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Abstract: Atom mapping reveals the corresponding relationship 

between reactant and product atoms in chemical reactions, which is 

important for drug design, exploration for underlying chemical mech-

anism, reaction classification and so on. Here, we present a new 

method that links atom mapping and neural machine translation 

using the transformer model. In contrast to the previous algorithms, 

our method runs reaction prediction and captures the information of 

corresponding atoms in parallel. Meanwhile, we use a set of approx-

imately 360K reactions without atom mapping information for obtain-

ing general chemical knowledge and transfer it to atom mapping task 

on another dataset which contains 50K atom-mapped reactions. 

With manual evaluation, the top-1 accuracy of the transformer model 

in atom mapping reaches 91.4%. we hope our work can provide an 

important step toward solving the challenge problem of atom map-

ping in a linguistic perspective. 

Introduction 

Atom mapping (AM) numbers the atoms across a chemical 

reaction to indicate the one-to-one correspondence between an 

atom in a reactant and an atom in a product molecule.[1] In 

chemical reactions, AM can be used to describe the arrange-

ment and distribution of the atoms. Due to this labelling nature, 

AM can be applied to a variety of areas.[2-9] First, AM is an im-

portant part of automatically extracting reaction cores from big 

reaction databases.[2-5] In addition, AM can be applied to assign 

the reaction rules from given reactions to specific molecules.[6] 

AM is also helpful in describing the mechanisms of enzymatic-

catalysed reactions and identifying the feasibility of computa-

tionally derived metabolic pathways.[7-9] 

 Despite the importance of AM in the understanding of the 

chemical composition of reactions, the AM information for known 

reactions in most chemical databases are insufficient. Consider-

ing that matching corresponding atoms for a reaction requires 

deep knowledge of chemistry while manual curation of AM is 

time-consuming, it is desirable to develop computational meth-

ods that can automatically predict the AM. 

 There have been increasing efforts to predict the AM by 

graph theory-based algorithms.[10] In graph theory, a chemical 

molecule is represented as a graph in which atoms and bonds 

are represented as nodes and edges, respectively. Within this 

context, AM becomes a graph matching procedure with NP-

hard[11] (detailed information about related work based on graph 

theory is available in the Section S1 of Supporting Information). 

Currently, common substructure-based method and optimiza-

tion-based method are the two widely-used graph theory-based 

methods. [7,12-19] Figure S1 shows the schematic of a typical AM 

approach that combines the characteristics of the common 

substructure and optimization. The algorithm captures the fea-

tures of atoms and bonds in a reaction and determines what 

atoms are in the common structure between substrates and 

products. After that, the remaining atoms are labelled with num-

bers using optimization-based method. 

 Molecules can be represented as text sequences in addi-

tion to graphs. One of the most common text representations of 

molecules is simplified molecular-input line-entry system 

(SMILES).[20] Similarly, molecules with AM information can be 

transformed into SMILES. From a linguistic perspective, SMILES 

can be treated as a kind of language. In this way, AM becomes 

a translation process which takes reactants with mapping num-

bers as inputs and outputs the mostly likely products with corre-

sponding AM information. 

 Recently, multiple efforts have been made to apply neural 

machine translation (NMT) models to chemical reaction predic-

tion.[21-26] One of the popular NMT models is the transformer, an 

entirely attention-based NMT architecture eschewing recur-

rence.[27] In our previous work, the transformer model has shown 

its good performance in the field of forward reaction and retro-

synthetic reaction predictions.[24-26] Compared to other NMT 

models, the main architectural characteristic of the transformer 

model is that it has completely eliminated any recurrences or 

convolution and solely relies on the attention mechanism to 

compute the representations of its inputs and outputs, which 

allows the transformer model to achieve better performance for 

chemical reaction prediction. 

 Meanwhile, introducing transfer learning, a method that 

takes neural network developed for one task and reused it to a 

related but different task, to the transformer can significantly 

improve the performance of the transformer model.[28] Using 

transfer learning, the knowledge that solves one problem can be 

applied to another problem. For example, general chemical 

knowledge, such as the chirality of compounds, from a large 

chemical dataset can be applied to a related but different reac-

tion prediction task with comparatively small chemical dataset. 
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 In this paper, we describe our work aiming at solving the 

challenging AM computation task. We link the AM with NMT 

using a transfer learning-based transformer model. It is worth 

noting that our model can conduct the reaction prediction and 

the AM simultaneously. In other words, for a given reactant with 

labelling numbers, the transformer model predicts the most likely 

products with the corresponding labelled numbers, which pre-

sents an additional challenge compared to other atom matching 

predictions. Interestingly, at the end of our work in AM task, 

Schwaller et al.[29] prove the fact that atom mapping can be 

learned on the self-supervised task in a reactions sequence. We 

note that our work is not simply an AM application. In fact, it not 

only maps the corresponding atoms across a reaction, but it also 

predicts the most likely product when given reactants. Other 

atom-matching study, inputs complete reactions (including reac-

tants and products) and output reactions in which the atoms in 

the reactants and products are linked to a corresponding num-

ber in the prediction process. However, our work links the atom-

matching work and neural machine translation work. This predic-

tion requires not only the correct product structure, but also the 

correct atom numbers, and only if these two conditions are met 

can a prediction be judged to be correct. 

Results and Discussion 

Table 1 shows the performances of the pretrained (pretrained on 

the USPTO-transfer learning-360K dataset and tested on the 

USPTO-AM-50K dataset), transformer-baseline (trained and 

tested on the USPTO-AM-50K dataset) and transformer-transfer 

learning (pretrained and trained on the USPTO-transfer learning-

360K and USPTO-AM-50K datasets respectively, and tested on 

the USPTO-AM-50K dataset) models in the five experiments. 

The average top-1 accuracy of the transformer-baseline model 

is 87.5% and the average top-1 accuracy of transformer-transfer 

learning model is 90.4%. Both the transformer-baseline and 

transformer-transfer learning models achieve top-1 accuracy 

higher than 80%, which proves that transformer model can be 

applied to AM tasks. The higher accuracy of the transformer-

transfer learning model (>90%) shows that transfer learning can 

provide strong boosts over transformer-baseline models and 

successfully applied to chemical reaction prediction tasks. In 

contrast to other previous works, our task innovatively regards 

the AM as a language translation task and applies the trans-

former model to this task. Crucially, the results are significantly 

improved by introducing the transfer learning strategy.  

 On the other hand, the five top-1 accuracies of the pre-

training model are all 0%. In other words, none of the five exper-

iments achieve any predictive power on this task, providing 

evidence that the pretraining models have difficulty directly 

applying the general chemical knowledge obtained from the 

pretraining process to predict reactions. However, the trans-

former-transfer learning model performs well on this task. That 

said, the pretrained model needs further training on the USPTO-

AM-50K dataset to process the chemical information from the 

USPTO-transfer learning-360K dataset so that it can handle the 

AM task in USPTO-AM-50K dataset. These findings highlight the 

importance of the complete transfer learning procedure in our 

work, which provides constructive insight into the application of 

the transfer learning method. 

 In the following of this section, we chose experiments 1 to 

present the evaluation (detailed information about top-n accura-

cies of transformer-transfer learning model is available in Table 

S1) of our method in AM task. 

Comparison between the transformer-baseline and trans-

former-transfer learning models 

The transformer-transfer learning model outperforms the trans-

former-baseline model on the processed patent data set classi-

fied into 10 classes. The detailed top-1 results for the transform-

er-baseline and transformer-transfer learning models broken 

down by the reaction classes are shown in the Figure 1. The 

transformer-transfer learning model performs significantly better 

in reaction class 1 (heteroatom alkylation and arylation), class 2 

(acylation and related processes) and class 3 (C−C bond for-

mation) (reaction examples that transformer-baseline model 

predicts incorrectly but transformer-transfer learning model 

predicts correctly are available in Section S3 of Supporting 

Information). 

 The difference in the accuracy between the transformer-

baseline and transformer-transfer learning models is mainly 

because the transformer-baseline model displays limited under-

standing of chirality structure and SMILES, but the transformer-

transfer learning model performs well. As illustrated in Table 2, 

when the reactants contained one or more chirality center struc-

tures, the transformer-baseline predict the raw structure but it 

cannot understand the stereo configuration (e.g. R or S), which 

compromises the quality of the products predicted by the model. 

For example, in the prediction of reaction class 1 in Table 2, 

Table 1. The comparison results of the transformer models with different training steps in 5 different subsets of the USPTO-AM-50K dataset. 

Entry 

Top-1 accuracy (%) 

Pretrained model Transformer-baseline model Transformer-transfer learning model 

1 0 87.1% 90.4% 

2 0 88.7% 91.0% 

3 0 86.9% 90.0% 

4 0 86.4% 90.2% 

5 0 88.4% 90.4% 

average 0 87.5% 90.4% 
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Figure 1. Comparison of the top-1 accuracy of the transformer-baseline and 

transformer-transfer learning models by reaction classes.  

the carbon atom in position 16 is originally in the S configuration. 

However, the transformer-baseline model incorrectly projects the 

compound with the R configuration. For reaction classes 2 and 3, 

the transformer-baseline model also makes the same mistake. 

Chirality is a crucial property of asymmetry in several fields of 

chemistry, since it is conducive to understanding the theoretical 

and physical drives behind the formation and structures of a 

large number of chemical compounds. Chirality was the cause of 

the thalidomide disaster in the 1960s. Therefore, it's important to 

predict the chirality structure correctly. 

 On the contrary, the transformer-transfer learning model is 

able to identify the stereo configuration. In all cases shown in 

Table 2, the predictions by the transformer-transfer learning 

model for the target molecule are atom-mapped and can be 

linked to the correct stereo configurations. Consistent with our 

previous research finding, the common deficiency of the trans-

former model in reaction prediction is misunderstanding of the 

chirality. Compared to the transformer-baseline model, the trans-

former-transfer learning model incorporates more chemical 

chirality knowledge since the model learns from the pretraining 

process. Additionally, both the transformer-baseline and the 

transformer-transfer learning models can correctly project the 

AM tasks and the atom-mapped compounds in the predicted 

molecules can be correctly linked to corresponding reactant 

atoms. 

 In addition to recognizing the chirality of compounds, the 

transfer learning pushes forward an immense influence in rec-

ognizing the underlying grammar of SMILES. As displayed in the 

Table 3, the predictions of reaction classes 1, 2 and 3 are repre-

sented by invalid SMILES. Consistent with our previous re-

search results, the model is prone to produce invalid SMILES if 

there are complex ring structures in the compounds. This is a 

typical error in which the transformer-baseline model cannot 

produce grammatically valid SMILES. The practical effect of the 

transformer-baseline model has been limited since the grammar 

of SMILES is extremely sophisticated. However, the capability of 

obtaining the inner core SMILES of the transformer-transfer 

learning model is underpinned, thus decreasing the unfavorable 

effect of SMILES translation for the prediction results and im-

proving the accuracy. For all the examples in Table 3, the trans-

former-transfer learning model not only successfully predicted 

the correct products, but also correctly predicted the mapping of 

the atoms. 

Error analysis of the transformer-transfer learning model 

To further improve the performance of transformer-transfer 

learning model, we perform an analysis on the incorrect pre-

dictions. We divide the errors in the procedure of reaction pre- 

Table 2. Comparisons and representative examples of the transformer-baseline and transformer-transfer learning models in the prediction of class 1, 2 and 3 

reactions with chiral carbon atoms. 

Class Reactants 

Synthetic analysis 

Transformer-transfer learning model 

（correct prediction） 

Transformer-baseline model 

（wrong prediction） 

1 

   

2 

   

3 
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Table 3 Comparisons and representative examples of the transformer-baseline and transformer-transfer learning models in the prediction of class 1, 2 and 3 

reactions with complex ring structures. 

 

diction into two categories: the results that are not consistent 

with the ground truth, and the predictions that match the ground 

truth in the form of the chemical structure but do not match 

SMILES representation of the ground truth. 

 An example of the former error type is shown in Figure 2. 

The alkylation reaction between 4-amino-2-chlorophenol and 4-

chloro-5-fluoroquinazoline is possible with two different groups 

at the reaction site. Because the lone pair on nitrogen is higher 

in energy than that on oxygen, the amino group is more reactive 

towards nucleophilic attack than the hydroxyl group. In this 

context, the ground truth product is 2-chloro-4-((5-

fluoroquinazolin-4-yl) amino) phenol rather than 3-chloro-4-((5-

fluoroquinazolin-4-yl) oxy) aniline. It is worth mentioning that the 

AM information of the corresponding atoms between reactants  

Figure 2. A representative example of the reaction where the prediction of the 

product is not consistent with the ground truth in the SMILES representation or 

in the graph representation. The top row is the targeting product and the 

bottom row is the result from the transformer-transfer learning model. 

and products are correctly given by the transformer-transfer 

learning model, which shows remarkable performance in captur-

ing of the AM information in the form of SMILES. 

 Figure 3 shows an example of the case where the product 

SMILES predicted by the transformer-transfer learning model is 

not consistent with the target SMILES, but the predicted SMILES 

can be converted to the same chemical structure as the ground  

Figure 3. A representative reaction example expressed by different SMILES, 

and the transformer-transfer learning model' predicted chemical structure is as 

same as that of the ground truth. 

Class Reactants 

Synthetic analysis 

Transformer-transfer learning model 

（correct prediction） 

Transformer-baseline model 

（wrong prediction） 

1 

  

SMILES error 

2 

  

SMILES error 

3 

 

 

SMILES error 
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Figure 4. Example reactions that do not match the truth due to the failure of 

capturing the corresponding relationship between reactant and product atoms. 

truth structure. It is an acylation reaction of two reactant mole-

cules, 3-fluorobenzoyl chloride and 1-(4-chlorophenyl)-3-

azabicyclo [3.1.0] hexane, and the product of this reaction is (1-

(4-chlorophenyl)-3-azabicyclo [3.1.0] hexan-3-yl) (3-fluorophenyl) 

methanone. 

 As depicted in Figure 3, there is a subtle difference be-

tween the predicted SMILES and the ground truth SMILES. Due 

to the non-uniqueness of SMILES, a compound may be repre-

sented by several nonstandard SMILES. The (1-(4-

chlorophenyl)-3-azabicyclo [3.1.0] hexan-3-yl) (3-fluorophenyl) 

methanone can be represented by the predicted and ground 

truth SMILES, and the two SMILES correspond to the identical 

chemical structure. Therefore, the prediction by the transformer-

transfer learning model is chemically correct. Due to the accura-

cy metric's limitation, the predicted SMILES is judged to be 

wrong. 

 Incorrect atom numbers predictions are generally caused 

by complex compound structures. Several examples are shown 

in Figure 4. We notice that the incorrect mapping usually hap-

pens in the ring structure such as cyclohexane and piperidine. In 

Figure 4(b), ethyl (1r,4r)-4-(3-fluorophenoxy) cyclohexane-1-

carboxylate has two different atoms equipped with same AM 

numbers. Similarly, tert-butyl 4-((5-bromopyridin-3-yl) oxy) piper-

idine-1-carboxylate has incorrect mapping between reactants 

and products. Due to the structural complexity in the molecules 

across a reaction, labelling atoms between reactants and prod-

ucts with numbers become a serious challenge. 

 However, there is a special AM error in the atom numbers 

prediction error. Figure 5 illustrates several wrong AM prediction 

examples involving a symmetric structure. The molecular sym-

metry factors mainly include symmetric plane, symmetric center 

and symmetric axle. Example (a) is a representative reaction in 

which the reactant involves a symmetric plane (Figure 5). N, N'-

(5-chloro-1,3-phenylene) diformamide is a symmetric molecule, 

and the groups at the positions 9 and 14 on the benzene ring 

are equivalent, therefore, they have an equivalent effect when 

the reaction occurs.  

 Therefore, the answer predicted by the transformer-

transfer learning model is that the reaction at the position 9 of 

the benzene ring is the same as the correct answer on position 

14 of the benzene ring. However, in a superficial sense, the 

reaction sites for the predicted answer are different from those of 

the correct answer, which leads to a different atom number 

prediction, but it is actually chemically feasible. Example (b) is a 

typical etherification reaction that involves molecules with a 

symmetric center (Figure 5). Because of the symmetry of naph-

thalene-2,6-diol, the two hydroxyl groups in the molecules are 

chemically indistinguishable during reactions. A further example  

Figure 5. Example reactions that do not match the ground truth due to the 

symmetry factors in the molecules. Example (a) is a reaction containing 

molecules with a symmetric plane; example (b) is a reaction consisting of 

molecules with a symmetric center; and example (c) is a reaction involving 

molecules with a symmetric axle. 
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reaction is described in the Figure 5(c), which demonstrates the 

influence of a symmetric axis in a molecule. 4,4',4''-(ethane-

1,1,1-triyl) triphenol contains three phenol groups and the reac-

tivity of those groups are equal in the reaction. With the charac-

teristics of molecular symmetry, multiple atom mappings are 

possible in the case of that reactions corresponded to symmetry 

factors. In our study, the predicted mapping and the reference 

mapping are compared by comparing the reaction SMILES. 

Therefore, a plausible mapping given by the transformer-transfer 

learning model may be regarded as a wrong result as a conse-

quence of the limited mapping in the recorded dataset. 

Evaluation of predictions by human expert chemists 

There are a number of chemically plausible predictions made by 

the transformer-transfer learning model that are considered to 

be wrong answers by the algorithm, which results in lower accu-

racy. In addition to algorithmically checking the consistency 

between the predictions of the transformer-transfer learning 

model and the recorded predictions, we also invited expert 

chemists to evaluate the predicted results. To quantitatively 

appraise the results, the chemists identified the wrong answers 

of experiment 1. There were 67 chemically plausible predictions 

with correct corresponding atom number predictions, which 

account for 1.0% of the total test dataset (the detailed infor-

mation about reactions that human expert chemists consider to 

be chemically plausible are in Section S4 of Supporting Infor-

mation). As a result, the actual accuracy of the transformer-

transfer learning model in experiment 1 can reach 91.4%. 

Conclusion 

In our work, we innovatively apply the transformer model to ad-

dress the problem of capturing the corresponding relationship 

between reactants and products. In contrast to prior work which 

depend on the graph theory, our work considers AM as a trans-

lation task so the AM is not limited in the principle of MCS or 

MCD. By running the reaction prediction and atom matching 

simultaneously, the transformer model can not only show the 

relationship between the substrate and product molecules, but it 

also gives the top-n candidates to explore the chemical reac-

tions with AM information. Furthermore, the introduction of trans-

fer learning strategy improves the product prediction ability using 

AM information, and the results further verify the flexibility of the 

transfer learning method. With multiple efforts, the top-1 accura-

cy of the transformer-transfer learning model evaluated by ex-

pert chemists can reach 91.4%, which provides proof of concept 

that AM can be successfully treated as translation task and that 

transfer learning method is powerful when the size of training 

data is relatively smaller. We hope our work can offer some 

inspiring insight to tackling with the problem of AM and reaction 

prediction. 

Experimental Section 

Transformer model 

The architecture of the transformer model is depicted in Figure 

6. As an encoder-decoder based model,[30,31] the transformer  

 

Figure 6. The transformer model architecture. The reactants with AM information are first converted into SMILES and input into the model. Then, the information 

about the reactants is processed by the encoder and decoder, respectively, in the form of the vector and the product with the corresponding AM information is 

given. It is worth noting that the encoder and the decoder contain a stack of N identical layers. N is the number of layers. 
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model is comprised of multi-head attention layers and positional 

feed forward layers. The encoder and decoder are the main 

parts of the transformer model. Several identical layers that 

contain two different sublayers constitute the encoder. The first 

sublayer is the multi-head attention mechanism, which consists 

of several parallel attention layers. The second layer is a con-

nected feed forward network. Before the layer normalization,[32] a 

residual connection[33] around each of the sublayers is added to 

the encoder. In the decoder, there are three critical sublayers. 

Apart from the two sublayers that are identical to those of the 

encoder part, an additional layer, a masked multi-head attention 

mechanism that corresponds to the encoder's output, is intro-

duced to the encoder. Furthermore, the residual connection still 

plays an important role around each of the sublayers. 

 Notably, the introduction of multi-head attention is a key 

feature of the transformer model. With the multi-head attention 

containing parallel attention layers, the model can concurrently 

attend to different versions of values. Therefore, the perfor-

mance of the transformer model is superior to that of the models 

with a single attention mechanism. However, the information 

about the relative or absolute positions of the tokens in a string 

may be missing because the same attention is applied to the 

element of sequences no matter the length of the distance be-

tween tokens. To solve this problem, a positional encoding 

matrix[34] is proposed. With this function, the model can obtain 

the information about the elements of sequences and make full 

use of the order of the sequences. In addition, the parameters 

which affect the model discussed in our prior work are used to 

explore the performance of the transformer mod-el in a chemical 

task. [24] 

Atom mapping data: USPTO-AM-50K 

The atom mapping data used in this study is the USPTO-AM-

50K dataset. The dataset originated from the Lowe's data mining 

work, which obtained these reaction examples from the United 

States Patent and Trademark Office (USPTO) patents.[35] 

 Schneider et al. [6] further processed these reactions and 

extracted approximately 50K atom-mapped reactions spanning 

10 broad reaction types, which can represent the common reac-

tion types in a medicinal chemist's toolkit. The reaction classes 

are depicted in Table 4. The contextual information such as the 

reagents and temperature were eliminated to obtain reactions 

with only reactant and products, and then those reaction exam-

ples were canonicalized. Furthermore, Liu et al.[22] further pro-

cessed this data in order to split the reactions with multiple 

products into multiple distinct reactions and discarded the prod-

ucts with a SMILES length less than five char-acters, such as 

by-products and salts. Finally, those reactions were divided into 

training, validation and test sets at a ratio of 8:1:1. 

Transfer learning data: USPTO-transfer learning-360K 

 The USPTO-transfer learning-360K dataset, which contains 

approximately 360K reaction examples, is applied to the transfer 

learning procedure. The source of these data was also derived 

from the Lowe's work.[35] Additional processing of this dataset 

was implemented in this study. First, duplicate and incomplete 

reactions and their corresponding reagents are removed. It is 

Table 4. Distribution and description of the major reaction classes within the 

processed reaction dataset. 

 

worth noting that the reactions belonging to the USPTO-AM-50K 

dataset are all removed from the USPTO-transfer learning-360K 

dataset, which prevents direct access to the AM information of 

the USPTO-AM-50K dataset. The difference between USPTO-

AM-50K and USPTO-transfer learning-360K datasets is shown 

in the Figure 7. Compared to the USPTO-transfer learning-360K, 

the reactions in the USPTO-AM-50K dataset include the AM 

information. With the numbers that are attached to the atoms, 

the corresponding relationships between reactant and product 

atoms are represented in graphs as well as SMILES. Despite 

the difference between the USPTO-AM-50K and USPTO-

transfer learning-360K datasets, the transformer model can 

capture the chemical knowledge from those datasets and com-

bine their characteristics via transfer learning to solve the prob-

lem of atom matching. 

Evaluation metric 

We adopt the top-n accuracy as a key metric to evaluate the 

method performance. The top-n accuracy refers to the per- 

centage of correct predictions found within the top-n predictions 

by our model. What's more, we have randomly split the USPTO- 

AM-50K dataset into training, validation and test datasets (with a 

ratio of 8:1:1) five times to avoid the results being dependent on 

the outcomes of a particularly favorable or unfavorable splitting. 

Figure 7. The difference between the USPTO-AM-50K and USPTO-transfer 

learning-360K datasets. The top is a reaction example from the USPTO-

transfer learning-360K dataset. The bottom is a reaction with AM information 

from the USPTO-AM-50K dataset. 

Class Description Percentage of dataset (%) 

1 heteroatom alkylation and arylation 30.3 

2 acylation and related processes 23.8 

3 C−C bond formation 11.3 

4 heterocycle formation 1.8 

5 protection 1.3 

6 deprotection 16.5 

7 reduction 9.2 

8 oxidation 1.6 

9 functional group interconversion (FGI) 3.7 

10 functional group addition (FGA) 0.5 
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Figure 8. Schematic of the method regarding the AM problem as a translation task. Given an input SMILES that express reactant molecules with AM information, 

the machine translation model that training on the chemical reaction base outputs a SMILES of the predicted products with corresponding AM information. In this 

approach, the tasks of predicting reaction and AM can be solved simultaneously. 

AM and reaction predictions 

In this paper, we adapt the open source transformer model for 

our AM task and reaction prediction. The schematic of the ap-

proach to AM and reaction predictions is given in Figure 8. First, 

the transformer model is pretrained on the USPTO-transfer 

learning-360K dataset without atom mapping reactions. Each 

reaction is divided into reactant and product SMILES. The em-

bedding of the reactant and product SMILES are passed to the 

encoder. In the pretraining process, the transformer model ab-

sorbs a good deal of basic chemical knowledge. Second, the 

pretrained model acts as a starting point to further train the 

model on the USPTO-AM-50K training dataset to learn to predict 

the products with corresponding atom mapping information. 

Furthermore, we apply the parameters of the pretrained model 

to initialize the model trained on the USPTO-AM-50K dataset. 

Finally, the model is tested on the USPTO-AM-50K testing da-

taset. In the testing process, we only feed the reactants with 

atom mapping information into the encoder. The model outputs 

corresponding products with atom mapping information. 
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The transformer model is applied to reac-

tion prediction and the task of capturing the 

information of corresponding atoms be-

tween reactants and products. Using trans-

fer learning strategy, the top-1 accuracy of 

our model in atom mapping task can reach 

91.4%, which reveals the fact that atom 

mapping can be regarded as a translation 

task. 
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