
 1 

Mechanochemical Prebiotic Peptide Bond Formation 

Tomislav Stolar,1 Saša Grubešić,2 Nikola Cindro,3 Ernest Meštrović,2 Krunoslav Užarević*,1 

and José G. Hernández* 

1Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia 
2Xellia Pharmaceuticals, Slavonska avenija 24/6, 10000 Zagreb, Croatia 
3Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia 

 
 
Abstract 

The presence of amino acids on the prebiotic Earth, either stemming from endogenous chemical 

routes or delivered by meteorites, is consensually accepted. In contrast, prebiotically plausible 

pathways to achieve peptides from unactivated amino acids are still unclear since most 

oligomerization approaches rely on thermodynamically disfavored reactions in solution. 

Alternative hypotheses such as the prebiotic impact scenario postulate that the mechanical 

impacts from meteorites and geochemical phenomena played an important role in delivering 

exogenous material to Earth, thus providing the geochemical, mechanical, and thermal 

conditions to synthesize small prebiotic organic compounds in the absence of bulk liquid media. 

In this context, here we evaluate the applicability of mechanochemistry by ball milling for 

peptide bond formation under a prebiotic impact scenario. We found that the combination of 

mechanical forces and prebiotically plausible and ubiquitous minerals as activators enable the 

oligomerization of amino acids such as glycine in the absence of bulk water (or solvents) and 

at ambient temperature. Increasing the mechanochemical reactor’s temperature is shown to 

favor the degree of polymerization concomitantly with the formation of cyclic glycine dimer 

[cyclo(Gly2) or DKP], a product commonly considered as a dead-end in solution peptide bond 

formation. However, our study shows that DKP can be mechanochemically activated and used 

as a source for glycine oligomers. The findings of this research provide alternative 

mechanochemical routes towards oligopeptides and establish new synthetic approaches for 
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prebiotic chemistry that are not limited by poor diffusion of the reactants, thus complementing 

the current alternating wetting and drying prebiotic environment strategy. 

Introduction 

Peptide bond formation is considered as one of the critical chemical transformations in the field 

of prebiotic chemistry.1–3 On the one hand, it has been proposed that peptides could have 

behaved as catalysts for the formation of other prebiotically relevant building blocks in an early 

Earth scenario.4 Additionally, the presence of peptides in a primitive Earth has been postulated 

as favorable to establish an ancient molecular symbiosis with nucleic acids.5–8 Therefore, it is 

not surprising that once the formation of amino acids during the iconic Miller–Urey experiment 

was confirmed,9 various studies have attempted to synthesize peptides from amino acids under 

prebiotic conditions.10–15 Oligomerization of amino acids has been investigated under 

fluctuating environments such as alternating hot-dry/cool-wet water evaporation and 

rehydration cycles.16–19 One of the main challenges of this approach is the poor diffusion of the 

solid reactants during the hot-dry period, limiting the elongation of peptides.20 Therefore, 

establishing a new synthetic approach that is not limited by poor diffusion of the reactants under 

dry conditions could significantly improve the current alternating wetting/drying prebiotic 

strategy, for example, by overcoming the need for wet cycles. In the search for potential 

prebiotic conditions to carry out chemical reactions under dry conditions, the prebiotic impact 

scenario appears as a promising alternative. It is well documented that Earth underwent a 

meteoritic bombardment that caused unmistakable changes to our planet.21 Also, the landing of 

meteorites on Earth could have facilitated the delivery of exogenous material as demonstrated 

after the detection of amino acids,22,23 dipeptides, and protein-like structures in meteorites.24,25 

Moreover, the mechanical impacts from meteorites or terrestrial lithospheric activity (Figure 

1a-b) could have provided the geochemical, mechanical, and thermal energy to drive chemical 

reactions in the absence of bulk liquid media. Although high-energy-density events could lead 
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to unproductive bond cleavage in a growing peptide chain, moderate forces may benefit chain 

elongation.26 

 

Figure 1. Prebiotic scenarios that could have provided mechanical energy by impact, 

compression, and shear forces: (a) extraterrestrial and terrestrial collisions and (b) plate tectonic 

movement. (c) Ball mill containing reactants: amino acids, peptides, and TiO2; (d) solvent-free 

mechanochemical peptide bond formation by ball milling. 

In synthetic chemistry, one of the most efficient ways to carry out chemical transformations in 

the absence of a liquid media involves implementing mechanochemical techniques such as ball 

milling.27–29 Inside ball milling reactors, substances are subjected to compression and shear 

forces promoted by milling balls. The intimate mixing achieved by ball milling not only 

surpasses diffusion constraints when reacting bulk solids, but it can also induce new chemical 

reactions in the absence of solvents.30 Although the reaction conditions inside a milling reactor 

may seem hostile, amino acids, peptides, and enzymes have been reported to withstand the 
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mechanical stress under ball milling conditions.31–35 Moreover, mechanochemistry has proven 

suitable for synthesizing prebiotically relevant building blocks such as -aminonitriles,36,37 

monosaccharides,38,39 and nucleotides.40,41 Solid-state approaches have led to self-assembly of 

model nucleobases as well.42 Altogether, these studies have provided direct evidence of the 

potential of mechanical energy to drive prebiotically relevant transformations, especially in the 

context of a prebiotic landscape.  

Here we present the study of controllable mechanical activation (Figure 1c) as a prebiotically 

plausible route to peptide bond formation (Figure 1d) and oligomerization of the unactivated 

proteinogenic amino acid, glycine (Gly), in the absence of water or other bulk solvents. We 

have established here that the mechanochemical oligomerization by ball milling is achieved 

even at ambient temperatures. However, the addition of minerals such as TiO2 is critical for the 

process. The reaction products were analyzed primarily by the modified ion-pair high-

performance liquid chromatography (IP-HPLC) method,43 and by ultra high-performance liquid 

chromatography coupled with mass spectrometry (UPLC-MS). The mechanochemical 

reactions performed in a thermally-controlled milling reactor revealed that the degree of 

oligomerization increases with the temperature to the point when the reaction is directed 

towards forming 2,5-diketopiperazine (DKP), often regarded as an “unwanted” product that 

diminishes the availability of free amino acids for the subsequent oligomerization reactions.2,44 

Moreover, the presence of added water in liquid-assisted grinding (LAG) experiments did not 

significantly inhibit the oligomerization reaction. We have also studied the mechanochemical 

peptide bond formation starting from Gly derivatives such as DKP, Gly2, and Gly3, and have 

established that the mechanochemical oligomerization is a dynamic process involving 

simultaneous formation and hydrolysis of the peptide bonds. The temperature-controlled 

mechanochemical processing was also attempted for the oligomerization of L-alanine. 

  



 5 

Results and discussion 

As an initial experiment, we milled pristine glycine (Gly) at room temperature (RT) and 

subsequently analyzed the reaction mixture applying the modified IP-HPLC method developed 

by the Bracher group using a UV-Vis detector set to record the absorbance at 195 nm (for 

details, see SI).43 The chromatographic analysis of the white powder collected after the 

mechanochemical treatment revealed the formation of DKP and traces of Gly2 and Gly3 (Figure 

2a). This was confirmed after comparison with pure standards (Figure 2c-f).  
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Figure 2. IP-HPLC chromatograms for (a) pristine Gly and (b) Gly and TiO2 mixture milled at 

RT; (c) Gly standard; (d) Gly2 standard; (e) Gly3 standard; (f) DKP standard. The inset shows 

the zoomed region and reveals the presence of Gly2 and Gly3 in (a) and (b). 

Additionally, to study the effect of the temperature on the peptide bond formation, we applied 

a recently described temperature-controlled ball milling protocol.45 For example, in a standard 

experiment, Gly (60 mg, 0.80 mmol) was milled with a five-fold molar excess of TiO2 (anatase), 

at 30 Hz for 18 h and temperatures ranging from room temperature to 130 °C, thus respecting 

practical thermal limits for prebiotic peptide bond formation,18,19 while acknowledging the 

expected dilution of amino acids on mineral surfaces under prebiotic conditions (Figure 1d).  
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The efficiency of the mechanochemical oligomerization of glycine and the formation of higher 

oligomers increase at higher milling temperatures (Figure 3 and Table 1). On the one hand, 

raising the milling temperature gradually increases the total yield of Gly converted to linear 

oligomers (Gly≥2) (Table 1; for quantification details, see SI). The maximum total yield is 

calculated to be 10.2% for milling at 100 °C, as it seems to be the most optimum milling 

temperature (Figure 3d). On the other hand, despite having detected the longest oligomer 

(Gly10) after milling at 130 °C, the analysis by IP-HPLC revealed that DKP was the major 

component of the product mixture (Figure 3e).  

 

Figure 3. IP-HPLC chromatograms for Gly milled with TiO2 at (a) RT, (b) 40 °C, (c) 70 °C, 

(d) 100 °C, (e) 130 °C. The inset shows the zoomed region of retention times in the 6.1-11 min 

range. 
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Table 1. Effect of the milling temperature on the mechanochemical oligomerization of Gly 

with TiO2. 

Milling temperature (°C) Longest detected oligomer[a] Yield (%)[b] 

RT Gly6 6.7 

40 Gly6 6.7 

70 Gly7
[c] 10.1 

100 Gly8 10.2 

130 Gly10
[d]

  8.5 

(a) Based on IP-HPLC analysis using a UV-Vis detector set to record the absorbance 

at 195 nm. (b) The combined yield of all of the linear oligomers of glycine Gly≥2. (c) 

The presence of Gly8 was detected by the UPLC-MS method (Figure S12). (d) The 

presence of Gly11 was detected by UPLC-MS (Figure 4). 

 

To unambiguously determine the presence of all of the oligomers of glycine and to corroborate 

the degree of oligomerization, we developed an analytical method based on UPLC-MS (for 

details, see SI). Analysis of the samples from previous experiments using a Q-TOF mass 

detector confirmed the presence of linear oligomers of glycine. Importantly, in some cases, the 

analysis of the milled samples by UPLC-MS revealed the presence of longer Glyn compared 

with the preliminary analysis by IP-HPLC. For example, the solid products obtained after 

milling Gly at 70 °C and 130 °C were found to contain Gly8 and Gly11, respectively (Figure 

S12 and Figure 4). 
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Figure 4. UPLC-MS analysis of Gly milled with TiO2 at 130 °C. The inset shows the zoomed 

region in the acquisition time range from 14-17 min. Note: due to differences in the sample 

preparation (pH) the retention times of the oligomers by UPLC-MS differ from the ones found 

by IP-HPLC analysis. 

At this point in the research, we had demonstrated that under ball milling conditions, mixtures 

of Gly and TiO2 underwent oligomerization. However, to better understand the dynamics and 

mechanism of the mechanochemical peptide bond formation, we performed additional peptide 

bond formation experiments in the presence of TiO2 starting from Gly2 and Gly3 instead of Gly. 

After 18 h of milling at 130 °C, the reaction of Gly2 and Gly3 with TiO2 afforded once again a 

mixture of oligopeptides (Figure 5, Figures S13 and S14). The oligomerization of Gly2 afforded 

the longest oligopeptide obtained by milling at 130 °C, Gly14 (Figure S9). Interestingly, odd-

number oligomers of glycine and even-number oligomers of glycine were observed when Gly2 

and Gly3 were used as starting materials, respectively, showing that the formation of the peptide 

bond is a dynamic and reversible process under the mechanochemical reaction conditions. 

Additionally, the presence of DKP in the reaction mixtures after the mechanochemical 

treatment of Gly2 or Gly3 (Figure 5b-c) led us to believe that DKP could be a productive 

intermediate in the oligomerization of Gly rather than an undesirable byproduct in prebiotic 
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peptide formation studies.2,44 Along these lines, milling DKP at RT and in the presence of TiO2 

was shown to generate oligomers up to Gly10 (Figure 5d and Figure S16). 

 

Figure 5. IP-HPLC chromatograms: (a) Gly milled with TiO2 at RT, (b) Gly2 milled with TiO2 

at 130 °C, (c) Gly3 milled with TiO2 at 130 °C and (d) DKP milled with TiO2 at 130 °C. The 

inset shows the zoomed region of retention times in the 6.1-11 min range. 

The formation of peptide bonds can also be determined by ex-situ attenuated total reflectance-

Fourier transform infrared (ATR-FTIR) spectroscopy (Figure 6a). Despite the broadening of 

the spectral bands in the milled samples, a gradual shift towards higher wavenumbers for the 

amide C=O stretching region, as the temperature of the milling increased, was noticed. Based 

on previous reports, this observation was taken to indicate the success of the mechanochemical 

peptide bond formation (Figure 6a).46,47 In particular, the spectroscopic changes were most 

pronounced in the case of the milling reactions carried out at 130 °C (Figure 6a). To inspect the 

product in more details, the milled sample was dissolved in water and filtered. The organic 

material recovered after the evaporation of the filtrate (Figure S19) was analyzed by ATR-FTIR 
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spectroscopy, together with standards of pure Gly2 and Gly3 (Figure 6b). The broad band with 

the maximum at 1652 cm–1 and the weak band at around 3300 cm–1 ascribed to N–H stretching 

indicate the presence of oligopeptides in the mixture. However, it is evident that the 

chromatographic analytical methods (IP-HPLC and UPLC-MS) were more appropriate to gain 

more in-depth insight into the oligomerization process.  

 

Figure 6. (a) ATR-FTIR analysis of the raw reaction mixtures after ball milling. (b) ATR-FTIR 

analysis of the recovered organic material after filtration of the milling experiment at 130 °C 

(soluble oligomers after water evaporation) and comparison with standards.  

From the prebiotic plausibility standpoint of the mechanochemical peptide bond formation, it 

would be expected that the process would be robust and not exclusive for a single mineral 

surface. Hence, we attempted the formation of peptides on other ubiquitous minerals such as 

SiO2,
48 and sheeted montmorillonite and mica silicates. The mechanochemical Gly 

oligomerization was successful with all of the minerals mentioned above (Figures S22-S24). 

Furthermore, having performed LAG reactions with water, we show that mechanochemical 

peptide bond formation proceeds even in small amounts of water at RT and at 130 °C (Figures 

S25 and S26). Finally, to prove the generality of the proposed mechanochemical peptide bond 

formation, milling L-alanine (L-Ala) in the presence of TiO2 also results in the formation of L-

Ala oligomers (Figures S27 and S28). 



 12 

Conclusion 

The feasibility of a prebiotic impact scenario to nurture the synthesis of amino acid derivatives 

has recently been demonstrated.36 However, the formation of higher-order structures such as 

peptides from amino acids by mechanical forces had mostly only been hypothesized,49 and 

mechanochemical oligomerization of amino acids has been predicted to require high 

compressive loads and shear rates.50 In this work, we show that the mechanical activation 

achieved by ball milling is enough to induce peptide bond formation in a sample of unactivated 

glycine in the absence of bulk liquids. The oligomerization of glycine into linear oligomers 

Gly≥2 improves in the presence of prebiotically plausible additives such as TiO2,
51,52 and even 

proceeds in the presence of water. The milling temperature is shown to be critical for the 

oligomerization of glycine, enabling a maximum calculated total yield of oligomers Gly≥2 of 

10.2% at 100 °C, and peptides as long as Gly14 were detected by a here-developed UPLC-MS 

method. Experiments using DKP, Gly2, or Gly3 as starting materials demonstrated that the 

mechanochemical peptide bond formation is a dynamic and reversible process with 

simultaneous forming and breaking of peptide bonds. Importantly, DKP, which is often 

regarded as a dead-end for the prebiotic formation of peptides, is a productive reactant for 

peptides under mechanochemical conditions. The findings of this study provide an alternative 

synthetic approach towards oligopeptides that not only complements the well-established 

alternating hot/cool prebiotic peptide bond formation,16–19 but since our protocol is not limited 

by poor diffusion of the solid reactants, the mechanochemical peptide bond formation 

circumvents the need for fluctuating dry/wet environments. 
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