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Abstract
The discovery of  new antimalarial  medicines with novel  mechanisms of  action is key to
combating  the  problem  of  increasing  resistance  to  our  frontline  treatments.  The  Open
Source Malaria (OSM) consortium has been developing compounds ("Series 4") that have
potent  activity  against  Plasmodium falciparum in  vitro and  in  vivo and  that  have  been
suggested to act through the inhibition of  PfATP4, an essential membrane ion pump that
regulates the parasite’s intracellular Na+ concentration. The structure of PfATP4 is yet to be
determined. In the absence of structural information about this target, a public competition
was  created  to  develop  a  model  that  would  allow the  prediction  of  anti-PfATP4 activity
among  Series  4  compounds,  thereby  reducing  project  costs  associated  with  the
unnecessary synthesis of inactive compounds.

In the first round, in 2016, six participants used the open data collated by OSM to develop
moderately predictive models using diverse methods. Notably,  all  submitted models were
available to all other participants in real time. Since then further bioactivity data have been
acquired and machine learning methods have rapidly developed, so a second round of the
competition  was  undertaken,  in  2019,  again  with  freely-donated  models  that  other
participants could see. The best-performing models from this second round were used to
predict novel inhibitory molecules, of which several were synthesised and evaluated against
the parasite. One such compound, containing a motif that the human chemists familiar with
this series would have dismissed as ill-advised, was active. The project demonstrated the
abilities of new machine learning methods in the prediction of active compounds where there
is no biological target structure, frequently the central problem in phenotypic drug discovery.



Since all data and participant interactions remain in the public domain, this research project
“lives” and may be improved by others.
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Introduction
Efficiency in the early stages of the drug discovery pipeline, from hit identification to lead
optimisation,  is  key  to  the  development  of  new drugs.  The  initial  identification  of  a  hit
compound  is  typically  carried  out  using  one  of  two  approaches.  In  target-based  drug
discovery the  molecular  target  of  interest  is  known  [1].  With  this  knowledge,  libraries
containing many compounds are screened (experimentally or computationally) against the
known target to identify promising candidates or chemical scaffolds for further development.
Through testing these chemicals, the key binding interactions may be identified and more
directed structure activity relationship (SAR) studies can be conducted to optimise activity.

Alternatively,  if  the  biological  target  is  not  known,  phenotypic  drug  discovery may  be
undertaken [2]. This process involves the initial identification of potent compounds that give
rise to the desired effect (e.g. inhibition of cell growth), with target determination performed
thereafter. The lead optimisation phase in this type of drug discovery is less streamlined than
that in the former method as it is conducted without guidance from target binding interactions
and  often  relies  upon  the  intuition  of  the  medicinal  chemist  to  design  and  synthesise
compounds to explore the SAR. There are a number of obvious limitations to this approach,
including the personal bias/imagination of the scientist or the availability/cost of resources.
As a result, good hypotheses or key insights may be overlooked, which can lengthen the
time taken to  identify  a lead candidate  and increase costs associated with  synthesising
complex molecules that are later revealed to be inactive. Nevertheless, the advantage of
phenotypic drug discovery, which underpins its popularity, is that hit or lead compounds are
already known to be effective in their overall role (e.g., the killing of a pathogen).

To aid this latter  approach and overcome the absence of  knowledge of  the target  or  its
structure,  computational  models  may  be  developed  using  artificial  intelligence  (AI)  and
machine learning (ML)  [3,4].  Such approaches allow the activities of new compounds in a
phenotypic-screening  program  to  be  predicted.  For  instance,  matched  molecular  pair
analysis  [5] and quantitative structure activity relationship (QSAR)  [6] models are commonly
used in medicinal chemistry campaigns to determine the relationships between the physical
and biological properties of a series of compounds. This information can then be used to
guide the design of  new active compounds.  In  those cases in  which a target  has been
identified but its structure is not yet determined, a structural model may be developed based
on a known close homolog of the target  [7]. This method allows for docking studies to be
conducted to examine potential binding interactions that may occur in the actual target, thus
guiding  the  lead  optimisation  process  more  effectively.  Recent  years  have  seen  the
increased use of computational methods such as these to aid the drug discovery process
[8,9,10,11]. For instance, there have been successes in the  in silico target prediction of small
molecules with activity against Mycobacterium tuberculosis [12,13].

In the case of the malaria parasite, the development of resistance to frontline treatments is
an ever-present problem. Since the isolation of artemisinin from the plant Artemisia annua in
1971 by Tu Youyou and colleagues  [14], this natural product and its derivatives have been
used  in  some  of  the  most  effective  treatments  for  malaria.  The  artemisinin-based
combination therapies (ACTs) utilise a short-acting artemisinin derivative in combination with
one  or  more  complementary  antimalarials  that  are  long-acting  and  possess  a  different
mechanism of action (MoA). The use of these combinations has, in part, been responsible
for the slow development of resistance to ACTs, yet in recent years increasing numbers of



cases have emerged of reduced efficacy [15]. There is an urgent need for new medicines that
possess novel MoAs [16].

One promising biological target in  Plasmodium falciparum  is the essential  P-type ATPase
PfATP4,  which  localises  to  the  plasma  membrane  of  the  intraerythrocytic  parasite  and
exports  Na+ while  importing  H+ equivalents  [17,18].  The structure  of  this  membrane-bound
protein  remains  unsolved.  Evidence for  the involvement  if  PfATP4 in  the mechanism of
action of antiplasmodial compounds comes from several sources, including parasite Na+ and
pH  assays  that  implicated  PfATP4  as  the  target  for  the  spiroindolone  cipargamin  [17,19]

(currently in Phase III clinical development), the dihydroisoquinolone (+)-SJ733 [20], and 28
compounds from the Medicines for Malaria Venture (MMV) Malaria Box  [21] as well as 11
compounds  from  the  MMV  Pathogen  Box  [22].  These  compounds  represent  a  strikingly
diverse range of chemotypes (Fig. 1) [23]. A homology model of PfATP4 was developed using
crystal  structures  from  the  closest  mammalian  homolog,  a  sarco/endoplasmic  reticulum
Ca2+-ATPase (SERCA) [20]. However, in the absence of a solved structure of PfATP4, ideally
bound to small molecule inhibitors, it  remains unclear how it is possible for such diverse
molecules to share the same target. Indeed, a challenge to understanding such data is that
structurally different molecules generating the same phenotype may be interacting with the
biological target differently.

Fig. 1 Examples of the diverse chemotypes that have been linked to PfATP4. Each of
the compounds give rise to effects on the parasite’s internal Na+ concentration and pH that
are consistent with PfATP4 inhibition [20,21,24]. 



Since  2011,  contributors  to  Open  Source  Malaria  (OSM)  have  been  evaluating  several
series  of  compounds  originating  from  high-throughput  screens  (HTS)  performed  by
pharmaceutical  companies  [25]. The  recent  focus  of  OSM  has  been  on  a  class  of
triazolopyrazine-based compounds (“Series 4”) that emerged from a screen carried out at
Pfizer. There are currently more than 200 compounds in Series 4, with  in vitro  potencies
against  P. falciparum ranging from single-digit nanomolar to inactive. The highly promising
nature of this series derives from several members having been found to be effective in the
in vivo mouse model of the disease [26]. Based on preliminary investigations against PfATP4-
resistant mutant strains (generated from the parent Dd2 strain by exposure to hits from the
Malaria Box against PfATP4 [21]), Series 4 compounds are thought to target PfATP4 [27]. The
intra-series  similarity  of  their  structures  ought  to  imply  a  similarity  in  the  way  that  the
compounds interact with the target, but the interaction may differ from other compounds with
the same phenotype.

The  OSM  Series  4  project  is  at  the  lead  optimisation  stage,  with  minor  structural
modifications  being  made  in  the  search  for  improved  solubility,  potency  and  metabolic
clearance. As is typical in such a search, analogs are being made that possess low potency,
and these represent expensive “failures” (ca. $2K per compound for one postdoc-week per
analogue).  Better  predictions  of  compound potency would  save  valuable  resources  and
accelerate the science, so a predictive model was high on the list of priorities for the OSM
consortium.

For the best means to develop such a model, we maintained an open mind. Available to us
was a dataset of analogues with their associated activities, whether against the parasite or
derived from biochemical (ion-regulation and/or ATPase) assays. Many of these compounds
were from OSM Series 4, and there were also candidate antimalarials from other, structurally
unrelated,  series.  It  was  possible  to  include  “presumed  inactives”:  randomly-selected
molecules from commercial  catalogues that  were unlikely to display activity.  A homology
model  (vide  supra)  was  available  that  might  permit  a  more  target-based  approach.
Acknowledging these varied resources, we opted not to prescribe the approach to be taken
and instead, in 2014, approached the scientific community simply with the need for a model
that would allow us to predict the activity of hypothetical compounds. All data from OSM
research projects are freely available to anyone online, representing an ideal starting point
for such an open competition.

Between then and now there has been an explosion of interest in machine learning and AI
methods in drug discovery  [28,29]. While these new methods had the potential to be game-
changing, there is the ever-present challenge in this sector of hype, in the sense that the
actual capabilities of some of the newer technologies, outside of marketing statements, are
sometimes not clear. In OSM the openness extends to the research process itself, allowing
contributors to share what they are doing, rather than what they have done.  The use of
competitions to progress scientific research is not novel in itself, with previous examples of
this  in  data  analysis  for  drug  discovery  [30],  but  it  is  uncommon  for  competitions  to  be
accompanied by the next crucial step: benchmarking by chemical synthesis and biological
evaluation of predicted molecules. It is rarer still for science competitions to run completely
openly, where everyone can see, and potentially incorporate, other entrants'  solutions as
they are submitted. We felt we could achieve two things by running this competition with
OSM’s open source ethos, in which those submitting entries would reveal their predictions in
real  time  and,  ideally,  provide  full  methods  (within  the  boundaries  of  commercial
sensitivities). We would be able to approach the scientific problem along multiple paths, but
we would also be able to provide a clear case study of the current effectiveness of predictive
modelling in phenotypic drug discovery.



Results and Discussion

Round 0
An initial  attempt  by a single  OSM contributor  to  develop a  pharmacophore model  was
based around the known  PfATP4 active compounds from the MMV Malaria Box  [31,32].  By
using Discovery Studio from Accelrys (now BIOVIA) to screen 28 active compounds with the
Common  Feature  Pharmacophore  Generation  protocol,  10  four-feature  models  were
produced. These were then narrowed down based on poses and score to one model that
was developed further (Fig. 2A).
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Fig. 2 Model creation workflow. A) The four-feature pharmacophore model chosen for 
further development with MMV006429 mapped. B) All 28 active compounds used in Round 0
superimposed onto the four-feature model. C) Shape feature added based on poses in B. D)
Inactive molecules from the dataset mapped. E) Exclusion spheres added.

The 28 active compounds were mapped to the model and a shape feature was created (Fig.
2B). It was thought that this could give a general idea of the shape of the active site (Fig.
2C).  Exclusion  features  were  next  added  in  areas  where  high  scoring,  inactive  ligands
penetrated outside of the shape figure. Unfortunately, when this model was applied in 2014
to a set of compounds that were evaluated for their ability to dysregulate ion homeostasis,
the predictions were found to correlate poorly with the experimental potency results (Fig. 3).
It was suggested that this lack of correlation could be due to factors not being taken into
account  by  this  first  model  (overlapping  binding  sites  and  compound  chirality);  a
pharmacophore model explains aspects of the geometry of the interaction but not the details
of the thermodynamics of the protein-small molecule contacts.
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MMV672990
Pf IC50: >10 µM
Prediction: Yes

PfATP4: No

MMV671927
Pf IC50: >10 µM
Prediction: Yes

PfATP4: No

MMV670762
Pf IC50: >10 µM
Prediction: Yes

PfATP4: No

MMV670944
Pf IC50: 140 nM
Prediction: Yes
PfATP4: Yes

MMV670246
Pf IC50: 5 µM

Prediction: Yes
PfATP4: Moderate

MMV670767
Pf IC50: 191 nM
Prediction: Yes
PfATP4: Yes

MMV671677
Pf IC50: 309 nM
Prediction: No
PfATP4: Yes

Fig.  3  Poor  correlation  was  seen  between  the  first  model’s  predictions  and
experimental  data. While  there  is  excellent  correlation  between  in  vitro parasite  killing
potency  and  the  ability  to  dysregulate  parasite  ion  homeostasis  (“PfATP4”)  activity,  the
majority of the model predictions did not correlate well  with the experimental  data.  The
compounds were tested for their effects on Na+ regulation in saponin-isolated parasites (Dd2
strain)  at  1  M and  for  their  effects  on  parasite  pH  at  5  M;  ‘Yes’:  indicates  that  the
compound gave rise to an increase in Na+ concentration similar in magnitude to that of 50
nM cipargamin and a cytosolic alkalinisation, ‘No’: indicates that the compound did not affect
the resting Na+ concentration or pH, ‘Moderate’: indicates that the compound gave rise to an
increase in pH, as well as an increase Na+ concentration that was less than that observed on
addition of 50 nM cipargamin. 

This model was also used to screen [32] the Maybridge library of compounds [33] to identify a
small and diverse selection of molecules to evaluate in biochemical assays. The results were
filtered manually to give a final selection of 18 compounds that were subsequently evaluated
for their effects on the parasite’s internal Na+ concentration (at 1 M) and pH (at 5 M). None
of the compounds were found to increase the parasite’s Na+ concentration or pH, which
confirmed that the model required further optimisation and led to the start of a crowdsourced
attempt to solve this challenge.

Round 1
The first full round of the predictive modelling competition was run between 2016 and 2017,
and was intended to elicit the participation of members of the wider scientific community with
expertise  in  computational  chemistry  [34].  The  competition  adhered  to  the  open  science
principles underpinning the OSM consortium. Specifically, all participants were required to
work  openly  for  the duration  of  the  competition,  with working and data posted on open
Electronic  Laboratory  Notebooks  (ELN)  that  were  made  publicly  available  [35].  The
participants were tasked with developing a predictive model using data provided by OSM
that included a list of compounds with activity data for both in vitro whole cell potency and
PfATP4 ion assays  [36],  along with  the entire dataset  of  OSM compounds from previous
series ((mostly presumed) inactives). Once the models were developed and deposited, the
participants were provided with the molecular identifiers (e.g., SMILES strings) for the 400
compounds contained within the MMV Pathogen Box and were required to rank them in



order of predicted activity in the ion assays. The Pathogen Box compounds were at the
same time screened for their effects on parasite Na+ concentration and pH and the data held
back until the models had been submitted. A small cash prize inducement was employed to
stimulate interest, despite the risk this brings of making the intrinsic reward for participation
more extrinsic.[37]

Six diverse, fully-fledged entries were submitted from individuals working in both public and
private  sectors,  with  all  working  shared  online  (Table  1)  [38].  These  submissions  were
reviewed by a panel of four judges (Prof. Matthew Todd, A/Prof. Alice Motion (University of
Sydney), Dr. Murray Robertson (University of Strathclyde and creator of the previous model
in Round 0) and Prof. Alexander Tropsha (University of North Carolina, Chapel Hill)) that
evaluated  the  top  twenty  ranked  compounds  from each  model  against  the  undisclosed
Pathogen Box data. Two entrants developed models that were able to predict correctly two
active compounds within their top twenty rankings, with a further model a close third place
[39]. 

Table  1:  Summary  of  the  results  from  Round  1  of  the  predictive  modelling
competition.

N
S

O

O
OH

F

F
F

C

N
H

NH

N
H

Br

O

B

ON

O

N

N

F

I

N

N

N
S

OO

S

O
HN

H

N

O

O

N

N

O

D

N
H

N

N

O

N

O

J

O

Cl

H
N

O

N

O

N

N N

F

H
N

NH

O

N

S

O O

Cl

G

F

H
N

O

S

N

N

O

K

NH

O

SN

N
S

O O

Cl

A

H
N

O
Cl S

N

O

O

E

Entrant Description of Model Correctly
Predicted
Actives

Result

Jonathan
Cardoso-Silva

Gradient boosting model (using XGBoost) to
predict actives and nonactives.

B just outside
top 20

Runner-
up

Giovanni
Cincilla

PfATP4 Ion Regulation Activity classification
model using: CDK descriptors [40], ECFC4

fingerprints and Random Forest.

B, D Runner-
up

Davy Guan Semi-supervised machine learning, used to B, F Runner-



construct QSAR models. Molecules were
featurised by either Graph convolutional

techniques or with 1024 Bit ECFP4 descriptors.

up

James
McCulloch

Deep Neural Network ML using a vector of the
chemo-physical properties of the target

molecules.

B, D, I
F just outside

top 20

Winner

Ho-Leung Ng QSAR model based on homology modelling of
PfATP4 -Cresset Forge.

K, D
J just outside

top 20

Winner

Vito
Spadavecchio

Library of 'common' transformations' as seen in
CHEMBL.

B Runner-
up

Compounds A-K shown to be active from the MMV Pathogen Box screen against PfATP4 [22].

While this first round of the competition was successful in demonstrating the capabilities of
the community to work openly and provide quality data, the models, though obtained with
diverse methods, were not yet highly predictive. Of note was, again, the striking diversity of
chemotypes (A–K, Table 1) sharing a target.

Round 2
Given the diverse, spontaneous inputs from the initial round of the open competition, and the
high quality of the associated dialogue that had taken place on the relevant project website,
GitHub, it was decided that a second round would be run in 2019 since “expensive failure
analogs” were still arising in the experimental programme. The aim for this round was not
only to allow for the entrants from Round 1 to improve upon the original models, but for new
participants to get involved with inputs from larger companies that specialised in artificial
intelligence and machine learning (AI/ML) approaches. Since the series had moved on in the
interim  (with  further  compounds  being  evaluated),  the  community  had  access  to  an
expanded dataset, including all the data used as the test set for the previous round [22]. 

The competition’s second round was launched in July 2019  [41].  In this new phase of the
competition  it  was the intention  to use the best-performing models  to perform the most
important task of all: to predict new chemical matter that would be active (rather than merely
look at the fit  of retrospective data). Synthesis and evaluation of these predictions would
then serve as model validation in a “real” case. A small, new dataset of activity from recently-
synthesised analogs was kept back to serve as the basis for judging model fitness.

By the conclusion of Round 2 (a period of ~10 weeks), ten entries had been submitted, five
of which were from returning participants (Table 2). In a similar fashion, the submissions
were reviewed by a panel of four judges (Prof.  Matthew Todd, Dr. Edwin Tse (UCL), Dr.
Murray  Robertson  (Strathclyde)  and  Prof.  Robert  Glen  (Cambridge))  who  compared the
predicted potencies against the experimentally-derived blood stage potency values for thirty-
four  compounds.  The  precision  of  each  model  was  calculated  according  to:

precision= x
x+ y

, where  x  is the number of correct predictions (active and inactive

combined) and y  is the number of false positive predictions [42].

Table  2:  Summary  of  the  results  from  Round  2  of  the  predictive  modelling
competition.

Entrant (Affiliation) Description of Modela Precision of Result



Accurate
Predictions
(Active and
Inactive)b

Jonathan Cardoso-Silva
(King’s College London)

Network-based piecewise
linear regression for QSAR

modelling [43].

36% Runner-up

Giovanni Cincilla
(Molomics)

P. falciparum inhibition
classification model using:

CDK descriptors [40], ECFC4
fingerprints and logistic

regression (with: stochastic
average gradient as solver,
uniform regularisation and
learning step size = 0.01).

91%c Winner
(company)

Mykola Galushka
(Auromind)

SMILES variational auto-
encoder to generate chemical

compounds fingerprint and
cascade models Naive Bayes

classifier with Multi-layer
perceptron regressor for

filtering active components and
identifying a specific potency

value.

58% Runner-up

Davy Guan (The
University of Sydney)

Automated machine learning
method with 21 quantum

mechanical descriptors using
the Hartree Fock with 3

corrections method [44] and
JCLogP, optimised for Mean

Absolute Error.

82% Winner
(non-

company)

Ben Irwin/Mario
Öeren/Tom Whitehead
(Optibrium/Intellegens)

Deep imputation [45,46,47] with
quantum mechanical

StarDrop6.6 Automodeller and
pKa descriptors [48].

81% Second
place

Raymond Lui (The
University of Sydney)

Automated machine learning
method using 59 permutation
feature importance selected

Mordred and quantum
mechanical descriptors

optimised for Mean Absolute
Error.

58% Runner-up

Slade Matthews (The
University of Sydney)

Random forest model using
200 Mordred descriptors based

on optimised 3D structures.
Training RMSE = 0.805. 

N.A. Runner-up

Ho-Leung Ng (Kansas QSAR model based on 71% Runner-up



State University) detailed homology modeling of
PfATP4 and docking. 3D

features are combined with
1D/2D QSAR features using
XGBoost (gradient boosted
trees) to make a regression

model.

Vito Spadavecchio
(Interlinked TX)

Ensemble classification
(logistic regression) and

regression (MLP) using ECFP4
(Morgan radius 2).

79%c Runner-up

Laksh Aithani/Willem van
Hoorn (Exscientia)

Ridge regression model with
alpha = 1. ECFP4 fingerprints
with (Morgan radius 2) were

the input to the model.

81% Second
place

aSee SI for full experimental details. bBased on regression prediction. cBased on classification prediction.

It  was  originally  intended  for  each  of  the  four  winning  entrants  (first  and  second  place
winners) to generate two new structures that were predicted to be active using their models:
one possessing the Series 4 triazolopyrazine core and the other being structurally distinct.
This would give a total of eight molecules to be synthesised and validated experimentally. In
addition to optimising potency, model generators were tasked with keeping good solubility in
mind  as  a  design  criterion.  It  became evident  that  certain  suggested  compounds  were
synthetically inaccessible, or would take major resources to pursue. The former is often an
issue when predictive models do not take into account known synthetic pathways, though
there is significant activity at present to improve the incorporation of synthetic planning into
library  suggestion  [49,50].  The  initial  list  was  narrowed  to  focus  on  five  predicted
triazolopyrazine compounds (Fig.  4).  The five compounds were successfully synthesised
and subsequently evaluated for in vitro (growth-inhibition) activity against P. falciparum along
with the previously reported positive control for the series  [51].  In addition to the standard
potency (in vitro growth) assay, these compounds were evaluated for their ability to inhibit
PfATP4 in biochemical (Na+ regulation) assays to confirm that the MoA had not changed
following these structural changes.



Fig. 4 Examples of the suggested compounds predicted by the winning entrants from
Round  2  and  the  five  chosen  for  experimental  validation. The  predictions  were
synthesised (see SI) and their potencies and MoAs (Fig. S9) experimentally validated. Three
compounds were found to be active. *PfATP4 activity was not obtained for this compound.

Three of the six compounds were found to be active (<1 µM) or moderately active (1–2.5
µM)  in  in  vitro growth  assays  with  asexual  blood-stage  P.  falciparum (3D7)  parasites,
representing  a  hit  rate of  50% on a small  sample  size.  Up to this  point  a total  of  398
compounds had been made and evaluated for  in vitro activity in OSM Series 4, with the
design of these compounds driven entirely by the intuition of medicinal chemists. By setting
a  potency  cut-off  of  2.5  µM  (the  upper  limit  of  reasonable  activity),  the  tally  of  active
compounds  discovered  in  this  series  stands  at  165,  representing  a  comparable  human
intuition-derived hit rate of 41% on a larger sample size. Most of the compounds were tested
(blind) for their ability to disrupt Na+ regulation in isolated asexual blood-stage parasites,



which confirmed an unchanged mechanism of action: two of the compounds found to be
active  in  in  vitro growth  assays disrupted Na+ regulation  whereas the three compounds
inactive in growth assays did not, at the concentrations tested (Fig. S9). 

It is interesting to compare these results with the intuition of the chemists who have deep
experience of this series and who are familiar with the SAR. A recurring observation was the
sensitivity  of  the length  of  the  ether  linker  between triazolopyrazine core  and northwest
phenyl  group,  with  a  spacer  of  two  methylene  units  (between  phenyl  ring  and  oxygen)
leading to far higher potencies than other lengths. The Davy Guan prediction involving the
shorter linker, and the Molomics 1 prediction without the pendant phenyl ring, lie in the class
of inactive compounds subject to human retrospective wisdom (i.e. the “I could have told you
that” class). In contrast, the Exscientia compounds were thought by the human team to be
likely  to  be potent,  but  only  one  performed well  (i.e.  the  “that’s  odd”  class).  Lastly  the
Optibrium/Intellegens suggestion that  included the  tert-butyl  pendant  was thought  by the
human team to be a certain inactive, given what was known of variation in that part of the
molecule, yet this compound displayed good potency and is a particularly useful outcome
(i.e. the “I welcome our machine overlords” class).

To gain more insight, and to improve these potential antimalarials, further iterations of these
models are needed. The open nature of the competitions and of the over-arching consortium
is  that  anyone  may work  on  improvements  since  everyone  has  access  to  all  the  data,
making this a “living” research project. A potential explanation for the predicted hit rate not
being higher is the relatively small dataset (~400 compounds) from which each model was
developed,  potentially  compromising  perfectly  reasonably  computational  approaches  yet
representing a fairly typical situation for lead optimisation. Two further points are of particular
note:  1)  It  was  possible  to  involve  leading  experts  from  the  private  sector  in  an  open
competition  to  solve  a  public  health  challenge  without  those  participants  needing  to
compromise their competitive business advantage; indeed success in such an endeavour
has  been  used  as  an  open  demonstration  of  capabilities  [52].  2)  The  private  sector
participants displayed high and sustained levels of collaborative working and commitment to
a public good, in what is counter to the public’s perception of the secretive nature of the
modern pharmaceutical industry; indeed the “winning” and “losing” of the competition was
less important  than the extent  to  which entrants worked together openly to improve the
underlying research [41].

Conclusion
With hit identification and lead optimisation being key steps in the development of any new
drug, the continued advancements in machine learning and artificial intelligence approaches
possess significant promise to streamline this process, which would result in more efficient
medicinal  chemistry  campaigns.  In  the  absence  of  target  structural  information,  a
crowdsourced approach was used to develop predictive models for a promising antimalarial
series. Importantly, the winning models of the most recent competition round were used to
generate novel compounds, which were then synthesised and evaluated for experimental
validation of each model leading to a new counterintuitive “active”. The simple open science
and  crowdsourcing  principles  used  throughout  this  campaign  are  applicable  to  many
medicinal chemistry projects,  whereby the community’s combined efforts can be used to
accelerate the early stages of drug discovery and involve participants from public and private
sectors. The work conducted here has been designed to be “living”, in that all methods and
results are publicly available and contributions can continue to be made by anyone because
everyone has access to all data and ideas.
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