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Abstract 
Autonomous process optimization involves the human intervention-free exploration of a range of pre-
defined process parameters in order to improve responses such as reaction yield and product selectivity. 
Utilizing off-the-shelf components, we developed a closed-loop system capable of carrying out parallel 
autonomous process optimization experiments in batch with significantly reduced cycle times. Upon 
implementation of our system in the autonomous optimization of a palladium-catalyzed stereoselective 
Suzuki-Miyaura coupling, we found that the definition of a set of meaningful, broad, and unbiased process 
parameters was the most critical aspect of a successful optimization. In addition, we found that categorical 
parameters such as phosphine ligand were vital to determining the reaction outcome. To date, categorical 
parameter selection has relied on chemical intuition, potentially introducing an element of bias into the 
experimental design. In seeking a systematic method for the selection of a diverse set of phosphine ligands 
fully representative of the chemical space, we developed a strategy that leveraged computed molecular 
descriptor clustering analysis. This strategy allowed for the successful autonomous optimization of a 
stereoselective Suzuki-Miyaura coupling between a vinyl sulfonate and an arylboronic acid to selectively 
generate the E-product isomer in high yield.    

Introduction 
Recent advancements in computer science and automation technologies have led to the emergence of 
autonomous chemistry systems built on the premise of human intervention-free hypothesis generation 
and testing.1 Autonomous workflows typically involve three key components: (1) a machine learning (ML) 
algorithm for hypothesis generation, (2) a robotic system for experimental execution, and (3) an online 
analytics platform for performance evaluation. The level of human intervention varies based on the 
degree of hardware and software integration among the key components. In a fully autonomous system, 
a “closed-loop” is achieved, where the scientist can define the search space, and then hit “go”. Closed-
loop applications have ranged from biologically active compound discovery2 to materials development,3 
novel reaction scouting4 and process optimization.5 
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Autonomous process optimization involves the human intervention-free exploration of a range of pre-
defined process parameters to improve responses such as reaction yield, product selectivity and catalyst 
turnover number. The definition of a set of meaningful, broad, and unbiased process parameters is 
arguably the most critical aspect of a successful optimization. Work to date has focused on the 
multivariate optimization of continuous parameters such as temperature, stoichiometry and time; 
however, vital categorical parameters such as reagent, solvent or catalyst have rarely been incorporated. 
In fact, leading examples involving continuous and categorical parameter combinations have been limited 
to fewer than eight catalysts or ten solvents.6 Furthermore, in these examples, categorical parameter 
selection was guided through chemical intuition, potentially introducing an element of bias into the 
experimental design. Thus, in our view, categorical parameter selection in the context of autonomous 
process optimization remains an unsolved challenge. We envisioned developing a more systematic 
method for the selection of a broad and diverse set of categorical parameters to fully represent the 
chemical space, driving more effective optimization campaigns.   

Successful optimization also hinges on the identification of suitable automation equipment capable of 
effective experimental execution and analysis. Current research focuses heavily on custom-built 
continuous and segmented flow-reactor systems outfitted with online analytics for experimental 
execution. While these state-of-the-art systems have enabled the rapid multivariate optimization of 
several processes, examples have still been limited to the sequential execution of fast, homogeneous 
reactions amenable to flow reactors.7 In this work, we expand the autonomous process optimization 
toolkit to include a broader set of reaction methodologies by integrating off-the-shelf robotic systems 
with online analytics to carry out parallel reaction loops in 96-well plates. 

The final aspect of successful optimization is the selection of an effective ML algorithm. Recently, Bayesian 
optimization algorithms have gained traction in the in autonomous chemistry realm, leading to a number 
of successful optimization campaigns.8 The advantage of Bayesian optimization is the implicit formulation 
of expected outcomes for all possible reaction conditions which are conditioned on all previous 
observations and constantly refined as soon as new observations become available. One example is the 
Phoenics9 algorithm, a Bayesian optimizer developed for the global optimization of chemistry problems, 
with the capability to propose multiple parameter points in parallel. Another example is the Gryffin10 
algorithm, developed specifically for the identification of optimal choices for categorical parameters. 
Given our interest in the autonomous optimization of categorical and continuous parameters in tandem 
through the execution of parallel reaction loops, we combined the Phoenics and Gryffin optimization 
strategies to satisfy both requirements. 

We identified a stereoselective Suzuki-Miyaura cross-coupling reaction that would benefit from a tandem 
categorical and continuous parameter optimization (Figure 1).11 Typically, Suzuki-Miyaura cross-couplings 
of vinyl halides or sulfonates proceed with retention of the olefin bond geometry, but in this example, 
vinyl sulfonate 1-E undergoes stereoinversion under ligand-free and electron-rich dialkylbiaryl phosphine-
mediated palladium catalysis to generate product 2-Z. In contrast, stereoinversion is partially suppressed 
using ferrocenyl bisphosphine-mediated palladium catalysis, facilitating the selective formation of 
product 2-E. Thus, stereoselectivity in this system appears to be influenced by both the phosphine ligand 
selection and stoichiometry.12 Importantly, traditional phosphines preferred in Suzuki couplings, such as 
dialkylbiaryl phosphine ligands,13 appear to facilitate the undesired steroinversion pathway. Finally, with 
reaction completion times in the order of two hours, this system is not amenable to flow reactors due to 
impractically long residence times.  
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Figure 1. Phosphine ligand and reaction condition influence on a palladium-catalyzed stereoselective 
Suzuki-Miyaura coupling to generate the stereoinversion (2-Z) or stereoretention product (2-E).  
a Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 20 µmol 3, 0.4 µmol Pd(ACN)2Cl2, 30 µmol 
K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 25 °C. 
b,c Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 11 µmol 3, 0.2 µmol Pd(ACN)2Cl2, 0.4 µmol 
L, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 25 °C. Ligand structures are provided in Figure 3. 

Our goal was to improve the yield of stereoretention product 2-E through an autonomous optimization 
campaign by exploring a selection of phosphines and continuous process parameters in tandem. We 
employed a Chemspeed SWING robotic system for the experimental execution of parallel reaction loops 
in batch and employed the Phoenics and Gryffin algorithms for the proposal of parallel combinations 
continuous and categorical process parameter selections. Recognizing the impact of phosphine selection 
on the optimization outcome, we employed a variety of categorical parameter selection strategies, 
including chemical intuition and computed molecular descriptor clustering of 365 commercially available 
phosphines.14 Here, we discuss the advantages and limitations of each phosphine selection strategy and 
their impacts on this challenging optimization problem.  

Results 
Establishing a closed-loop system 

The establishment of a closed-loop system required the integration of three main components: (1) 
ChemOS,15 the experimental scheduler for coordination of experiments proposed by the ML algorithms 
(Phoenics and Gryffin), (2) Chemspeed SWING, the robotic system for automated experimental set-up, 
and (3) Agilent 1100, the HPLC-UV system for measurement of the experimental outcomes (Figure 2). The 
only hardware customization required was the integration of the Agilent HPLC-UV system with the 
Chemspeed SWING robotic platform. This integration was accomplished through the installation of an 
HPLC valve on the Chemspeed robot deck and incorporation of relay switches for triggering 
chromatographic resolution and photodiode array detection.16 The next step was to establish automated 
data flow from the experimental scheduler to the robot, and from the online analytical system back to 
the experimental scheduler for the ML algorithm to interpret results and propose subsequent 
experiments. In lieu of developing a complex Application Programming Interface (API) among the three 
software components (ChemOS, Chemspeed Autosuite, and Agilent Chemstation), we opted to develop a 
lightweight Python framework for data transfer between these components. The script translated 
ChemOS parameter suggestions into stock mixture dispense volumes, calculated product assay yields 
from HPLC peak area ratios to an internal standard and reported experimental measurements back to 
ChemOS. 
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Figure 2. Closed-loop system for autonomous optimization in batch. The three main components to 
enable this closed-loop include (1) ChemOS to coordinate experiments and data-driven approaches, (2) 
Chemspeed SWING for automated experimental setup, and (3) Agilent 1100 to characterize the 
experimental outcomes. 

Defining the process parameters and optimization objectives 
 
A set of categorical and continuous parameters was selected for potential impact on the reaction 
outcome, including phosphine ligand, phosphine to palladium ratio, palladium loading, arylboronic acid 
equivalents, and reaction temperature (Table 1). Upper and lower bound selection for each continuous 
parameter was guided by chemical intuition but also designed to be sufficiently broad to explore a diverse 
set of responses. Ligand set selections varied from 12 up to 23 ligands, depending on the selection strategy 
(see below). The ML algorithms (Phoenics and Gryffin) were configured to maximize the yield of the E-
product, minimize the yield of the Z-product, minimize the palladium loading, and minimize the 
arylboronic acid equivalents, in that order (Table 1). Each objective was configured with a 10 % relative 
threshold that would only consider the next objective once that threshold had been achieved. This multi-
objective optimization, or Pareto optimization design, was made possible through the implementation of 
the scalarizing function Chimera.17  

Table 1. Process parameters and optimization objectives 

Parameter Type Range Unit 

Phosphine ligand (P ligand) Categorical 12 – 23 Number of ligands 

Phosphine to palladium ratio (P/Pd) Continuous 0.5 – 4.0  ratio 

Palladium loading (Pd mol%) Continuous 1.0 – 5.0 mol % 

Arylboronic acid equivalents (ArBA equiv)* Continuous 1.0 – 2.0  equivalents 

Reaction temperature (Rxn temp) Continuous 10 – 40  °C 

Response Objective Priority Unit 

E-product assay yield (E-PR AY) Maximize First mol % 

Z-product assay yield (Z-PR AY) Minimize Second mol % 

Palladium loading (Pd mol%) Minimize Third mol % 
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Arylboronic acid equivalents (ArBA equiv)* Minimize Fourth equivalents 
*Note: The arylboronic acid equivalents parameter and response was removed from the experimental 
design upon expanding the search space from 12 to 23 ligands.  

Designing the automation workflow 
 
Given the broad search space, a reasonable number of reactions for an autonomous optimization 
campaign was determined to reside between 120 and 192, depending on the number of ligands under 
evaluation. Full conversion in this Suzuki-Miyaura coupling is typically achieved within two hours under 
the median values of the continuous parameter ranges defined above. Thus, if the maximum number of 
192 consecutive reactions were carried out sequentially, the optimization campaign would take 16 days 
to complete. This lengthy duration would serve to obviate the benefits of autonomous optimization, and 
correspondingly, necessitated parallelization of the reactions. Therefore, the reactions were parallelized 
into loops of eight, allowing for a 192-reaction campaign to be completed within 24 loops over a more 
reasonable time period of four days. Conditions for the first loop of eight reactions were selected 
randomly by the ML algorithm. Subsequent conditions were determined autonomously by Phoenics and 
Gryffin as analytical results were returned, following a data-driven strategy. ChemOS, the experimental 
scheduler, parallelized the suggested reactions for the Chemspeed SWING system to dispense and initiate 
in 15-minute intervals. Analytical samples were also aliquoted and acquired in 15-minute intervals, at the 
endpoint of each reaction.  

Trial runs and experimentally-derived constraints for the optimization strategy 
 
Trial runs unveiled two instrument constraints that necessitated further enhancements of the 
optimization strategy. The first constraint involved the need to fix the reaction temperature across each 
loop of eight reactions given that these reactions were designed to be carried out within the same reactor 
block and timeframe. In order to accommodate this constraint, the capabilities of the Phoenics and Gryffin 
optimization strategies were extended to facilitate optimization with process constraints following the 
idea of a previously introduced basic process-constrained Bayesian optimization algorithm (pc-
BO(basic)).18 This extension allowed the suggestion of a total of eight different experiments where the 
temperature was fixed across one loop. The second instrument constraint was the inability of the 
Chemspeed robot to execute sub-microliter dispenses accurately; thus, the Python script was augmented 
to round calculated dispense volumes to the microliter level and update the suggested parameters with 
the executed parameters prior to returning analytical results to ChemOS. These enhancements allowed 
for the successful application of an algorithm in a real-world experimental setting.  

Autonomous optimization with ligands selected through chemical intuition 
 
Initial ligand selection was carried out through chemical intuition around phosphines with the potential 
to accelerate palladium-catalyzed cross-couplings19 (here, chemical intuition refers to insight arising from 
a combination of literature precedent and hands-on experience). Twelve ligands were selected, including 
trialkyl, triaryl, ferrocenyl and dialkylbiaryl phosphines. These ligands were evaluated in combination with 
four continuous parameters, including phosphine ligand, phosphine to palladium ratio, palladium loading, 
arylboronic acid equivalents, and reaction temperature. The optimization campaign was carried out in 
fifteen loops of eight reactions, totaling 120 autonomous iterations carried out over 60 hours. This first 
campaign resulted in conditions to access product 2-E in 65% yield and 2:1 E/Z selectivity upon 118 
iterations, under Pd-L7 catalysis (Figure 3). It was also noted that the optimizer dedicated a higher number 
of iterations to L7 (DPPF), the top-performing ligand. Although this optimization should be viewed as 
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successful, improvements to product 2-E yields from our initial conditions were nominal (compared to 
60% yield and 2:1 E/Z selectivity as shown in Figure 1). This nominal improvement was attributed to ligand 
bias resulting from chemical intuition-based selection, thus, we embarked upon the exploration of a 
broader set of ligands to access 2-E in higher yield and selectivity.  

  

 

 

 

Figure 3. Parameters and results of optimization with ligands selected through chemical intuition 
(campaign 1).  
Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 10 - 20 µmol 3, 0.1 - 0.5 µmol Pd(ACN)2Cl2, 
0.05 - 2 µmol L, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 10 - 40 °C. 
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Autonomous optimization with ligands selected through computed molecular features 
 
To this end, we sought a systematic method for the selection of a diverse set of phosphines for 
autonomous evaluation. A particularly attractive approach would leverage computed molecular features 
of phosphines as these have been applied to reaction optimization through predictive modeling.20 In our 
current study, 365 commercially available monodentate phosphines were used to define the chemical 
space (the focus was limited to monodentate phosphines in order to more effectivity control the ligation 
state of palladium). For each phosphine, features were obtained by computing molecular properties for a 
representative set of conformers using DFT. Then, k-means clustering was carried out on the first four 
principal components of this descriptor set to divide the chemical space into 24 regions. A single 
compound was selected from each cluster for experimental evaluation based on additional considerations 
such as availability in the Merck phosphine library, price, and anticipated stability (Figure 4).21 One cluster 
contained ligands that were deemed too challenging to implement; therefore, candidates from this cluster 
were not included in the experimental design.22 

 

Figure 4. K-means clustering on the first four principal components of the molecular descriptor set for 
365 commercial monodentate phosphines. The chemical space is represented by a two-dimensional 
plot of the first two principal components.  
Note: Each cluster is represented by color and highlighted boxes indicate selected candidates.  

Investigation of a larger ligand set necessitated the expansion of the optimization campaign to 24 loops 
of eight reactions, totaling 192 autonomous iterations executed over 96 hours (16 of these reactions were 
designated as test reactions to test for reproducibility, accuracy and precision). In addition, the larger 
ligand set also drove the removal of the arylboronic acid equivalents parameter and response from the 
experimental design. This second campaign resulted in the identification of optimal conditions to access 
product 2-E in 73% yield and 3:1 E/Z selectivity upon 161 iterations, using L30 as the ligand (Figure 5a). 
Given that the ML algorithm had no information to bias the search, and that ligand selection was unbiased, 
the improved stereoselectivity of 3:1 highlights the potential of our novel optimization technology. As in 
the first campaign, the algorithm dedicated a significant portion of iterations to the top-performing ligand; 
previously L7 (DPPF), now L30 (PhSPhos). Additional high-performing ligands also fell under the triaryl 
phosphine category, with both electron-rich (L20, L21) and electron-poor (L26) triaryl phosphines proving 
effective. Surprisingly, ligands with significant structural similarity to L30 (PhSPhos), including L28 and L31 
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(SPhos), did not selectively yield 2-E, presumably due to the presence of two electron-rich cyclohexyl 
substituents.    

A deeper look into the influence of the continuous parameters on the yield of product 2-E (Figure 5b) 
revealed that phosphine to palladium ratios within the center of the studied range provided optimal 
outcomes. In fact, phosphine to palladium ratios near the upper and lower bound values resulted in 
significant declines in yields. Conversely, performing the reaction at temperatures near the upper bound 
of the evaluated range proved most effective in driving product formation. Finally, and unsurprisingly, 
higher palladium loadings resulted in improved product 2-E yields; however, the algorithm appeared to 
explore a bimodal distribution of palladium loading, focusing on regions close to 1.5 mol% and 3.5 mol%, 
landing at an optimum of 3.7 mol%. Although we are currently unable to interpret this bimodal 
exploration behavior, we are pleased to observe that the algorithm does not default to maximizing to 
upper bound values when presented with potentially linear trends.   

  

 

a. 
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Figure 5a. Parameters and results of optimization with ligands selected through descriptor clustering 
(campaign 2). 5b. 3D visualization of continuous parameters vs. E-product yield (campaign 2). PhSPhos 
results are outlined; all other ligand results are not outlined. 
Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 15 µmol 3, 0.1 - 0.5 µmol Pd(ACN)2Cl2, 0.05 - 
2 µmol L, 30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 10 - 40 °C. 

Comparison of the optimization results from the two campaigns superimposed on the monodentate 
phosphine ligand space  clearly demonstrates the advantage of systematic ligand selection over chemical 
intuition-based ligand selection (Figure 6). A wider range of product 2-E yields were observed through the 
systematic exploration of a diverse set of ligands, ultimately leading to the discovery of L30 as a superior 
ligand. This is likely due to the challenging nature of the stereoselective Suzuki-Miyaura coupling under 
evaluation, where selectivity appears to be driven by ligand selection through a poorly understood 
mechanism, driving the need for empirical ligand exploration.   

  

b. 
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Figure 6. The maximum yield of 2-E obtained for each monodentate ligand explored in campaigns 1 
and 2 as a function of the monodentate phosphine ligand space.  

At this stage, the only question that remained unanswered was whether the algorithm’s optimization 
performance could be improved if ligands were parametrized within the algorithm instead of being 
treated as black-box parameters. We hypothesized that the utilization of computed molecular descriptors 
as a means for the algorithm to relate among ligands could accelerate convergence. We therefore 
manually selected 15 from of the hundreds of descriptors utilized in ligand selection and carried out a 
third 192-iteration optimization campaign.23 We found that a similar optimum was reached, accessing 
product 2-E in 74% yield and 3:1 E/Z selectivity upon iteration 159, again under Pd-L30 catalysis. 
Surprisingly, the algorithm did not appear to converge as clearly as in the previous campaign because 
fewer iterations focused on the top ligand (L30) and, in fact, a high number of iterations focused on 
unproductive ligands.24 This observation may be attributed to some form of unproductive bias introduced 
by the selected set of descriptors, solidifying that an unbiased ligand section was critical to the success of 
this optimization.  

Follow-up experiments with E-selective ligands identified through predictive modeling 
 
With two 192-iteration data sets in hand, various modeling strategies were employed to predict additional 
phosphines that could also promote E-selectivity.25 We found that a reasonable multivariate linear 
regression model (MLR) was generated, and multiple ligands with the potential for E-selectivity were 
proposed.26 Manual experiments employing six of the predicted ligands were carried out utilizing the 
optimal conditions identified from autonomous optimization to measure the selectivity outcome. 
Additionally, L30 was employed in a control experiment. Upon experimental execution, we were pleased 
to find that experimental results agreed with the predictions (Figure 7). Although Pd-L30 still offered the 
highest olefin 2-E yield and E/Z ratio, two ligands (L34, L36) out of six were identified that surpassed the 
50% threshold for product 2-E yield, meaning that one-third of the ligands proposed offered E-selectivity. 
This result is a significant improvement over the ligand set identified in the initial clustering analysis, 
where employment of only one-twelfth of the ligands surpassed the 50% yield threshold for generating 

Campaign 1: Intuition-based selection Campaign 2: Feature-based selection 
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product 2-E. It is important to note that the newly identified E-selective ligands are structurally distinct 
from L30 and, thus, it would have been unlikely to arrive at these selections through chemical intuition.  

 
Figure 7. Manual experiments under optimized conditions with predicted E-selective ligands. 
Note: y is the ln of the highest yield of 2-E per ligand in any experiment. 
Conditions: 10 µmol 1-E, 1 µmol 1,3,5-trimethoxybenzene, 15 µmol 3, 0.4 µmol Pd(ACN)2Cl2, 0.9 µmol L, 
30 µmol K3PO4 (0.5M aq) in ACN (0.05M), 2 h at 35 °C. 

Discussion 
We have demonstrated the human-intervention free multivariate optimization of a stereoselective 
Suzuki-Miyaura coupling in batch through the autonomous evaluation of a large phosphine ligand set and 
continuous parameters in tandem. This success was accomplished through a series of technological 
advances. First, the implementation of a robotic system capable of carrying out parallel experiments with 
online analytics significantly reduced cycle times. Second, the development of seamless communication 
between the ML algorithm and robotic hardware established a closed-loop system. Third, the 
incorporation of Bayesian ML algorithms, here Phoenics and Gryffin, facilitated tandem categorical and 
continuous parameter optimization. Finally, the employment of computed molecular features enabled 
the systematic and unbiased definition of the phosphine ligand search space. The application of these 
advances resulted in the rapid identification of optimal conditions and ligand clusters to maximize the 
yield of product 2-E.  

It is relevant to ask what advantage autonomous optimization offers over more well-established 
technologies such as HTE (high-throughput experimentation) or DOE (design of experiments). Although 
we view algorithmic optimization as a complementary technology, we also believe its advantage lies in 
the multivariate optimization of categorical and continuous parameters in tandem within the fewest 
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number of iterations. To elaborate on this point, a theoretical comparison among the technologies in the 
context of this Suzuki-Miyaura optimization is warranted. The goal of this optimization was to evaluate 23 
categorical and three continuous parameters in tandem to maximize the yield of product 2-E. In our 
studies, we observed that the yield of product 2-E followed a bell-shaped distribution with respect to one 
of the continuous parameters, phosphine to palladium ratio. In an HTE or DOE paradigm, studying the 
lower, center and upper bound values of each continuous parameter with each ligand would have resulted 
in 621 experiments, much higher than the number of experiments reported in our successful autonomous 
optimization (192 experiments). DOE factorial designs with fewer experiments could have been 
implemented, but this approach would have sacrificed center points, in this case leading to the potential 
to miss the global optimum of phosphine to palladium ratio. Thus, at least in the context of this 
optimization, the autonomous approach theoretically proved most efficient in the identification of the 
global optimum within the fewest number of iterations.  

The autonomous optimization approach can easily be replicated to solve a multitude of multivariate 
process optimization problems. Once widely adopted, the technology has the potential to empower 
modern-day chemists to shift their focus away from routine experimental execution and towards higher-
complexity problem-solving. Areas for future improvement include further extensions of algorithmic 
schemes to facilitate process-constrained batch optimization as well as enhancements to multivariate 
data analysis to drive a better understanding of reaction trends, in essence, to learn what the algorithm 
learned. 

Methods 
Instrumentation 
 
Autonomous optimization experiments were executed using a Chemspeed SWING robotic system 
equipped with a four-needle dispense head and four 1 mL syringe pumps to enable accurate dispenses at 
low volumes. Slurry dispensing was enabled through 0.8 mm needle inner diameters. Agitation was 
carried out through an integrated custom V&P scientific 2-position tumble stirring module and 
temperature control was achieved through an integrated Huber Unistat chiller with temperature feedback 
control. Online HPLC analysis was carried out through an integrated Agilent 1100 HPLC equipped with a 
photodiode array detector and a custom sampling valve installed on the robot deck. 

Automation of data flow 
 
ChemOS was utilized as the scheduler that packaged proposed experiments from the machine learning 
algorithm into batches of eight for execution by the Chemspeed SWING robotic module. Communication 
of ChemOS with the Chemspeed SWING robot and Agilent HPLC was established through a lightweight 
Python tool. This script parsed experimental parameters proposed by ChemOS, calculated dispense 
volumes based on stock solution concentrations, and wrote those volumes to a CSV file actively being 
monitored by the Chemspeed Autosuite software. Upon automated experimental execution and 
subsequent HPLC analysis, this script also parsed Agilent HPLC report files for peak area counts to and 
calculated product yields based on predetermined response factors, which were then reported back to 
ChemOS for interpretation and proposal of new experimental parameters.   

Experimental planning algorithms 
 
The ML algorithms used for experiment planning in this study, Phoenics and Gryffin, leverage fundamental 
concepts from Bayesian optimization in combination with kernel density estimation. Bayesian 
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optimization is an approach to global optimization for applications where the evaluation of a single 
parameter point is highly time or resource demanding. While several formulations exist, Bayesian 
optimization follows a two-step strategy to suggest parameter points for future evaluation: (1) 
constructing a statistical approximation to the considered experiment based on collected measurements, 
and (2) locating parameter points for which the approximation predicts promising performance. Phoenics 
and Gryffin construct the statistical approximation based on kernel density estimates of evaluated 
parameters and suggest promising parameter points with an explicit balance of exploitative and 
explorative sampling behavior with native support for batch optimization.  

Automated experimental procedure 
 
General: Stock solutions or slurries were prepared manually in anhydrous ACN under N2 atmosphere and 
placed on the robot deck for autonomous execution. Two fluoropolymer and PFA mat-sealed 96-well 
metal blocks with 1 mL glass vial inserts were equilibrated at the designated reaction temperature under 
20 psig of N2 with 500 rpm agitation. 

Representative procedure for test reactions: In campaigns involving 192 iterations, eight wells from each 
96-well reaction block were dedicated to standard reactions to test for reproducibility. To each well was 
dispensed Pd(ACN)2Cl2 (0.25 µmol, 25 µl of 0.01 M stock solution), and L2 (PoTol3) (0.38 µmol, 19 µl of 
0.02 M stock mixture), followed by 7 min of age time. Then, E-tosylate 1-E (10 µmol) with 1,3,5-
trimethoxybenzene (1 µmol) was dispensed (20 µl of 0.5 M/ 0.05 M stock solution), followed by (3-
(benzyloxy)phenyl)boronic acid 3 (15 µmol, 30 µl of 0.5 M stock solution in degassed ACN 5% H2O), 
followed by anhydrous ACN (106 µl) to ensure a total organic solvent volume of 200 µl. Then, a dispense 
of degassed aqueous K3PO4 (30 µmol, 60 µl of 0.5 M stock solution) was carried out to initiate the reaction. 
This procedure was executed sequentially for each well within a loop of eight replicates in 15-minute 
intervals. Each replicate was time stamped individually, aged for 120 min, and sampled for online analysis. 

Representative procedure for optimization reactions: In campaigns involving 192 iterations, 88 wells from 
each 96-well reaction block were dedicated to the optimization reactions. To each well was dispensed 
Pd(ACN)2Cl2 (0.1 - 0.5 µmol, 10 - 50 µl of 0.01 M stock solution), and phosphine ligand (0.05 - 2.0 µmol, 3 
- 100 µl of 0.02 M stock mixture), followed by 7 min of age time. Then, E-tosylate 1-E (10 µmol) with 1,3,5-
trimethoxybenzene (1.0 µmol) was dispensed (20 µl of 0.5 M/ 0.05 M stock solution), followed by (3-
(benzyloxy)phenyl)boronic acid 3 (15 µmol, 30 µl of 0.5 M stock solution in degassed ACN 5% H2O), 
followed by anhydrous ACN (0 - 138 µl) to ensure a total organic solvent volume of 200 µl. Then, a dispense 
of degassed aqueous K3PO4 (30 µmol, 60 µl of 0.5 M stock solution) was carried out to initiate the reaction. 
This procedure was executed sequentially for each well within a loop of eight experiments in 15-minute 
intervals. Each reaction was time stamped individually, aged for 120 min, and sampled for online analysis. 

Sampling and analysis: Two polypropylene 96-well collection blocks sealed with a silicone mats were 
manually prefilled with 800 µl of acetonitrile 10% aqueous pH 3.5 ammonium formate buffer and placed 
on the robot deck. Upon reaching the reaction end point at 120 min, 10 ul of reaction mixture was 
aliquoted and dispensed into the 800 ul quench solution in the collection block. Upon needle-mixing, 40 
ul of quenched sample from the collection block was aliquoted and injected to the on-deck sampling valve 
outfitted with a 5 µl loop. The valve was automatically switched to transfer the sample to the Agilent 1100 
HPLC for analysis.    

Phosphine descriptor calculations and predictive modeling 
 
Electronic and steric descriptor calculations for 365 commercially available phosphine ligands have been 
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described previously.27 Additionally, employed predictive modeling strategies surrounding parametrized 
phosphines have also been described previously.28 
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