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ABSTRACT:  Intermolecular C–C bond-forming reactions are underdeveloped transformations in the field of biocatalysis. Here we 
report a photoenzymatic intermolecular hydroalkylation of olefins catalyzed by flavin-dependent ‘ene’reductases. Radical initiation 
occurs via photoexcitation of a rare high-order enzyme-templated charge-transfer complex that forms between an alkene, 𝛼-chloro-
amide, and flavin hydroquinone. This unique mechanism ensures that radical formation only occurs when both substrates are present 
within the protein active site. This active site can control the radical terminating hydrogen atom transfer, enabling the synthesis of 
enantioenriched γ-stereogenic amides. This work highlights the potential for photoenzymatic catalysis to enable new biocatalytic 
transformations via previously unknown electron transfer mechanisms.

Intermolecular C–C bond-forming reactions are es-
sential tools for the construction of societally valuable organic 
molecules.1 Enzymes are attractive catalysts for these transfor-
mations because of their ability to control reactive intermediates 
with unique precision. Unfortunately, the scope of natural C–C 
bond-forming enzymatic reactions is limited to relatively few 
retrosynthetic disconnections and often display limited sub-
strate promiscuity.1d This substrate specificity results from the 
requirement for two substrates to bind and form reactive inter-
mediates simultaneously within a protein active site. While 
some enzymes ensure co-localization through intricate gating 
mechanisms,2 the most substrate promiscuous enzymes form 
long-lived reactive intermediates or assume reactive confor-
mations with substrates displaying a high affinity for the protein 
active site. This approach enables coupling with a reasonably 
broad collection of substrates that possess only modest active 
site affinities. This catalytic strategy is central to many of the 
most commonly used C–C bond-forming enzymes, such as al-
dolases (Figure 1A),1d, 3 carboligases,4 and artificial metalloen-
zymes.5 While long-lived intermediates are amenable to this ap-
proach, it is incompatible with more transient species.   

Organic radicals are versatile intermediates capable of 
undergoing a variety of synthetically valuable chemical reac-
tions.6 However, these species can be challenging to utilize for 
radical biocatalytic reactions as a function of their short life-
times. Our group has recently developed modular mechanisms 
for forming radical intermediates within enzyme active sites to 
address long-standing selectivity challenges in the radical liter-
ature.7 During this time, we found that organohalides will form 
charge-transfer (CT) complexes with flavin hydroquinone 
(FMNhq) within the active sites of ‘ene’-reductases (EREDs).8 
Upon photoexcitation, both nucleophilic and electrophilic 

radical intermediates are generated that engage in various intra-
molecular C–C bond-forming reactions, often with high levels 
of enantio- and diastereoselectivity. 

 
Figure 1. Mechanisms of Enzymatic Intermolecular C–C 
Bond Formation 

Given the variety of radical cyclizations available to 
these enzymes, we questioned whether they could also catalyze 
intermolecular reductive coupling with alkenes.9 A challenge to 
achieving an intermolecular reaction is undesired hydrodehalo-
genation if radical formation occurs in the absence of the cou-
pling partner (Figure 1B).10 Accordingly, we sought to identify 
a reaction mechanism that ensures radical formation only oc-
curs when both substrates are present within the protein active 
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site. This represents a significant challenge as EREDs are only 
known to possess a single substrate-binding site.11 However, we 
hypothesized that hydrophobic alkenes might display a non-
specific affinity for the enzymes hydrophobic active site, ena-
bling concurrent binding of the radical precursor and alkene, 
thus limiting the amount of hydrodehalogenated product 
formed.12 

We initiated our studies by exploring the coupling of 
N,N-dimethylchloroamide 1 with three equivalents of 𝛼-me-
thylstyrene 2 under cyan light irradiation (λmax = 497 nm) with 
a small collection of EREDs (Table S1). We found that many 
EREDs can catalyze the coupling reaction with only trace for-
mation of the undesired hydrodehalogenated product 4. The 
EREDs from Gluconobacter oxydans, with a previously identi-
fied beneficial mutation (GluER-T36A), afforded amide 3 in 
80% yield with high levels of enantioselectivity for the R-enan-
tiomer (Table 1, Entry 1). The S-enantiomer of product 3 can be 
accessed using the homolog from N. punctiforme (NostocER) 
(Table 1, Entry 2). Reaction optimization revealed that both en-
zymes could catalyze the reaction in near quantitative yield by 
adding 10% (v/v) DMSO (Table 1, Entries 3-4). Under these 
conditions, reactions could be carried out with as little as 0.5 
mol % lyophilized enzyme with little change in the yield (Table 
S3). The reaction can be run with either purified protein or ly-
ophilized cell-free lysate, providing identical levels of enanti-
oselectivity, with only a modest decrease in yield when run on 
a preparative scale, highlighting the transformation's robust na-
ture (Table 1, entries 5-6). Overall, this reaction demonstrates 
the ability of EREDs to precisely control hydrogen atom trans-
fer to prochiral radicals, a distal site that has proven challenging 
to control with conventional catalytic methodologies.13 
Table 1. Enzyme Screen 

 
Entrya EREDb Yield(%) Enantiomeric Ratio (e.r.) 

1 GluER-T36A 80 97:3 

2 NostocER 50 10:90 

3b GluER-T36A 99 99:1 

4b NostocER 96 10:90 

5c GluER-T36A 77 (61)d 99:1 

6e GluER-T36A 87 99:1 
a 1 (10.0 μmol, 2.0 mg), ‘ene’-reductase (0.050 μmol), NADP+ (0.10 μmol), 
GDH-105 (0.5 mg/rxn), glucose (60 μmol), Tris (100 mM, pH=9.0),  36 
hours, 25 ˚C. b 1 (20.0 μmol, 4.0 mg), ‘ene’-reductase (0.10 μmol), NADP+ 
(0.10 μmol), GDH-105 (1.0 mg/rxn), glucose (60 μmol), Tris (100 mM, 
pH=9.0), DMSO (10%(v/v)), 24 hours, 25 ˚C c optimized conditions with 
cell-free lysate.d Preparative gram scale reaction using cell-free lysate. e Pre-
parative scale reaction run on 0.2 mmol scale, 40.0 mg using purified en-
zyme. 

The most striking feature of this reaction was the lack 
of hydrodehalogenated product 4, the expected product if al-
kene is not present within the protein active site during radical 
formation. 14  A series of mechanistic experiments were con-
ducted to understand the origin of this selectivity. We began by 
probing whether a CT complex was responsible for radical for-
mation. When GluER-T36A was reduced with sodium dithio-
nite, negligible absorption above 400 nm, consistent with the 

absorption features of FMNhq (Figure 2A). Upon the addition of 
chloroamide 1, a new absorption feature is observed at 500 nm. 
This feature is less pronounced when compared to amides con-
taining tethered alkenes.8 Addition of 𝛼-methylstyrene 2 to the 
ternary CT-complex of GluER-T36A, FMNhq, and chloroamide 
1 pronounced a new absorption feature at 380 and 500 nm. 
When this mixture was filtered to remove all small molecules, 
the absorption feature is lost, and FMNhq was reformed (Sup-
plemental Figure 4). Nearly identical spectral features were ob-
served when the same experiments were run with NostocER, 
and no CT complex was observed in the absence of protein 
(Supplemental Figure 5 and 7).  
 These experiments provide strong evidence that a qua-
ternary CT complex between the protein, FMNhq, chloroamide 
1, and 𝛼-methylstyrene 2 is responsible for the observed reac-
tivity. This unexpected complex provides an explanation for the 
lack of hydrodehalogenated product, as radical formation is 
limited to the situation where both substrates are present within 
the enzyme active site. Moreover, the similarity between the ab-
sorption features of flavin semiquinone (FMNsq) and the qua-
ternary CT complex implies a large degree of charge transfer in 
the ground state. This represents a rare example of a quaternary 
CT complex.15 We anticipate this type of mechanism could be 
possible with other synthetic reactions involving supramolecu-
lar scaffolds.16 
 

 
Figure 2. Mechanistic information  
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absence of styrene (Figure 2B). When GluER is reduced with 
dithionite and chloroamide 1 is added to the mixture, we ob-
serve a charge-transfer state with a lifetime of 9 ps that decays 
to the flavin quinone with a quantum yield of 8%. In contrast, 
when the same experiment is run in the presence of 𝛼-me-
thylstyrene, the lifetime of the charge transfer state remains 5 
ps, but decays instead to the flavin semiquinone, which exhibits 
a lifetime of 45 ps before ultimately forming flavin quinone on 
a 300 ps timescale. The quantum yield of this process signifi-
cantly higher at 12%. These results suggest that 𝛼-methylsty-
rene facilitates C–Cl mesolytic cleavage, making the forward 
processes competitive with back electron transfer.17  

With an understanding of both the mechanism of rad-
ical formation and the lifetime of radical intermediates, we next 
focused on the mechanism of radical termination.8 A series of 
isotope incorporation experiments were conducted with both 
GluER-T36A and NostocER. When reactions were run with 
glucose-1-d1, leading to deuteration of the flavin N5-position, 
with GluER-T36A, 93% deuterium incorporation was observed 
at the γ-position of the product (Figure 2C). In contrast, when 
reactions are run with glucose-1-H1 in deuterated buffer, to in 
situ label tyrosine OH protons, <5% deuterium incorporation is 
observed. These results suggest that with GluER-T36A, radical 
termination occurs almost exclusively through hydrogen atom 
transfer from FMNsq. 

NostocER provided slightly different results when the 
same experiments were conducted. When reactions were run 
with isotopically labeled flavin, only 75% deuterium incorpora-
tion was observed at the γ-position of the product while the ex-
periments with deuterated buffer afforded 21% deuterium in-
corporation (Figure 2C). These experiments suggest radical ter-
mination via hydrogen atom transfer from both flavin and tyro-
sine is operative.18  These competing mechanisms of radical ter-
mination potentially account for the lower levels of 

enantioselectivity observed with NostocER. We hypothesized 
that mutation of these tyrosines to phenylalanine would shut 
down the tyrosine termination pathway to favor hydrogen atom 
transfer from flavin. We selected two tyrosines within the active 
site and found that mutation of Y219 to phenylalanine (Y219F) 
afforded a variant that provided improved yields and enantiose-
lectivities (Table S5). Re-evaluating the degree of deuterium in-
corporation revealed the undesired tyrosine termination path-
way was significantly decreased in favor of the desired flavin 
pathway (Figure 2c).  

With an improved mechanistic understanding in hand, 
we explored the transformation's scope and limitations (Figure 
3). A variety of tertiary amides are tolerated by the reaction, 
with pyrrolidine, Weinreb, and benzyl amides affording product 
in high yields and enantioselectivities (Figure 3, 16-18). In gen-
eral, GluER-T36A afforded products with higher levels of en-
antioselectivity than NostocER. Pleasingly, 𝛼,𝛼-difluorochloro-
amides are tolerated and afford product in high yield and enan-
tioselectivity with NostocER with no observed defluorination 
(Figure 4, 19). Secondary amides are effective (Figure 3, 20), 
although primary amides were less reactive (Supplemental Fig-
ure 2). Finally, 𝛼-chloroacetophenone was an effective coupling 
partner, providing product in high yield and selectivity with 
GluER-T36A (Figure 3, 21). UV-vis experiments to probe the 
spectral features of a possible CT complex were complicated by 
ground state oxidation of flavin hydroquinone (Supplemental 
Figure 6). As visible light irradiation affords higher yields than 
reactions run in the dark,19 it is possible that a CT complex is 
formed but is obscured by competing ground state reduction of 
the substrate. 

Next, we explored the scope of the alkene coupling 
partner with the 𝛼-chloroamide. Despite their differing impact 
on the electronics of the styrenyl alkene, methoxy substituents 
at the para-, meta-, and ortho- positions are well tolerated and 

Figure 3. Substrate Scope 
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afford high yields and selectivity when using NostocER (Figure 
3, 22a-e). Electron-withdrawing substituents, such as bromide 
and trifluoromethyl are also accepted with products formed in 
excellent yields and selectivity.20  Regarding alkene substitu-
ents, we found that larger aliphatic groups at the 𝛼-position are 
accommodated, providing products with excellent enantioselec-
tivity levels (Figure 3, 23a-b). Trifluoromethyl groups are also 
compatible, although yields are more modest (Figure 3, 23c).21 
Ester substitutents are also tolerated, affording product in high 
yields with good levels of enantioselectivity (Figure 3, 23d). Fi-
nally, unsubstituted styrene is reactive (Figure 3, 24). 

Beyond simple styrenyl alkenes, we found that this 
chemistry accommodates an even broader range of alkenes 
(Figure 4). For instance, these enzymes are tolerant of electron-
deficient heterocycles such as pyridines and pyrazine (Figure 4, 
25-27). When using 𝛼-methylvinylpyridines, the product is af-
forded in high yields with excellent levels of enantioselectivity. 
Interestingly, NostocER can differentiate sterically similar phe-
nyl and pyridine rings to furnish products with promising levels 
of enantioselectivity. Beyond aromatic substituents, aliphatic 
alkenes are also tolerated. Protected allylic amines and unpro-
tected allylic alcohols are also reactive, with NostocER provid-
ing the best yields (Figure 4, 28, 29). Finally, enamides, vinyl 
ethers, and vinyl acetates are competent coupling partners (Fig-
ure 4, 30-33). 

 
Figure 4. Non-styrenyl alkenes  

To further demonstrate the synthetic utility of this re-
action, we explored intermediates or products that could be di-
verted to provide other useful products. We found that using 𝛼-
bromostyrene with N,N-dimethylchloroamide, a lactone is 
formed in high yields with excellent levels of enantioselectivity 
(Figure 5, 34). This likely forms via initial formation of the cou-
pled γ-bromo product followed by intramolecular SN2 cycliza-
tion. We also found that electron-rich enamides can function as 
coupling partners to generate in situ formation of ketones, 
providing an effective method for preparing 1,4-dicarbonyls 

(Figure 5, 35). This product is likely formed from oxidation of 
the 𝛼-amido radical via the intermediate semiquinone followed 
by hydrolysis. 

 
Figure 5. Lactone and Ketone Synthesis  

 In conclusion, we have discovered an effective 
method for preparing γ-stereogenic amides using photoen-
zymatic catalysis. This represents a non-natural mechanism of 
intermolecular C–C bond formation that we anticipate being 
useful in preparing various synthetically valuable motifs. The 
unique quaternary CT-complex provides an unprecedented 
mechanism for gating radical formation.   
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