the p(nLi = 3, nH = 1) and p(nLi = 2, nH = 2) probabilites

become affected. The second grows at the expense of the first, and the sum of the two

remains very close to 1. With this, 〈Ŝ2
H〉 should be just measuring how large p(3, 1) (or

pH(1)) is. Fig. 5 shows how well this assumption works.

We end the subsection by showing the impact of static correlation on the spin sectors.

Table 7 contains a CAS[4,12]//6-311G(d,p) calculation in LiH at the RHF geometry. It

is known that in highly ionic compounds the introduction of electron correlation increases

covalency. This increases the pH(1) probability, and thus the H local spin slightly.
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Table 7: Sector-resolved local spin components of the H atom in LiH, 〈Ŝ2
H〉. CAS[4,12]//6-

311G(d,p) calculation at the RHF geometry. The total value of 〈Ŝ2
H〉 for the RHF and CAS

calculation is 0.072979 and 0.081586, respectively.

n 〈Ŝ2
A,n〉

0 0.000000
1 0.075411
2 0.001245
3 0.004930
4 0.000000

6.5 Second period diatomics

We close the presentation of representative examples by examining the global local spins of

the first and second period homonuclear diatomics. We have performed high level heat-bath

configuration interaction (HCI)54 calculations in their ground states with the aug-cc-pVTZ

basis set, using the pySCF suite.49 He2 and Ne2 have been excluded since their local spins

are close to zero and do no offer any additional insight. RHF (or ROHF) calculations have

also been performed for comparison purposes. Results are contained in Table 8

Table 8: Local spin 〈Ŝ2
A〉 in the ground state HCI//aug-cc-pVTZ wavefunctions of the first

and second period homonuclear diatomics. R(O)HF values are also included for comparison.

Molecule R(O)HF HCI
H2 0.375 0.431
Li2 0.367 0.427
Be2 0.279 0.395
B2 1.288 1.626
C2 1.205 2.016
N2 1.140 1.382
O2 1.354 1.410
F2 0.466 0.603

Several considerations are due. First, the 〈ŜA · ŜB〉 spin couplings are just the negatives

of 〈Ŝ2
A〉 except in the two triplets, B2 and O2, where 〈ŜA · ŜB〉 = −〈Ŝ2

A〉 + 1. Notice that

standard single bonds provide correlated local spins close to 0.43 as in H2 and Li2. This

shows how correlation induces localization of the bonding Lewis electron pair in the atomic
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regions: Increasing the atomic localized character of the electron pair changes the local spin

from 3/8 in an ideally delocalized situation to 3/4 in a perfect diradical.

Let us consider now Be2, where correlation is important. At the HF level, the local spin

is significantly smaller than 3/8. We must recall that the dissociation limit provides two

closed-shell singlet atoms, and that the RHF solution provides a local spin directly related

to bond order. A small bond order leads to a small local spin. Correlation is important, as

expected, to account for bonding in Be2. It is known that the bond order of this molecule

increases considerably if a correlated description is used.

The mean-field description of diboron is known55 to lead to two delocalized triplet coupled

electrons in the 1πu block and a 2σ bonding pair from strong sp hybridization that leaves a

delocalization index close to 2.0. This is basically our delocalized triplet+delocalized singlet

model with local spin equal to 1.25. The introduction of electron correlation seems to localize

these pairs in their atomic regions, increasing the local spin considerably. RHF dinitrogen

is close to a pure triple bond with local spin equal to 3 × 3/8 = 9/8 ≈ 1.125. Correlation

induces a large decrease of its bond order from about 3.0 at the RHF level to about 2 at the

correlated one. Here we also see a localization that increases its local spin to 1.38. Dioxygen

seems to be well described by our simple singlet+triplet model at the ROHF level, with a

local spin not far from 1.25, that again increases through correlation induced localization.

Similarly, F2 is shown to be closer to a proto-covalent bond, and not to a fluctuating charge-

shift link.56 If we imagine a dissociating electron pair similar to that in H2, we can take Fig. 3

to check that its local spin, about 0.6, corresponds to that of H2 at around 1.5 Å, more than

twice the dihydrogen internuclear equilibrium distance. If the electron pair fluctuations that

are assumed to exist in charge-shift bonds would be relevant, their spin singlet nature would

decrease, not increase its local spin.

Last, but not least, the singlet ground-state dicarbon deserves a final comment. Notice

that this is the system with a largest HF/HCI difference by large. At the mean-field level,55

the bond order rises to about 3.2, and a local spin of 1.2. The bond order decreases to
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about 1.8 on including correlation. Even in the most naïve case in which the eight valence

electrons were engaged in ideal covalent bonds leading to a bond order of 4, this would

lead to a top covalent local spin of 1.5. The large C local spin can only be explained by

a prominent localized singlet diradical component. If the extra valence electron pair would

be considered as a localized singlet diradical, this would add 0.75 to the local spin. This,

together with correlation enhaced local spins of the covalen terms, would justify a 2.0 local

spin. Notice that the localization of this singlet diradical would contribute neither to the

interatomic delocalization nor to a substantial increase of the binding energy of the system.

These results are in consonance with those obtained from RC local spins.22 Further work is

still needed to pinpoint chemical bonding in this system.

7 Conclusions

We have presented in this work an open quantum systems comprehensive account of local

spins. These were introduced by Clark and Davidson6 as descriptors of the local distribu-

tion of the electronic spins and their couplings in molecules. These authors used projection

operators to define Hermitian fragment spin operators that fulfil all quantum mechanical

requirements for well-behaved angular momenta. Fragment spins solve the inability of tradi-

tional measures to offer any insight on spin coupling in globlal singlets, where the spin density

is everywhere exactly zero. Several authorized voices have since then argued against CD lo-

cal spins, for they provide considerable values for closed-shell singlets. Over the years, a set

of ad hoc requisites for local spins to be considered physically meaningful were introduced,

which have led to an evolution in their definition which culminates with Ramos-Cordoba et

al proposal.17

We take here the inverse road, and show that the original path that transforms CD local

spins into RC ones is based on physically unjustified transformations when a decomposition

of two-electron operators into fragments is performed. By understanding atoms or fragments
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in-molecules as open quantum mechanical subsystems (OQSs), we rigorously show that the

CD operators are in fact offering a crystal clear picture of the distribution of spin in a

fragment-in-the-molecule. An OQS is in a general mixed state, being composed of sectors

characterized by a given number of electrons with characteristic probabilities. For each of

these n-electron sectors well-defined n-electron spin operators can be used to obtain spins

which are then weighted by the sector probability to build the CD local spin. Non-zero

fragment spins for a closed-shell singlet arise from electron delocalization. When electrons

are allowed to delocalize between fragments (a signature of covalent bonding among them),

non-zero probabilities of finding an odd number of them, for instance, appear, giving rise

to sizeable local spins. The relation of CD spins to bond orders in closed-shell molecules

discovered by Clark and Davidson thus acquires a clear meaning after these insights.

The OQS viewpoint allows for a fruitful use of models. One can propose back-of-the-

envelope sets of sector probabilities for covalent, ionic, and zwitterionic situations, and tune

their degree of localization. This leads to an easy road to classification. In fact, the two-

center, two-electron cases are fully mapped. We algebraically show that RC local spins

fail, for instance, in assigning physically meaningful spins in the dissociative limit of the

zwitterionic excited state of dihydrogen. Classification in multielectron cases is also sketched

by examining general spin eigenfunctions. We show that the local spin couplings can be used

to reflect the genealogy of the couplings, a property that we expect to use further.

The general effect of static correlation is also analyzed through the use of the Hubbard

Hamiltonian, which allows to tune the amount of correlation. We show how correlation

induced localization in a H-chain model changes completely the spin coupling pattern, which

evolves from all-negative, algebraically decaying spin couplings between all site pairs toward

an alternation of positive and negative couplings characteristic of an antiferromagnet.

Finally, a set of simple systems that exemplify our findings is examined. We think that

they demonstrate how electron localization and delocalization modulate local spins, and

open many windows into future work. In particular, we show that CD local spins in closed-
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shell molecules can actually be close to zero when delocalization is small, as in ionic or

van der Waals systems, and that high level calculations in the dicarbon molecule display

anomalously large local spins, which can probably not be understood without invoking a

considerable singlet diradical character, in agreement with results obtained with RC local

spins.50 The latter should provide results considerably similar to those of CD whenever spins

are localized. This means that RC local spins, which mix a number of ingredients in a very

clever way, maintain their usefulness, at least in ground states where zwitterionic or even

weirder resonances do not dominate.

Besides helping to clarify the many approaches and misconceptions that surround the

local spin concepts, the OQS approach will surely provide much light on issues that range

from understanding the atomic promotion concept to providing a firm ground to spin model

Hamiltonians in extended systems.
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1 Effectively unpaired electrons and local spin

The scalar field

u(r1;r′1) = 2ρ(r1;r′1)−
∫

ρ(r1;r2)ρ(r2;r′1)dr2, (1)

known as the effectively unpaired electrons density,1 and several of its properties2 have been thor-

oughly investigated. This name seems to be almost always justified since, in many cases, its

integration to all the space in different systems results in what one expects for the number of elec-

trons that are not paired with equivalent electrons of opposite spin. To cite just two very well-know

examples: the integration of u(r) over R3 for a single-electron system correctly predicts a value of

1, as it should. In the limit R→∞ of the properly dissociating H2 molecule in the 1Σ+
g ground elec-

tronic state, the integration of u(r) gives 2, again the correct number. However, some properties

of u(r) incite to think that the name of effectively unpaired electrons density may not be the most

accurate. For instance, the trace of u, that in terms of the occupation numbers, ni, of the natural

orbitals of the system, is given by nd = ∑i ni(2−ni) has an upper limit of 2N,2 i.e. the number of

effectively unpaired electrons can be greater that the number of electron themselves. An example
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of this is a molecule with only spin up or spin down electrons described at the configuration inter-

action level. Another case in which nd ≥ N, also pointed out by Staroverov and Davidson, is the

1Σ+
u excited electronic state of the H2 molecule at large internuclear distances. We will show in

this subsection another counterintuitive behavior of u(r).

Let us consider the two 1Σ+
g states that can be formed for the H2 molecule from a linear combi-

nation of the Slater determinants |σgσ̄g| and |σuσ̄u|: Ψ= c1|σgσ̄g|+c2|σuσ̄u|. The state with c1 and

c2 of the opposite sign corresponds to the ground state cited above, while c1 and c2 with the same

sign indicates an excited state (ES). From |σgσ̄g|= σg(r1)σg(r2)Θ and |σuσ̄u|= σu(r1)σu(r2)Θ,

where Θ = 2−1/2(αβ −βα) is the spin function, the electron density of the above Ψ is given by

ρ(r;r)≡ ρ(r) = ngσ2
g (r)+nuσ2

u (r), where ng = 2c2
1 and nu = 2c2

2, so the natural orbitals are also

σg and σu, and u(r) is given by u(r) = ng(2−ng)σ
2
g (r)+nu(2−nu)σ

2
u (r). For both the ground

and excited states, ng→ 1 and nu→ 1 in the limit R→ ∞. Hence, limR→∞ u(r) = σ2
g (r)+σ2

u (r)

and limR→∞

∫
u(r)dr = 2. On the other hand, given that σg = 2−1/2(a+ b), σu = 2−1/2(a− b),

c1 = −c2 = 2−1/2 (ground state) and c1 = c2 = 2−1/2 (excited state) in the R→ ∞ limit (where

a ≡ 1sA and b ≡ 1sB), the spatial parts of Ψ(ground state) and Ψ(excited state) at large internu-

clear distances behave as

lim
R→∞

Ψ(r1,r2)(ground state) ∼ 2−1/2(ab+ba) (2)

lim
R→∞

Ψ(r1,r2)(excited state) ∼ 2−1/2(aa+bb). (3)

The second equation shows that the wave function for the 1Σ+
g excited state becomes, at large

values of R, into a half-and-half mixture of two ionic components (aa and bb), with both electrons

in each of them with opposite spin. In other words, both electrons have perfectly paired spins,

so a scalar field purportedly giving the number of effectively unpaired electrons at R→ ∞ should

integrate to 0 and not to 2.
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For the above wave function, ρ2(r1,r2;r1,r2) = ρ2(r1,r2;r2,r1) is given by

ρ
2(r1,r2;r1,r2) = 2c2

1σ
2
g (r1)σ

2
g (r2)+2c2

2σ
2
u (r1)σ

2
u (r2)

+ 4c1c2σg(r1)σg(r2)σu(r1)σu(r2). (4)

Taking into account that 〈σg|σg〉A = 〈σu|σu〉A = 〈σg|σg〉B = 〈σu|σu〉B = 1
2 and calling S= 〈σg|σu〉A =

−〈σg|σu〉B, the direct application of Eq. 6 of the main text leads to 〈Ŝ2
A〉= 〈Ŝ2

B〉= 3
8 −3c1c2S2. In

the limit R→ ∞, S = 1
2 , so that limR→∞〈Ŝ2

A〉 = +3/4 and 0 for the the ground and excited states,

respectively. These numbers are the expected ones for the asymptotic limits given by eqs 2 and

3. In the ground state, each atomic basin harbors a single α or β electron, and there is never an

(α,β ) electron pair in any of the two atoms. Hence, the local spin of that basin is simply s(s+1)

with s = 1
2 . On the contrary, in the excited state the (α,β ) electron pair is always in A or B, giving

a null local spin in the R→ ∞ limit.

2 Ramos-Cordoba et al. local spins

As shown in Eq. 12 in the main text, Ramos-Cordoba (RC) and coworkers proposed a one-

parameter family one-parameter family RCa of expressions for 〈Ŝ2〉:

〈Ŝ2〉RCa = a
∫

u(r1)dr1 +(2a−1)
∫∫

Λ(r1,r2;r1,r2)dr1dr2

− 1
2

∫∫
Λ(r1,r2;r2,r1)dr1dr2. (5)

where Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2)−

1
2ρs(r1;r′2)ρ

s(r2,r
′
1), and a is a free parameter. This

expression satisfies Mayer’s requisites and shows correct local spins for one electron systems when

a = 3/4.

Let us examine now the excited 1Σ+
g state of H2 of the previous Section in the dissociation
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limit. The spin density vanishes for a singlet, so that Λ(r1,r2;r′1,r
′
2) = Γ(r1,r2;r′1,r

′
2), with

ρ
2(r1,r2;r′1,r

′
2) = ρ(r1;r′1)ρ(r2;r′2)−

1
2

ρ(r1;r′2)ρ(r2;r′1)

− 1
2

ρ
s(r1;r′2)ρ

s(r2;r′1)+Γ(r1,r2;r′1,r
′
2) (6)

defining Γ. With the expressions derived in the previous section, it is easy to show that ρ(r1;r′1) =

2c2
1σg(r1)σg(r

′
1)+ 2c2

2σu(r1)σu(r
′
1), so using the atomic overlap integrals for the σg and σu or-

bitals, including 〈σg|σu〉A = −1/2 in the dissociation limit, we easily come to the following ex-

pressions valid for the dissociated excited singlet:
∫

A u(r)dr = 1,
∫

A
∫

A Γ(r1,r2;r1,r2)dr1dr2 =∫
A
∫

A Γ(r1,r2;r2,r1)dr1dr2 = 1/2. With them, Ramos-Cordoba et al local spin becomes

〈Ŝ2
A〉= a− (1−2a)×1/2−1/4 = 2a−3/4. (7)

As show by RC in their Fig. 2, when a = 3/4, the above expression takes the value 〈Ŝ2
A〉 = 3/4,

and the local spin for the dissociating excited state becomes equal to that of the dissociating ground

state, a notoriously wrong result. It is interesting to notice that if a = 3/8, which coincides with

the expression proposed by Mayer and Matito,3 the local spin tends correctly to zero at dissocia-

tion. Unfortunately, this limit is approached from below, and as RC showed, the local spin in the

CAS[2,2] model becomes negative in all the sgn(c1) = sgn(c2) branch.

3 Reduced density matrices and local spin for open quantum

systems

This is an slightly expanded version of the main text treatment. We start by adopting from the

start a QCT viewpoint. Changing the indicator functions by center projections allows to read the

following in Fock space equally. We thus divide the physical space R3 into a spatial domain A and

its complementary region B = Ā, A∪B = R3 A∩B = /0. Since electrons can freely flow between
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both domains, A and B can be considered as open quantum systems (OQS). In a pure state, the

density operator of a N−electron system can be written as ρ̂(x;x′) = Ψ?(x′)Ψ(x), where x= rσ

denotes a spatial(r)-spin(σ ) coordinate and x stands for x1 · · · ,xN . The reduced density operador

of domain A, ρ̂A, is obtained from ρ̂ by performing a spatial trace over the B region, with the usual

x′i→ xi identification before integration. Defining the indicator function 1A
n = Πn

i=1ωA(xi), where

ωA(xi) is a Heaviside-like domain weight function such that ωA(xi) = 0 for xi /∈ A and ωA(xi) = 1

for xi ∈ A, with an equivalent definition for ωA(x
′
i), ρ̂A can be written in the form4,

ρ̂
A =

N

∑
n=0

ρ
A
n (xi≤n;x′i≤n), (8)

where ρA
0 =

∫
B Ψ?(x)Ψ(x)dx and, for n≥ 1

ρ
A
n (xi≤n;x′i≤n) = 1

′A
n 1A

n

(
N
n

)∫
B

ρ̂(x;x′)dxi>n, (9)

where dxi>n = dxi+1× ·· · × dxN and xi≤n = x1× ·· · ×xn. To simplify the notation, we will

assume that, before doing any integration, the x′i → xi identification has been performed for all

the integrated variables, for instance, x′
i>n→ xi>n in eq 9. The subsystem A is thus described by a

mixed density operator with N +1 possible sector densities ρA
n (n = 0, · · · ,N), each integrating to

pA(n), which is the probability that n and only n electrons reside in domain A and the remaining

N−n electrons in the domain B, i.e. TrρA
n =

∫
A ρA

n dxi≤n = pA(n). Normalized sector densities can

be defined as ρ̃A
n = ρA

n /pA(n), so that Trρ̃A
n = 1 and ρ̂A = ∑n pA(n)ρ̃A

n . Then, each ρ̃A
n can be dealt

with as a pseudo pure system operator.

We define the reduced density matrix of order m≤ n (mRDM) of sector n as

ρ
A,m
n (xi≤m;x′i≤m) =

n!
(n−m)!

∫
ρ

A
n (xi≤n;x′i≤n)dxi>m, (10)

with the spinless mth order RDM given by ρ
A,m
n (ri≤m;r′i≤m) =

∫
ρ

A,m
n (xi≤m;x′i≤m)|σ ′i→σi

dσi≤m.
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Using eq 9, ρ
A,m
n can also be put in the form

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

mΛ
m
N,n

∫
D

ρ(x;x′)dxi>m, (11)

where Λm
N,n = N!/[(N− n)!(n−m)!], D is a domain such that electrons m+ 1 to n are integrated

over A, and electrons n+ 1 to N over B. Adding Λm
N,n
∫

D ρ(x;x′)xi>m for values of n between 0

and N one obtains ρm(xi≤m;x′i≤m), the mRDM of the full A+B system. As a consequence, the

sum of the mRDMs of all sectors n of domain A is given by ρA,m = ∑n ρ
A,m
n = 1

′A
m1A

mρm. If the ρ̃A
n ’s

are used in the rhs integral of eq 10, one obtains ρ̃
A,m
n the normalized mRDMs of sector n. Then,

ρA,m = ∑n pA(n)ρ̃A,m
n . In the following two subsections we will consider separately the RDMs of

OQSs for single-determinant (SDW) and multi-determinant (MDW) wave functions.

3.1 The single-determinant case

Let us consider a N−electron system described by a SDW |Ψ〉 = (N!)−1/2det|u1(x1) · · ·uN(xN)|.

To aid in the derivation of ρA
n and ρ

A,m
n , we will introduce some definitions. We call SA and SB

the N×N atomic overlap matrices (AOM) between the molecular spin-orbitals (MSO) |ui〉 in A

and B, respectively, i.e. SA
i j = 〈ui|u j〉A and SB

i j = 〈ui|u j〉B, k = {k1, · · · ,kn} and l = {l1, · · · , ln} are

two ordered sets (k1 < · · ·< kn and l1 < · · ·< ln) of n≤ N numbers, k̃ and l̃ their complementary

sets of N−n elements, and SA(k|l) and SB(k|l) the n×n matrices obtained by selecting the rows

indicated by k and the columns indicated by l from SA and SB, respectively. Similarly, SA(k̃|l̃) and

SB(k̃|l̃) are the (N− n)× (N− n) matrices obtained from SA and SB by selecting the rows k̃ and

the columns l̃. Each of the above arrays is square, so that their determinants can be determined.

Each of these determinants is a number which, in turn, defines an element of another array. For

instance, det|SA(k|l)| is the kl element of an array SA, and det|SB(k|l)| is the kl element of an

array SB. Notice that SA and SB are m×m matrices, where N!/[n!(N− n)!] is the full number

of k and l ordered sets. The m×m arrays S̃A
kl and S̃B

kl are defined from SA(k̃|l̃) and SB(k̃|l̃) in a

6



similar way. Using the above definitions, the sector density of domain A, ρA
n , can be written as

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k,l

|Uk〉 〈Ul| S̃B
kl, (12)

with |Uk〉= (n!)−1/2|uk1(x1) · · ·ukn(xn)| and 〈Ul|= (n!)−1/2|ul1(x
′
1) · · ·uln(x

′
n)|.

Important simplifications arise when a one-electron basis |up
i 〉, orthonormal in R3 and orthog-

onal in A and B, is used to construct |Ψ〉. This can be achieved by diagonalizing SA, U†SAU =

diag(si) = s. Then, the basis |up〉 = |u〉U is obviously orthonormal in R3, so that |Ψ〉 does not

change, and orthogonal in A (〈up
i |u

p
j 〉A = δi jsi)), and B (〈up

i |u
p
j 〉B = δi j(1− si)). Moreover, an

orthonormal one-electron basis in A, |φ〉, can also be obtained as |φ〉 = |up〉s−1/2. 1 The |up〉

basis is exactly that proposed by Ponec for SDW’s, and Ponec’s orbitals |up
i 〉, or domain natural

orbitals (DNOs), have been successfully used to extract chemical information, and have been also

interpreted in statistical terms. It can be shown that, in the DNO basis, ρA
n is given by

ρ
A
n (xi≤n;x′i≤n) = 1′An 1A

n ×∑
k

|φk〉 pkn 〈φk|, where (13)

|φk〉=
1√
n!
|φk1(x1) · · ·φkn(xn)〉, (14)

and pkn = ∏
N
i pi, with pi = si if i∈ k and pi = 1−si if i∈ k̃. Hence, pkn provides the contribution of

|φk〉 to pA(n), which is finally obtained by adding all the possible arrangements of the n electrons

in the the |φ〉 basis: ∑k pkn = pA(n). The normalized sector density ρ̃A
n is also given by eq 13

substituting pkn by p̃kn = pkn/pA(n) = pkn/∑k pkn .

Being |φ〉 an orthonormal basis within the domain A, the 1 and 2RDMs ρ
A,1
n and ρ

A,2
n for each

determinant |φk〉 are easily obtained from Eqs. 10, 13 and 14 by simple application of the Slater

1Since SA is blocked by spin (SA = SA,α ⊕SA,β ), in case of a closed-shell SDW, SA,α = SA,β , and the N/2 orbitals
derived from diagonalizing SA,α and SA,β are the same, which means that, leaving aside the spin part of MSO’s, each α

orbital is equal to an equivalent β orbital, and is orthogonal to all the other β orbitals. However, in open-shell SDW’s
SA,α 6= SA,β and the α and β orbitals are not, in general, orthogonal to each other. The α−β orthogonality is due in
this case to the spin parts of MSO’s.
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rules:

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
k

pkn ρ
A,1
n,k (x1;x′1) (15)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
k

pkn ρ
A,2
n,k (x1,x2;x′1,x

′
2), where (16)

ρ
A,1
n,k (x1;x′1) =

n

∑
i=1

φki(x1)φ
?
ki
(x′1) and (17)

ρ
A,2
n,k (x1,x2;x′1,x

′
2) =

n

∑
i, j=1

φki(x1)φk j(x2)
[
1− p̂i j

]
φ
?
ki
(x′1)φ

?
k j
(x′2). (18)

Since Tr(ρA,1
n,k )= n and Tr(ρA,2

n,k )= n(n−1) for any k, we have Tr(ρA,1
n )= n× pA(n) and Tr(ρA,2

n )=

n(n− 1)× pA(n), that represent the contributions of sector n to the total number of electrons and

pairs of electrons of domain A, respectively.

3.2 The multi-determinant case

We will assume now that |Ψ〉 is a N−electron MDW expressed in terms of a set of 2 f orthonormal

MSO’s |u〉 = {|u1〉 · · · |u2 f 〉} as |Ψ〉 = ∑
M
r=1Crψr(1,N), where ψr(1,N) = (N!)−1/2 det|ur1 · · ·urN |,

and uri (i = 1 · · ·N) is the subset of N MSO’s that define ψr(1,N). We will collectively label

this subset as r = (r1, · · · ,rN). As in the above section, let us consider now the transformed set

|up〉 = |u〉U , where U is the eigenvector matrix of SA = 〈u|u〉A, i.e. U†SAU = diag(si) = s. Here,

it is also possible to compute |φ〉= |up〉s−1/2, the orthonormal one-electron basis in A. In the |up〉

basis, |Ψ〉 can be written as (see Supplementary Information of Ref. 4)

Ψ(1,N) = ∑
j

Djχj(1,N), (19)

where j ≡ { j1 · · · jN}, Dj = ∑
M
r=1Crdet[Urj ], χj = (N!)−1/2 det|up

j1 · · ·u
p
jN |, and Urj is the (N×N)

matrix obtained from U by selecting the rows and columns denoted by r and j, respectively. The

summation over j in eq 19 runs, in principle, over all possible ordered subsets of N elements

obtained from the first 2 f natural numbers. However, given that all χj’s are built with the same
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number of α and β MSO’s (say, Nα and Nβ ), j1, · · · , jNα
and jNα+1, · · · , jN must be necessarily in

the ranges [1, f ] and [ f +1,2 f ], respectively, reducing considerably the number of terms in eq 19.

Matrix U is unitary but, in general, Urj is not. However, for a closed-shell SDW f = N/2, j and

r can only be j = r = (1,2, · · · ,N), and Urj = U . This is the well-known invariance of a Slater

determinant under an unitary transformation of all of its MSO’s.

As in the SDW case, we only need the 1RDM (ρA,1
n ) and 2RDM (ρA,2

n ) of sector n. Using eq 19

in eq 11, we obtain

ρ
A,m
n (xi≤m;x′i≤m) = 1

′A
m1A

m ∑
j,k

DjD?
kIm

jk(xi≤m;x′i≤m), where (20)

Im
jk(xi≤m;x′i≤m) = Λ

m
N,n

∫
D

χj(x)χ
?
k(x

′)dxi>m. (21)

The orthogonality in A and B of the |up〉 basis greatly simplifies the computation of the Im
jk inte-

grals. After a lenghty manipulation, that we omit here for brevity, we have

I1
jj(x1;x′1) =

N

∑
i=1

φ ji(x1)φ
?
ji(x

′
1)×nA,1

ji ji. (22)

If χj and χk differ in a single MSO, say up
ji 6= up

ki
we have

I1
jk(x1;x′1) = φ ji(x1)φ

?
ki
(x′1)×nA,1

jiki
(up

ji 6= up
ki
), (23)

and finally, I1
jk = 0 if χj and χk differ in two or more MSO’s. In Eqs. 22 and 23, nA,1

jiki
= (s jiski)

1/2×

p ji(n−1) and p ji(n−1) represents the probability that n−1 electrons lie in A and N−n electrons

lie in B for a hypothetical (N−1)−electron determinant built with all MSO’s of χj except up
ji .

The computation of I2
jk runs parallel to that of I1

jk. We obtain

I2
jj(x1,x2;x′1,x

′
2) =

1
2

Â12Â′12 ∑
i,l

φ ji(x1)φ jl(x2)φ
?
ji(x

′
1)φ

?
jl(x

′
2)nA,2

ji jl ji jl (24)

where nA,2
ji jlkikl

= (s jis jl skiskl)
1/2× p ji jl(n− 2), Â12 = 1− p̂12 is an operator that antisymmetrizes
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with respect to variables in the unstarred MSO’s, Â′12 acts likewise in the starred MSO’s, and

p ji jl(n−2) represents the probability that n−2 electrons lie in A and N−n electrons lie in B for

a hypothetical (N−2)−electron SDW built with all MSO’s of χj except up
ji and up

jl . If χj and χk

differ in a single MSO up
ji 6= up

ki
(or φ ji 6= φki) one has

I2
jk(x1,x2;x′1,x

′
2) = Â12 ∑

l 6=i
φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
jl(x

′
2)nA,2

ji jlki jl
(25)

If χj and χk differ in two MSO’s up
ji 6= up

ki
(or φ ji 6= φki) and up

jl 6= up
kl

(or φ jl 6= φkl ), we obtain

I2
jk(x1,x2;x′1,x

′
2) = Â12φ ji(x1)φ jl(x2)φ

?
ki
(x′1)φ

?
kl
(x′2)nA,2

ji jlkikl
. (26)

Finally, I2
jk = 0 if χj and χk differ in three or more MSO’s.

Equations 22-26 can be expressed in the |up〉 one-electron basis instead of the |φ〉 basis simply

removing the (s jiski)
1/2 and (s jis jl skiskl)

1/2 factors from the definition of nA,1
jiki

and nA,1
ji jlkikl

.

Based on all the above expressions, three steps are necessary to compute the 1RDM and 2RDM

of each sector n: (1) Diagonalize SA, obtaining the matrix U , the eigenvectors si, and the trans-

formed MSO’s |up〉 and |φ〉; (2) Transform Ψ(1,N) to the form given by eq 19; (3) For each sector

n and determinant χj , compute the probabilities p ji(n−1) and p ji jl(n−2). Clearly, we can obviate

the sector n = 0, since the 1RDM and 2RDM are zero in this case, ρ
A,1
0 = ρ

A,2
0 = 0. Similarly, only

p ji(n−1) is needed for n = 1, since ρ
A,2
1 = 0. Once these calculations have been performed, ρ

A,1
n

and ρ
A,2
n in the |φ〉 basis can be written as

ρ
A,1
n (x1;x′1) = 1

′A
1 1A

1 ∑
i,k

γ
n
ikφi(x1)φk(x

′
1), (n≥ 1), (27)

ρ
A,2
n (x1,x2;x′1,x

′
2) = 1

′A
2 1A

2 ∑
i, j,k,l

Γ
n
i jklφi(x1)φ j(x2)φ

?
k (x

′
1)φ

?
l (x

′
2) (n≥ 2). (28)

Their spinless analogues are obtained after integrating the spin variables. To avoid an overexcess

of definitions, we will continue to maintain, however, the names of γn
ik and Γn

i jkl for the coefficient

that multiplies φi(r1)φk(r
′
1) and φi(r1)φ j(r2)φ

?
k (r1)φ

?
l (r2), respectively, after this integration of
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the spin is carried out. Similarly, we will continue to maintain the γn
ik and Γn

i jkl names when the

|up〉 basis is employed instead of the |φ〉 basis.

The sum ∑
N
n=1 p ji(n−1) is equal to 1 since it gives the probability that the domain A contains

between 0 and N−1 electrons for a hypothetical (N−1)−electron SDW. Similarly, ∑
N
n=2 p ji jl(n−

2) = 1, since this is the probability that A holds between 0 and N − 2 electrons for a (N −

2)−electron SDW. As a consequence, ∑
N
n=1 γn

ik = γik and ∑
N
n=2 γn

i jkl = Γi jkl , where γik and Γi jkl

are the expansion coefficients of the 1RDM and 2RDM of the full system in the |φ〉 basis. The

expressions for the mRDMs (m = 1,2, · · · ) of any sector n are thus formally equal to those of the

full system, and the expansion coefficients of the latter in the |up〉 or |φ〉 basis are the sum of the

coefficients of all its sectors. Actually, Eqs. 22-26, without the nA,1 and nA,2 factors, are the well

known Slater rules Quantum Chemistry.

The γn
ik’s and Γn

i jkl’s of equations 27 and 28 adopt simpler forms for a SDW. Taking into account

that, in that case, only the diagonal term j = k= {1, · · · ,N} appears in eq 20, and Eqs. 21 and 22,

we obtain γn
ik = δik si pi(n−1) and Γn

i jkl = (δik δ jl−δil δ jk)si sl pil(n−2) for a SDW.

3.3 Local spin from an OQS perspective

Within the OQS formalism the local spin of an open region A is given by 〈Ŝ2
A〉 = Tr

(
Ŝ2ρ̂A), and

expressing ρ̂A in terms of its N + 1 sectors, 〈Ŝ2
A〉 = ∑n〈Ŝ2

A,n〉. The sector n = 0 trivially does not

contributes to 〈Ŝ2
A〉, and the sector n = N neither does if |Ψ〉 is a closed-shell wave function. On

the other hand, Ŝ2 for the sector n is given by

Ŝ2 =
n

∑
i, j

ŝ(i)ŝ( j) =
n

∑
i=1

ŝ2(i)+
n

∑
i6= j

ŝ(i)ŝ( j) = Ŝ2
1 + Ŝ2

2, so that (29)

〈Ŝ2
A〉 = 〈Ŝ2

1,A〉+ 〈Ŝ2
2,A〉, with (30)

〈Ŝ2
1,A〉 = ∑

n
〈Ŝ2

1,A,n〉= ∑
n

Tr
(

Ŝ2
1ρ

A,1
n (x;x′)

)
, (31)

〈Ŝ2
2,A〉 = ∑

n
〈Ŝ2

2,A,n〉= ∑
n

Tr
(

Ŝ2
2ρ

A,2
n (x1,x2;x′1,x

′
2)
)
. (32)
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In the SDW case, from Eqs. 15-18, Eqs. 31-32, and the property 〈φi|φ j〉A = δi j, we find (See

Appendix 1)

〈Ŝ2〉A,n = ∑
k

pkn
[
n/2+M2

k−Sk
]
= ∑

k

pkn 〈Ŝ2〉A,n,k (33)

In eq 33, Mk = (nα−nβ )/2 is the eigenvalue of Ŝz for the determinant |φk〉, with nα +nβ = n, and

Sk = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2, where kα
i and kβ

j are the real parts of MSO’s ki and k j, respectively.2

We should note that the α (or β ) subset of MSO’s is orthonormal in the domain A, but both subsets,

in general, are not orthogonal to each other, i.e. |φk〉 in the general case is a spin-unrestricted Slater

determinant. Particular cases of eq 33 deserve to to commented. (i) A single α or β electron in

A has n/2 = 1
2 , M2

k = 1
4 and Sk = 0, so that 〈Ŝ2〉A,n,k = 3

4 . (ii) An arbitrary |φk〉 with nα = nβ

has Mk = 0, so that 〈Ŝ2〉A,n,k = n/2− Sk. (iii) A restricted Slater determinant made of nα and

nβ < nα spin-restricted MSO’s, where every β orbital is equal to a single α orbital and orthogonal

to all the other α orbitals has Sk = nβ and n/2−Sk = Mk = |Mk|. If the situation is the opposite,

i.e. nβ > nα and every α orbital is equal to a single β orbital and orthogonal to the remaining

β orbitals, one has Sk = nα and n/2− Sk = −Mk = |Mk|. Since M2
k = |Mk|2, we obtain in both

cases 〈Ŝ2
A,n,k〉 = |Mk|(1+ |Mk|). If, in addition, nα = nβ , 〈Ŝ2

A,n,k〉 = 0, that correspondonds to a

restricted closed-shell Slater determinant. (iv) Finally, for a Slater determinant formed from spin-

restricted orbitals where nc α and β orbitals are equal (with nc ≤ nα and nc ≤ nβ ), Sk = nc, and

〈Ŝ2
A,n,k〉= M2

k+nd/2, where nd = nα +nβ −2nc is the number of not-matched orbitals from either

spin.5 For instance, if k = {φ1,φ2,φ3,φ4,φ5, φ̄4, φ̄5,φ6,φ7}, we have nc = 2 and nd = 5. This is

the most general case when α and β φi’s are obtained in the same diagonalization which, in turn,

happens when Ψ is a closed-shell SDW. As pointed out by Davidson and Clark5, nd is the trace of

the effectively unpaired density u(r). When nc = nα or nc = nβ this case reduces to case (iii).

In case that ρ̃
A,1
n and ρ̃

A,2
n had been used instead of ρ

A,1
n and ρ

A,2
n , eq 33 would be the same

2The meaning of Sk is the following. The set of spin-orbitals in k is divided into the α and β subsets, with nα

and nβ MSO’s, respectively. Then, the nα nβ overlaps between the α and β MSO’s (leaving aside their spin parts) are
computed and added to give Sk.
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except that p̃kn must replace pkn . As it is evident from this equation, the expected value of Ŝ2 for

sector n of domain A is a weighted sum of the expected values of this operator for the N!/[n!(N−

n)!] choices of k. Given that pkn = ∏
N
i pi with pi = si if i ∈ k and pi = 1− si if i /∈ k, it is clear that

only k’s with all of its MSO’s partially localized in A will contribute significantly to 〈Ŝ2
A,n〉.

The k sets in eq 33 can be grouped into as many subsets as the number of ways of choosing

nα and nβ such that nα + nβ = n, i.e. 〈Ŝ2
A,n〉 = ∑

′
nα ,nβ ∑

′
k pkn

[
n/2+M2

k−Sk
]
, where the prime

(′) in the first sum means than only terms with nA
α + nA

β
= n are included, and the ′ in the second

that only k’s associated to these nα and nβ have to be considered. All these restricted k’s have

n/2 = (nα +nβ )/2 and Mk = (nα −nβ )/2, so that

〈Ŝ2
A,n〉= ∑

′

nα ,nβ

[
n/2+(nA

α −nA
β
)2/4−Sn

k

]
pA(nα ,nβ ). (34)

where pA(nα ,nβ ) = ∑
′
k pkn is probability of having nα α and nβ β electrons in the domain A,

and we have defined Sn
k = pA(nα ,nβ )−1

∑
′
k pkn Sk. The quantity

[
n/2+(nα −nβ )

2/4−Sn
k

]
can

be understood as 〈Ŝ2
A,nα ,nβ

〉, the local spin of domain A for a spin-resolved sector. The local spin

of sector n is thus the sum of all of its spin-resolved contributions, each weighted with the factor

pA(nα ,nβ ).

In the MDW case, we use Eqs. 31-32 of Appendix 1 with ρ
A,1
n and ρ

A,2
n given by Eqs. 27 and

28, obtaining

〈Ŝ2〉A,n =
3
4 ∑

i
γ

n
ii−

1
4 ∑

i, j

(
Γ

n
i ji j +2Γ

n
i j ji
)
. (35)

In some way, the expresion of 〈Ŝ2〉A,n is formally simpler for MDW’s than for SDW’s. Of course,

the complexity in the first case lies in the calculation of the γn
i j and Γn

i jkl coefficients. In addition,

since we have not derived the 1RDM and 2RDM of spin-splitted sectors of MDW’s (i.e. for given

values of nα and nβ ), an expression for 〈Ŝ2
A,nA

α ,nA
β

〉 is not available yet.

13



4 Appendix 1

In this appendix, we will prove eq 33. For an arbitrary N−electron wave function Ψ with 1RDM

and 2RDM ρ1(1;1′) and ρ2(1,2;1′,2′), the expectation value of Ŝ2 is given by

〈Ŝ2〉 =
3
4

∫
ρ(r)dr− 1

4

∫∫ [
ρ

2(r1,r2;r1,r2)+2ρ
2(r1,r2;r2,r2)

]
dr1dr2. (36)

This equation can be applied as well using ρ
A,1
n,k instead of ρ and ρ

A,2
n,k instead of ρ2. Then, from

Eqs. 15, 17 and 31 we have 〈Ŝ2
1〉A,n =

3
4 ∑k npkn . To obtain the second and third integrals, we will

elliminate for clarity the subscripts n and k and the superscript A from ρ
A,2
n,k . Since ρ

A,2
n,k corresponds

to a SDW, we can write it as

ρ
2(r1,r2;r1,r2) = ρ(r1)ρ(r2)−

1
2

ρ(r1;r2)ρ(r2;r1)−
1
2

ρ
s(r1;r2)ρ

s(r2;r1), (37)

ρ
2(r1,r2;r2,r1) = ρ(r1;r2)ρ(r2;r1)−

1
2

ρ(r1)ρ(r2)−
1
2

ρ
s(r1;r1)ρ

s(r2;r2), (38)

where ρ(r1) ≡ ρ(r1;r1), ρ(r2) ≡ ρ(r2;r2), ρ(r;r′) = ρα(r;r′) + ρβ (r;r′), and ρs(r;r′) =

ρα(r;r′)−ρβ (r;r′), with ρσ (r;r′) = ∑ki∈σ φ?
ki
(r)φki(r

′) (σ = α,β ), and nα +nβ = n. Since the

φi spin-orbitals are orthonormal in A, the integration of ρ2(r1,r2;r1,r2) is analogous to that of a

standard n−electron 2RDM in R3, i.e.

∫
A

∫
A

ρ
2(r1,r2;r1,r2)dr1dr2 = n(n−1). (39)

The integration of ρ2(r1,r2;r2,r1) is as follows. First,
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = αα +

ββ +αβ + βα , where σσ ′ =
∫

A
∫

A ρσ (r1;r2)ρ
σ ′(r2;r1) dr1dr2. The contribution αα can be

written as ∑ki∈α ∑k j∈α |〈φki|φk j〉A|2. Since φki and φk j are α MOs, they come from the same

diagonalization and are orthogonal if ki 6= k j. Then, αα = nα . Similarly, ββ = nβ . The αβ

contribution is given by αβ = ∑ki∈α ∑k j∈β |〈kα
i |k

β

j 〉A|2 = |Sαβ

i j |2 = Sk, where we have used an

abbreviated notation for the overlap integrals. In a closed-shell molecule, the α and β φi’s are

14



equal and each Sαβ

i j is simply 0 (kα
i 6= kβ

k ) or 1 (kα
i = kβ

k ), and Sk = nkp , where nkp is the number

φi’s in k that appear simultaneously in the α and β sets. For instance, for the five-components

k vector with nα = 3 and nβ = 2 formed with the α MOs φ1, φ3, and φ4, and the β MOs φ1

and φ4, we will have nkp = 2. The above situation also happens in an open-shell molecule if

we decide to obtain the full set of α + β MOs from the same diagonalization. However, in

the most general case, Sαβ

i j 6= 0. The βα contribution is also given by βα = Sk. In summary,

we have
∫

A
∫

A ρ(r1;r2)ρ(r2;r1) dr1dr2 = n + 2Sk. From
∫

A ρ(r)dr = n, we trivially obtain

−1
2
∫

A
∫

A ρ(r1)ρ(r2) dr1dr2 = −1
2n2. Finally, from ρs(r;r′) = ρα(r;r′)− ρβ (r;r′) we have

−1
2
∫

A
∫

A ρs(r1;r1)ρ
s(r2;r2) dr1dr2 =−1

2(n
α −nβ )2 =−2M2

k. Adding these three contributions

∫
A

∫
A

ρ
A,2
n,k (r1,r2;r2,r1)dr1dr2 =−

1
2

n(n−2)+2 Sk−2M2
k. (40)

Finally, adding the 〈Ŝ2
1〉A,n value, −1

4 of eq 39, and −1
2 of eq 40 we obtain eq 33.
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