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Abstract

Many drug molecules contain biaryl fragments, resulting in a torsional barrier corre-

sponding to rotation around the bond linking the aryls. The potential energy surfaces

of these torsions vary significantly due to steric and electronic effects, ultimately af-

fecting the relative stability of the molecular conformations in the protein-bound and

solution states. Simulations of protein–ligand binding require accurate computational

models to represent the intramolecular interactions to provide accurate predictions of

the structure and dynamics of binding. In this paper, we compare four force fields

(Generalized AMBER Force Field (GAFF), Open Force Field (OpenFF), CHARMM

General Force Field (CGenFF), Optimized Potentials for Liquid Simulations (OPLS))

and two neural network potentials (ANI-2x, ANI-1ccx) in their ability to predict the

torsional potential energy surfaces of 88 biaryls extracted from drug fragments. The

mean of the absolute deviation over the full PES (MADF) and the mean absolute
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deviation of the torsion rotational barrier height (MADB) relative to high-level ab

initio reference data was used as a measure of accuracy. In comparison to high-level

ab-initio data, ANI-1ccx was most accurate for predicting the barrier height (MADF:

0.5 kcal/mol, MADB: 0.8 kcal/mol), followed closely by ANI-2x (MADF: 0.5 kcal/mol,

MADB: 1.0 kcal/mol), then CGenFF (MADF: 0.8 kcal/mol, MADB: 1.3 kcal/mol),

OpenFF (MADF: 1.5 kcal/mol, MADB: 1.4 kcal/mol), GAFF (MADF: 1.2 kcal/mol,

MADB: 2.6 kcal/mol), and finally OPLS (MADF: 1.5 kcal/mol, MADB: 2.8 kcal/mol).

Significantly, the NNPs are systematically more accurate and more reliable than any

of the force fields. As a practical example, the neural network potential/molecular

mechanics (NNP/MM) method was used to simulate the isomerization of ozanimod, a

drug used for multiple sclerosis. Multi-nanosecond molecular dynamics (MD) simula-

tions in an explicit aqueous solvent were performed, as well as umbrella sampling and

adaptive biasing force enhanced sampling techniques. These theories predicted a rate

of isomerization of 4.30× 10−1 ns−1, which is consistent with direct MD simulations.

1 Introduction

Small-molecule ligands of biological molecules can hold a range of geometries, both in solution

and in their bound state. The loss of conformational freedom and distortion of molecules

in their bound state can result in a significant thermodynamic penalty opposing ligand

binding.1–3 Simulations of protein–ligand binding require accurate methods to calculate the

intramolecular interactions of these ligands to predict the relative stability of these confor-

mations.

Many natural products and drug molecules contain biaryl motifs and rotation around

the bonds connecting them that introduces a torsional degree of freedom in these molecules.

The potential energy surface for the rotation around these bonds varies due to conjugation,

steric interactions, intramolecular hydrogen bonding, and electron repulsion. These effects

determine the equilibrium conformations held by the molecules and the rates of conforma-
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tional isomerization. Accurate computational models for these torsional potential energy

surfaces is essential for modeling conformational dynamics and protein–ligand binding.

Although high-level ab initio methods (e.g., MP2 or CCSD) provide accurate predic-

tions of the stability of molecular geometry, simulations of protein–ligand binding commonly

require the evaluation of millions or billions of configurations, making these methods imprac-

tical to be used directly. Instead, molecular mechanical (MM) force fields are defined that

approximate the intramolecular interactions in terms of simple mathematical functions.4

Torsional potentials are generally defined as a sum of cosine functions with a variety of

periods, offsets, and amplitudes,

Vtorsion (θ) =
∑
i

ki (1 + cos (niθ + φi)) (1)

Additionally, intramolecular non-bonded interactions can significantly affect torsional

potential energy surfaces. In some biaryls, intramolecular non-bonded interactions between

atoms beyond the 1,4 interactions also significantly affect torsional potential energy surfaces

due to steric or electrostatic interactions.5

In conventional molecular mechanical force fields, the parameters for the torsional and

non-bonded potentials are defined by assigning each atom an “atom type” based on its

element and chemical environment.6 Appropriate parameters must then be defined for all

relevant permutations of atom types that define a torsional interaction. These present sig-

nificant challenges because accurate coverage of the full variety of chemical bonding motifs

present in drug-like molecules can require hundreds or thousands of parameters to be de-

fined.7

Innovations have been introduced to simplify this process. New methods have been de-

veloped to determine parameters for the possible permutations of atom types automatically.

Where a force field lacks a specific term, this parameter can be fit to an ab initio potential

energy surface. The SMIRKS Native Open Force Field (SMIRNOFF) format assigns force

field parameters by searching for chemical patterns.8 These methods still require the defini-
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tion of extensive sets of parameters and follow most of the standard approximations inherent

to conventional force fields.

Recently, general-purpose neural network potentials (NNPs) have emerged as an alter-

native to molecular mechanical force fields.9 In these methods, neural networks are trained

to predict the potential energy for an arbitrary molecular geometry, with the promise of

providing ab initio quality results. The ANI neural network potentials developed by Smith,

Isayev, and Roitberg are notably successful NNPs.10–12 This model defines a set of “sym-

metry functions” for an atom that encodes its immediate chemical environment.13 A neural

network is trained to reproduce ab initio electronic energies for a training set of molecules

from these symmetry functions. The ANI-2x potential was trained to reproduce density func-

tional theory (DFT) calculated energies (ωB97X-D/6-31G*) of 5 million different molecular

geometries for compounds containing elements C, N, O, H, F, S, and Cl.12 The ANI-1ccx

NNP was developed using transfer learning, where the inner layers of the ANI-1x model were

transferred while the input and output layers were trained to CCSD(T)*/CBS data, although

it is limited to the elements C, N, O, and H.11 Importantly, these models have shown re-

markable transferability; they provide accurate predictions of molecules that are not present

in their training sets. Further, they avoid the standard force field approximations where

intramolecular interactions are cast into harmonic, cosine, Coulombic, and Lennard-Jones

potentials.

Replacing MM models with NNP models in simulations of protein–ligand interactions

could provide ab initio accuracy at a similar computational cost to molecular mechanical

models while avoiding the parameterization of individual ligands. Our group recently showed

that the ANI-1ccx NNP is effective for representing the intramolecular terms of protein-

bound ligands when embedded into a conventional MM model (torsional).14 This method,

termed NNP/MM (a.k.a., ML/MM), allows NNPs to be used to represent the intramolecular

terms of a ligand in protein–ligand binding simulations where the solvent and protein are

represented using a molecular mechanical (MM) model. The NNP/MM model provided
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distinct conformational components of the absolute binding energy in comparison to a pure

MM model, notably in the case of erlotinib bound to the Epidermal Growth Factor Receptor,

where the CGenFF force field spuriously predicted a large Gibbs energy penalty for the

ligand to adopt a bound conformation. Rufa and coworkers later showed that the accuracy

of relative alchemical free energy perturbation of protein–ligand binding calculations was

improved by perturbing between ANI-2x/OpenFF NNP/MM models.15

NNP/MM has also served as a more effective ligand model in molecular dynamics flexible

fitting (MDFF) refinement of CryoEM structures.16 Similarly, a machine learning-based

intramolecular potential was used by Cole et al. to simulate the conformational dynamics of

3-(benzyloxy)pyridine-2-amine in protein-bound and solution states.17

Biaryl torsions present a challenging and important test of the force field and NNP

models for the conformations of drug-like molecules. The π-systems of the aryl rings affect

the torsional potential energy surface in a non-local minimum and the interplay of several

types of intramolecular interactions. Jorgensen and coworkers published a test set of biaryls

present in drug molecules and drug candidates, which provides an extensive, diverse, and

relevant test set for assessing the accuracy of computational methods for predicting biaryl

torsional potential energy surfaces.18

In this paper, we compare the performance of four molecular mechanical models (GAFF,

CGenFF, OPLS, and OpenFF) and two NNPs (ANI-2x and ANI-1ccx) for the prediction

of biaryl torsional potential energy surfaces calculated using high-level ab initio method

(CCSD(T1*)/CBS).

2 Computational Methods

2.1 Test Set

The test set of biaryls used here is largely the same as the biaryl torsional test set developed

by Dahlgren et al.18 This test set was generated by extracting biaryl fragments from drug and
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Figure 1: Test set of biaryl fragments.
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drug-like molecules. Because some of the methods used here are not designed for use with

charged compounds (e.g., the neural network potentials), charged compounds were excluded

from the test set. Also, 5-phenyl-1,2,4-oxadiazole, a fragment of the drug ozanimod, was

added to our test set. The structures of the molecules in the test set and their associated

numbering are illustrated in Figure 1. The structures, topology, and parameter files of this

test set are available on our GitHub repository.19

2.1.1 Molecular Mechanical Parameterization and Calculations

The CGenFF, GAFF, and OPLS potential energy surfaces were calculated using relaxed

scans using CHARMM (i.e., the torsional degree of freedom was restrained and the remain-

ing degrees of freedom were energy-minimized). These calculations were performed using

CHARMM 41b2.20

CGenFF calculations employed the CGenFF force field version 2.2.0.21,22 The charge,

topology, and parameters were assigned using the CGenFF parameterization server. 1,4

non-bonded interactions calculated using the CGenFF force field were not scaled.23,24

The GAFF parameters were assigned using AmberTools.25 Atomic charges in the GAFF

model were calculated using the Restrained Electrostatic Potential method (RESP) using

Hartree–Fock (HF) with the 6-31G* basis set as the target quantum mechanical (QM) elec-

trostatic potential.26 1,4 nonbonded interactions in the GAFF force field calculations were

scaled by a factor of 0.833.

The OPLS27 topology and parameters were generated using the LigParGen server.28

The CM1A-LBCC charge model was used.29 1,4 nonbonded interactions in the OPLS force

field were scaled by a factor of 0.5. The geometric combination rule was used for the σ

Lennard-Jones parameters.

The OpenFF charges and parameters were generated using the SMIRNOFF Open Force

Field version 1.1.1 with the code name “Parsley”.8 The relaxed potential scans were per-

formed in OpenMM package version 7.4.130 with external harmonic restraint on the interest
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dihedral angle. The harmonic strength was set to ensure the torsional angle variance was

less than 0.02◦.

2.2 ANI Potential Energy Surfaces

The potential energy surfaces for the ANI-2x12 and ANI-1ccx11 NNPs were calculated using

TorchANI31 interfaced with the External feature of Gaussian 0932 through a python script.

This script is available for download from our GitHub repository. Each surface was calculated

from complete scans in the forward and reverse directions for rotation around this torsion,

where the minimum of the energies from each scan was used to construct the PES.

2.3 QM Potential Energy Surfaces

The QM potential energy surfaces were calculated using a relaxed scan of the biaryl torsional

degree of freedom using the RIMP2/def2-TZVP level of theory.33–35 ORCA 4.2.136 was used

to calculate the single point potential energy of these configurations using the composite

CCSD(T)*/CBS method described by Smith et al.11 The iterative triples method, DLNPO-

CCSD(T1),37 was used because the DLNPO-CCSD(T) torsional potential energy surfaces of

some molecules were discontinuous due to differences in the conventional triples correction

energy.

2.4 NNP/MM MD Simulations

An NNP/MM simulation was performed of ozanimod (5-[3-[(1S)-1-(2-hydroxyethylamino)-

2,3-dihydro-1H-inden-4-yl]-1,2,4-oxadiazol-5-yl]-2-propan-2-yloxybenzonitrile) in an explicit

aqueous solvent. In this method, the intramolecular potential energy of the ligand (VNNP (rNNP ))

is calculated using the ANI-1ccx NNP, while the potential energy of the solvent is represented

using a conventional molecular mechanical model (VNNP (rNNP )). The potential energy of

the system are the sum of these two components and an additional term corresponding to
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the interaction of the NNP and MM atoms. (Eqn. 3).

V(r) = VMM (rMM) + VNNP (rNNP ) + VNNP/MM (r) (2)

The interactions between the atoms represented using the NNP and atoms represented

using MM are calculated using Lennard-Jones and Coulombic potentials (Eqn. ??).

VNNP/MM (r) =
MM∑
i

NNP∑
j

qiqj
4πεrij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3)

In these simulations, the solvent–solute Lennard-Jones parameters (σ and ε)25 were gen-

erated using the Lorentz–Berthelot combination rules using the GAFF parameters for the

solute and the TIP3P-FB parameters for the water molecules. The partial atomic charges

(q) of the solute were calculated using the RESP method.26

The simulations were performed using NAMD 2.1338 interfaced with TorchANI31 using

the NAMD-ANI interface script.39 The total number of water molecules was 2158. The di-

mensions of the periodic simulation cell were 48.7 Å×38.5Å×34.8 Å. The ozanimod molecule

was represented using the ANI-1ccx NNP and the solvent was represented using the TIP3P-

FB water model.40 The GAFF Lennard-Jones parameters were used for the solute–solvent

non-bonded interactions.25 Intermolecular electrostatic interactions were calculated based

on RESP charges assigned to the atoms of the ozanimod.26 In the NNP/MM framework,

the intramolecular interactions of the ligand are calculated using only the NNP.14 A 2 fs

timestep was used. Bonds containing hydrogen atoms were constrained using the SHAKE

algorithm. In these simulations, the temperature was coupled to a 298.15 K bath using a

Lowe–Anderson thermostat.41

Calculation of the potential of mean force (PMF) for the rotation of the N-C-C-C

biaryl torsion was performed using the adaptive biasing force (ABF)42,43 and umbrella sam-

pling.44,45 Umbrella sampling simulations were performed on the N-C-C-C biaryl torsional

coordinate with a harmonic bias potential with a force constant of 0.25 kcal/ degree2 with
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windows at 5◦ spacings. Each window was simulated for 2 ns with a 200 ps equilibration.

The PMF was constructed from the umbrella sampling time series using the Weighted His-

togram Analysis Method (WHAM).46–48 In these simulations, temperature was regulated

using a Langevin thermostat with a bath temperature of 298.15 K and a damping coefficient

of 1 ps−1.

3 Results and Discussion

3.1 Overall Performance

0 0.25 0.5 0.75 1 1.25 1.5

CGenFF
GAFF

OpenFF
OPLS

ANI-2x
ANI-1ccx

0 0.5 1 1.5 2 2.5 3
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MADB (kcal/mol)

CGenFF
GAFF

OpenFF
OPLS

ANI-2x
ANI-1ccx

Figure 2: Top: Mean MADF of the PES (Eq. 4) for each method. Bottom: Mean absolute
deviation of the rotational barrier height of each method. The CCSD(T1*)/CBS profiles are
used as the reference.

Only general trends and some notable examples are discussed here, although the plots of

potential energy surfaces of all 88 torsional rotations are included in Supporting Information.

We define two metrics for the overall performance of each method. The root-mean-squared-

10



deviation (MADF) of a method for a given torsion is calculated as the room-mean-square

of the potential energy relative to the CCSD(T1)*/CBS//MP2/def2-TZVP reference value,

calculated at 5◦ increments between 0◦ and 360◦,

MADF =
1

n

n∑
j

1

Nbins

∑
i

(Vi,method − Vi,CCSD)2 (4)

Our second metric is the mean absolute deviation (MADB) of the torsion rotational

barrier height for each method, relative to the CCSD(T1)*/CBS//MP2/def2-TZVP barrier

height.

MADB =
1

n

n∑
j

|∆V‡CCSD −∆V‡| (5)

where ∆V‡ is the barrier height of torsional rotation, defined as the difference between

the minimum and maximum energy point on the PES.

The averages of these metrics for the test set are presented in Figure 2. Only profiles

that were available for all methods were included in this analysis, so the sulfur-containing

compounds (4, 6, 14, 16, 24, 26, 55, 56, and 71) were not included because the ANI-1ccx

NNP is not defined for this element.

For both metrics, the ANI-2x and ANI-1ccx methods outperform all four force fields.

Notably, the MADB of ANI-1ccx barrier heights is only 0.7 kcal/mol, indicating that the

goal of “sub-kcal” accuracy has already been achieved for these PESs. CGenFF is the most

accurate force field, followed by OpenFF, and GAFF. The OPLS force field is the least

accurate. The mean signed error (MSE) in the barrier height is positive for all the models

except CGenFF, which tends to underestimate barriers by 0.2 kcal/mol. Notably, GAFF

has an MSE of 1.2 kcal/mol and OPLS has an MSE of 2.5 kcal/mol, indicating a significant

tendency to overestimate torsional barriers.

The relative accuracy of these methods can also be quantified by ranking which method

provides the PES with the lowest MADF or the most accurate barrier. These rankings are
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Figure 3: Top left: Number of torsional PESs where a given method has the lowest MADF,
Top right: Number of torsional PESs where a given method has the lowest barrier height
deviation. Bottom left: Number of torsions where a method gives a high MADF (i.e., on
average, more than 1 kcal/mol in error at each point on the PES). Bottom right: Number
of torsional PESs where a method predicts the barrier height inaccurately (i.e., more than 2
kcal/mol in error)
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presented in Figure 3 (top). By these measures, the ANI-1ccx NNP is most accurate. It

should be noted that the ANI-2x method predicts barrier heights with similar results to

ANI-1ccx, so it has nearly the same accuracy. although ANI-1ccx is ranked higher because

it is generally incrementally more accurate than ANI-2x.

Finally, we can also assess the methods according to the number of torsional PESs where a

method performs poorly. These rankings are presented in Figure 3 (bottom). For the MADF

criteria, this is defined as a mean absolute deviation (MAD) per point on the surface that

is greater than 1 kcal/mol and for the barrier height a poorly performing is defined as one

where the predicted barrier height is in error by 2 kcal/mol or more. Based on these metrics

for poor performance, the ANI-2x and ANI-1ccx NNP models are also superior compared

to the force field models, with the ANI-1ccx methods demonstrating poor performance for

only 10 PESs and 10 barriers lower than the best force field (CGenFF). Among the force

fields, the CGenFF performs poorly for the fewest torsions, followed by GAFF, OpenFF,

and OPLS.

This highlights a major advantage of the NNP methods - the number of cases where they

perform poorly is small. The strategy of training these potentials to reproduce molecular

energies in general rather than specific interactions results in methods that are robust for

PESs outside their training sets. This is a significant advantage for high-throughput screening

of protein–ligand binding, where the validation and possible reparameterization of a force

field is too time-consuming.

3.2 CGenFF

The CGenFF force field performs better overall than any of the other force fields; how-

ever, there are some instances where the barriers are predicted to be much lower than the

CCSD(T1)*. This is apparent in N-rich heterocyclics, like 20 and 39, suggesting that the

parameters for C-CA-CA-NA and N-CA-NA-CA dihedrals have a maximum that is too

small. For example, the OPLS force field predicts a torsional barrier of 20 more accurately
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Figure 4: The torsional potential energy surfaces of 20 and 39 are examples where the
CGenFF force field is an inaccurate model.

(9 kcal/mol), in part because it uses a C-N-C-N dihedral potential with a maximum of

3.6 kcal/mol instead of the barrier maximum of 1.8 kcal/mol used by CGenFF. Adjustment

of a handful of biaryl dihedral terms would improve the accuracy of CGenFF even further.

3.3 OpenFF

OpenFF is the “newest” of the force fields evaluated here and is designed to avoid duplicate

or unnecessary parameters. As a result, there are far fewer parameters in the current version

of OpenFF compared to the other force fields (i.e., 342 parameters in OpenFF vs more

than 6000 parameters for CGenFF). Nevertheless, based on the MADF and barrier height

metrics, it generally performs better than GAFF and OPLS for this test set and almost as

well as CGenFF. Because relatively few “specific” torsional parameters are currently defined,

much of its success is derived from the general biaryl potentials and 1,4 Lennard-Jones and

electrostatic parameters. This strategy is less successful for torsions containing aromatic

nitrogen atoms in the ortho or ipso positions, such as 10 and 12. The torsional PESs of

these N-containing aromatics are influenced by complex hyper conjugative and electron-
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repulsive interactions, which require explicit parameterization for the force field to describe

quantitatively.
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Figure 5: The torsional potential energy surfaces of 10, 12, and 29 are examples where the
OpenFF force field is an inaccurate model.

3.4 GAFF

An instance where the GAFF force field significantly deviates from the reference PES is where

the aryl linkage is through the nitrogen of a pyrrole group. Repulsion between the pyrrole

non-bonded pair and the pi system of the benzene ring destabilizes planar conformations,

but lone-pair–CH repulsion occurs when the rings are perpendicular, so the minimum energy

conformations occur at 30◦ deviations from planarity. In contrast to this, the GAFF force

field predicts a broad minimum corresponding to conformations where the rings are non-

planar. The CA–CA–NA–CA torsional parameter is the immediate cause of this issue.

The GAFF force field significantly overestimates the barrier for rotations where there is
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Figure 6: The torsional potential energy surfaces of 10 and 23 are examples where the
GAFF force field is an inaccurate model.

an amide NH group in the ortho position of one of the rings. For example, in 23, GAFF

predicts a barrier of 22 kcal/mol, while it is only 2 kcal/mol with CCSD(T1)*. This issue is

present in 24, 25, 26, 27, 28, and 29.

3.5 OPLS

The OPLS model performs relatively poorly on this test set. In many cases, this is due to

a significant overestimation of the rotational barrier. The mean signed error for the OPLS

barrier is 2.5 kcal/mol, indicating that the tendency to overestimate torsional barriers is

systematic in this force field. This is evident in the PES for 7 and 12, where the barrier is

overestimated by a factor of 2 and 6, respectively. In other cases, the topology file generated

by the LigParGen server includes torsions that result in asymmetric potential energy surfaces

on torsions that should be symmetric. The PES of 9 is an example of this effect.
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3.6 ANI

The ANI-2x and ANI-1ccx NNPs generally outperform the MM models and rarely fail to

provide a reasonably accurate surface. The ANI-1ccx NNP gives incrementally greater accu-

racy than ANI-2x, although it only supports a smaller set of ligands because only the C, N,

O, and H elements are defined for it. The relative stability of the cis and trans conformations

of 25 is overestimated by the ANI-1ccx potential and the barrier to rotation is significantly

overestimated. The PES of 76 is generally irregular and the barrier is significantly under-

estimated. The lack of explicit electrostatic terms limits the accuracy of these NNPs when

the relative stability of two conformations depends on a long-range polar interaction.

3.7 MP2 Failures

Torsional potentials of force fields are often parameterized to reproduce MP2 potential en-

ergy surfaces because MP2 is a computationally tractable ab initio method with analytical

gradients. Having calculated the energies at both the CCSD(T*)/CBS//MP2/def2-TZVP

and MP2/def2-TZVP levels, we can test if these levels of theory provide the same level of

accuracy for these torsional profiles. The MP2/def2-TZVP PESs are generally in very good

agreement with the CCSD(T1)*/CBS PESs, with a MADF of 0.1 kcal/mol and a MADB of

0.3 kcal/mol.
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Figure 9: Test set structures where the MP2 barrier height differs by 1 kcal/mol or higher
from the CCSD(T1)* surface.

Although the agreement between MP2 and CCSD(T1)* is generally close, of the 88
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torsions in the test set, the MP2 and CCSD(T1)* barrier heights differed by more than

1 kcal/mol in 6 instances. In four instances (80, 83, 84, and 85), one of the aryls in the

rotation was bicyclic, so the transition state occurs when the structure is planar and a steric

interaction arises between the ortho hydrogen of the phenyl ring and a non-hydrogen atom

in the ortho position of the first ring. The CCSD barrier is lower than the MP2 barrier in 3

out of 4 of these examples, suggesting that MP2 overestimates the strength of this type of

steric repulsion. The other examples are nitrogen-containing heteroaromatics (19, 67). The

MP2 barrier is lower than the CCSD(T1)* barrier in 1 of these examples, suggesting that

there is a small tendency for MP2 to underestimate the electronic repulsion associated with

pi-lone pairs. The origin of the deviation in 19 and 67 is less evident, although both are

N-containing heteroaromatics.

This raises questions about the common practice of using MP2 potential energy surfaces

as the target data for fitting force field torsional potential energy surfaces. Although MP2

is in good agreement with CCSD(T1)* surfaces for most of the molecules, the MP2 and

CCSD(T1)* barrier heights differed by 1 kcal/mol or higher for 6 of the torsions. This

suggests that parameterizing a force field to reproduce the torsional surfaces of an NNP

trained for CCSD(T) data could be advantageous because it is not necessary to calculate

CCSD(T1)* potential energy surfaces for each torsion in the ligand.

The ANI-1ccx NNP is incrementally more accurate than the ANI-2x NNP. The ANI-1ccx

NNP was developed through a transfer learning approach, where input and output layers of

the ANI-1X NNP were retrained using a subset of CCSD*(T1)/CBS data, while the ANI-2x

potential was trained to DFT (ωB97x/6-31G*) data exclusively.

3.8 Molecular Dynamics of Torsional Rotations

The large barriers to torsional rotations present in some biaryl compounds can result in large

activation energies for conformation isomerization. Consequently, in molecular dynamics

simulations of drug compounds containing biaryls, the timescales associated with rotation
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around the biaryl bond can be much longer than other, more facile, types of conformational

isomerization.

To demonstrate that these methods are practical for use in molecular dynamics simu-

lations for real drug molecules, we have performed simulations of ozanimod in an explicit

aqueous solution. Ozanimod is a drug for the treatment of multiple sclerosis that binds the

sphingosine 1-phosphate receptor.49 The rotation around the bond connecting the isopropyl

benzonitrile and the diazafuran has a significant barrier height because of the conjugation

between the rings and low steric repulsion in planar conformations. The time series of

this angle over the course of a 10 ns simulation shows that this molecule undergoes con-

formational isomerization through rotation around this torsional degree of freedom on the

multi-nanosecond timescale.

To investigate this isomerization further, the potential of mean force (PMF) of this

degree of freedom was calculated using umbrella sampling and adaptive biasing force42,43

molecular dynamics simulations. Both methods provide similar PMFs and can be used with

the TorchANI NNP/MM interface with NAMD without modification.

Using the umbrella sampling PMF, the rate of isomerization was calculated using Kramers–

Smoluchowski transition state theory.50,51

kKS = DTS

√
|W ′′(qminimum) ·W ′′(qTS)|

2πkBT
e−∆W ‡/kBT (6)

In these simulations, the TIP3P-FB water model was used, which predicts a viscosity

close to the experimental value,40 allowing more accurate predictions of diffusion rates in

aqueous solutions,52 and more accurate predictions of the solvent friction on the reaction

coordinate.

The diffusion coefficient at the transition state was calculated using the generalized

Langevin approach,53–55 where a strong harmonic potential was used to restrain the sim-

ulation to the transition state and the diffusion coefficient was determined by the rate of

relaxation of the position autocorrelation function of that time series.
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DTS =
var(q)2∫∞

0
〈q(0) · q(τ)〉dτ

(7)

This theory predicted a rate of isomerization of 4.30 × 10−1 ns−1, which is generally

consistent with the slow rates of isomerization observed in the NNP/MM MD simulation

(Table 1). These simulations demonstrate that the ANI NNPs can be used immediately to

describe the dynamics of slow degrees of freedom of arbitrary drug-like organic molecules

using existing simulation methods.

Table 1: Rate theory prediction of isomerization of ozanimod

DTS (rad2/ns) 67.5
∆W ‡ (kcal/mol) 3.21

rate (ns−1) 4.30× 10−1

4 Conclusions

Force field and NNP methods were evaluated for their ability to predict the potential energy

surfaces of biaryl torsions found in drug and drug-like molecules (n = 88). As these torsions

are important features for the structure and dynamics of these molecules, efficient but accu-

rate computational models of these terms are essential for accurate protein–ligand binding

simulations. In comparison to high-level ab initio reference data, the ANI-1ccx NNP was

the most accurate method and generally predicted barrier heights within 1 kcal/mol. The

ANI-2x NNP had a comparable level of accuracy. Significantly, these NNPs provided accu-

rate models in most of the cases and provided poor descriptions in relatively few cases. The

robustness and reliability of these NNPs without specific parameterization is particularly

useful for simplifying modeling workflows.

The force field methods were less accurate, although there were significant differences in

the accuracy of the force fields. The CGenFF was most accurate, followed by the OpenFF,

GAFF, and OPLS. The OpenFF model is notable because it performed relatively well despite
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having been parameterized with relatively little data and including relatively few parame-

ters. Although MP2 potential energy surfaces were generally in good agreement with the

CCSD(T1)* reference values, there were significant differences in 6 instances, suggesting

force fields and NNPs should be parameterized to reproduce CCSD(T1)* data for optimal

and comprehensive accuracy.

The NNP/MM method was used to simulate the conformational isomerization of the

biaryl-containing drug molecule ozanimod. Multi-nanosecond molecular dynamics simula-

tions in an explicit aqueous solvent were performed, as well as umbrella sampling and adap-

tive biasing force enhanced sampling techniques. These free energy methods can be used

in NNP/MM simulations through the NAMD–TorchANI interface, which makes a diverse

set of simulation methods available without modification and allows for facile construction.

This provides a method for computationally-efficient but highly-accurate models for the in-

tramolecular potential energy surfaces of ligands within biomolecular simulations without

relying on a parameterized force field.
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