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Abstract 
 
Benchmarking the performance of generative methods for drug design is complex and 
multifaceted. In this report, we propose a separation of concerns for de novo drug design, 
categorizing the task into three main categories: generation, discrimination, and exploration. 
We demonstrate that changes to any of these three concerns impacts benchmark performance 
for drug design tasks. In this report we present Deriver, an open-source Python package that 
acts as a modular framework for molecule generation, with a focus on integrating multiple 
generative methods. Using Deriver, we demonstrate that changing parameters related to each 
of these three concerns impacts chemical space traversal significantly, and that the freedom to 
independently adjust each is critical to real-world applications having conflicting priorities. We 
find that combining multiple generative methods can improve optimization of molecular 
properties and lower the chance of becoming trapped in local minima. Additionally, filtering 
molecules for drug-likeness (based on physicochemical properties and SMARTS pattern 
matching) before they are scored may hinder exploration, but can also improve the quality of the 
final molecules. Finally, we demonstrate that any given task has an exploration algorithm best 
suited to it, though in practice linear probabilistic sampling generally results in the best 
outcomes, when compared to Monte Carlo sampling or greedy sampling. Deriver is being made 
freely available, to help others interested in collaboratively improving existing methods in de 
novo drug design centered around inheritance of molecular structure, modularity, extensibility, 
and separation of concerns. 
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Introduction 
 
Algorithmic generation of Novel Chemical Entities (NCEs) is a challenging computational 
problem with practical applications in drug design, materials design, agriculture, and other 
chemical-based industries.  Several recently described approaches to this problem integrate 
deep-learning to rapidly generate compounds with more desirable attributes (De Cao & Kipf, 
2018; Grisoni et al., 2020; Jin et al., 2019; Kadurin et al., 2017; Kusner et al., 2017; Neil et al., 
2018). In particular, generative deep learning approaches tend to excel when coupled with very 
specific tasks, such as producing pools of molecules matching property distributions of a 
training set (Polykovskiy et al., 2019) or achieving highly competitive performance on defined 
benchmark tasks (Brown et al., 2019)). The highly specialized nature of generative deep 
learning methods can, however, pose significant drawbacks, such as an inability to generalize 
outside of the domain of the training data (Zhavoronkov, 2019; Lowe, 2019), or the need for 
expensive metaheuristics to find promising regions in a latent space (Winter et al., 2019; 
Gómez-Bombarelli, 2018; Jin, 2019).  It may also require training new generators for each 
discriminative task (Altae-Tran et al., 2017), and suffers from the black box nature of neural 
network predictions. To maximize utility and the ease in which a human expert can usefully 
participate in an AI guided design-make-test cycle (Green et al., 2019), it is critical that design 
pipelines be flexible, tunable, modular, and interpretable.  

In computer science, separation of concerns (SoC) (Dijkstra, 1982) is a software design 
principle, which describes the paradigm of modular software to facilitate reuse, upgrading, and 
testing of individual components. For any drug design algorithm, there are three main concerns: 
(1) the method(s) for generating chemically valid candidate molecule structures (generation); 
(2) the assessment of candidate molecules, including determining to what degree (if any) a 
candidate satisfies the constraints of the objective(s) (discrimination); and (3) the search 
strategy, which integrates generation and discrimination to guide chemical space traversal 
(exploration).  While several studies (Polishchuk, 2020; Hartenfeller & Schneider, 2011; Green 
et al., 2019; Segler et al., 2017) have made similar distinctions between components of a de 
novo drug design algorithm, no system adequately leverages the separation of these concerns 
in their implementation, specifically with respect to decoupling the chemical space search 
(exploration).  

Exploration is the bridge between generation and discrimination. It allows an NCE generating 
system to subsample the otherwise cost-prohibitive chemical space using optimization 
techniques such as: evolutionary approaches (Ertl & Lewis, 2012; Jensen, 2019), 
reinforcement-learning (Guimaraes et al., 2018; Popova et al., 2018; Olivecrona et al., 2017; 
Neil et al., 2018), Monte-Carlo Tree Search (Jensen, 2019), and other metaheuristics such as 
Bayesian- (Gómez-Bombarelli, 2018; Jin et al., 2019) or particle-swarm-based (Winter et al., 
2019) optimizations of the latent space. Effectively traversing chemical space with traditional 
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methods depends on the “step-size” of the methods being used to generate candidate 
molecules. The CReM framework for structure generation (Polishchuk, 2020) describes these 
step-sizes with a distinction between atom-, reaction-, and fragment-based generators. An 
atom-based approach uses simple rules like addition, substitution, or deletion of bonds and 
atoms. Atom-based approaches can traverse the broadest range of chemical space, at the cost 
of potentially creating chemically non-viable or synthetically un-feasible molecules. In contrast, a 
reaction-based approach builds new molecules by simulating standard chemical reactions 
starting with commercially available organic starting material. The reaction-based strategy 
generates valid and synthetically accessible molecules by design, at the cost of restricting 
chemical space exploration, sometimes significantly (Lessel & Lemmen, 2019). Fragment-based 
approaches represent a middle ground between reaction-based and atom-based methods, 
where molecular fragments representing one or more atoms are collectively added, substituted 
or removed in single steps in accordance with a chemistry-based ruleset (eg. Degen et al., 
2008). The choice of fragments to recombine directly influences the tradeoff between synthetic 
feasibility and breadth of chemical space traversal, with lower-complexity fragments 
progressively sharing more of the functional properties of atom-based generators. 

With molecules produced algorithmically, there is an acknowledged trade-off between their 
validity and synthetic accessibility, and the breadth of “acceptable” chemical space that can be 
explored (Polishchuk, 2020). This balance can be further influenced by intrinsic factors (in the 
rules or structure of the methods themselves), and extrinsic factors (ie. a discrete discriminative 
mechanism like a filter). In the case of some deep-learning methods, such as: autoencoders 
(Kusner et al., 2017; Gomez-Bombarelli et al., 2018), generative adversarial networks 
(Guimaraes et al., 2018; De Cao and Kipf, 2018), and recursive neural networks (Arús-Pous et 
al., 2019; Olivecrona et al., 2017; Segler et al., 2018), intrinsic restrictions on chemical space 
are typically incorporated through learning from the training data (Arús-Pous et al., 2019). After 
training, this imposes an immutable constraint on chemical space exploration, though its impact 
can only be inferred indirectly (Lessel & Lemmen, 2019). In contrast to these methods, heuristic 
approaches enable more methods to control the restrictions on chemical space exploration (eg. 
Verhellen & Van den Abeele, 2020). For example, extrinsic filtering can be applied (or not) at 
any point in the search process, modified as needed, and facilitates the reuse of a single 
workflow after adjusting the definition of an acceptable molecule. Additionally, the modularity of 
generative methods permits more or less restrictive rule sets to be used to generate candidates. 
This equips a human expert to better assess the trade-off between molecule acceptability and 
chemical space exploration for any given task. 

The regions of chemical space explored by an iterative algorithm are directed both by the 
generative method(s) used, and by how the search is updated with the information obtained 
from the discrimination of previously generated molecules. In the case of an evolutionary 
algorithm, the search strategy involves a scheme for selecting certain candidates to derive 
children from, and a greedy selection mechanism may traverse chemical space more or less 
effectively than a probabilistic one. For many deep learning approaches, guided exploration of 
chemical space may not be a design objective, and no search strategy is implemented. These 
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approaches instead seek to accurately represent the distribution of the training data, ideally 
incorporating the notions of synthetic accessibility, validity, and quality (Segler et al., 2017; Ertl 
et al., 2018).  
 
While it can be difficult to measure the effectiveness of chemical space exploration, community 
benchmarks provide a useful way to assess the performance of different approaches to the 
same task. For drug design, the recently presented Guacamol framework (Brown et al., 2019) 
has become a useful standard to compare to, although discussion is ongoing on how to improve 
these benchmarks (Renz et al., 2020). The Guacamol benchmarks are broadly divided into two 
categories: distribution-learning and goal-directed. Distribution-learning benchmarks focus on 
benchmarking a model’s ability to generate valid (corresponding to a molecular graph), unique 
(non-duplicated) and novel (not seen in training data) candidates with the physical property 
distributions of a training dataset. The goal-directed benchmarks are designed to assess ability 
to find regions of chemical space, which optimize a specific objective function. Guacamol’s 
twenty goal-directed benchmarks assess disparate goal-directed behaviours, where a model is 
expected to start from a library of known bioactive molecules and explore chemical space 
guided by feedback from an external scoring function. These benchmarks range from scoring 
molecules based on fingerprint similarity to a target molecule, to combined objectives where 
physical properties, substructure patterns, and chemical similarity are simultaneously assessed. 
For a more detailed description of each benchmark, please refer to the original publication by 
Brown et al. (2018). 

In this study, we present Deriver: a single framework which facilitates the integration of a 
number of tunable generative methods, permits discrimination of molecules based on arbitrary 
or shifting objectives, and combines these two processes in a separable manner. To 
demonstrate the usage of Deriver we employ Guacamol’s goal-directed benchmarks (Brown et 
al. 2019) to explore some of the described trade-offs associated with effective chemical space 
traversal under various constraints. Deriver produces 100% unique, valid, and novel molecules 
(based on the provided seeds) by design; as such, the focus of this paper are the goal-directed 
benchmarks.  

 

Strategy 

Generators 
 
Deriver facilitates the combination of multiple methods for generating molecules, including the 
canonicalization and sanitization of generated molecules. Since version 2.3.10, there are five 
primary generators implemented in Deriver: a fragment-based method using the RDKit 
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(Landrum, 2006) implementation of BRICS (Degen et al., 2008); a naive SELFIES (Krenn et al., 
2020) mutator; an exhaustive single-atom replacement method based on SELFIES (called 
Scanner); and two graph-based methods from Jensen et al. (Jensen, 2019).  
 
BRICS stands for “Breaking of Retrosynthetically Interesting Chemical Substructures” and is a 
fragment-based approach, producing fragments by decomposing molecules according to 
predetermined rules (Degen et al., 2008). In Deriver, seed molecules are exhaustively broken 
into BRICS fragments up to a certain complexity (no more than 7 intact BRICS bonds) and 
recombined with fragments from a library database (pre-generated by the same method). For 
this report, a fragment library was generated by fragmenting all SMILES from the 
`guacamol_v1_all.smiles` file, available through the guacamol_baselines package (Brown et al., 
2019). In Deriver, the `fragment.libgen` method is used to generate fragment libraries, and the 
`derive_brics` method is used to generate new molecules using BRICS. 
 
SELFIES (SELF-referencIng Embedded Strings), is a molecular string representation with the 
useful property that, unlike the ubiquitous SMILES (Simplified Molecular Line Entry System) 
string representation (Weininger, 1988), every SELFIES corresponds to a valid molecule and 
every molecule has a unique SELFIES (Krenn et al., 2020). Deriver makes use of SELFIES in 
more than one way: in the original implementation of the `derive_selfies` function, it applies a 
number of string additions, substitutions, and deletions to derive child SELFIES from parent 
SELFIES. This is an atom-based approach and will be referred to as ‘naive’ SELFIES, since it 
does not incorporate crossover between candidate molecules.  
 
In addition to the multi-mutation naive SELFIES, Deriver implements a method called “Scanner” 
(`scan_selfies`), based on the concept of ‘positional analogue scanning’ (Verhellen & Van den 
Abeele, 2020). Scanner exhaustively applies every possible single atom substitution from a 
predefined set, to every seed molecule, enumerating all single steps in chemical space from the 
entire seed population. An important consideration when using Scanner is that unlike most other 
methods it is impossible to request a specific number of child molecules; it will always fully 
enumerate the local chemical space. 
 
Deriver also implements two methods previously described in Jensen (2019) with notable 
performance on the Guacamol benchmarks (Brown et al., 2019). The Jensen methods apply 
handmade rules with concern for validity to molecular graphs, expressed as either SMILES (as 
in Brown et al., 2004) or SELFIES. In Deriver, these methods perform mutation and crossover 
operations as in the work of (Virshup et. al, 2013) and (Brown et al., 2004), respectively. The 
assumption made in Jensen’s SMILES-based implementation, regarding the allowed size of 
candidate molecules, was removed.  
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Discriminators 

In addition to the external scoring functions implemented by the Guacamol benchmarks, Deriver 
implements a functionality for optionally filtering molecules. There are three categories of 
filtering by which a molecule can be rejected: physicochemical property ranges, the presence of 
specified SMARTS pattern, or absence thereof. All of these filter components are optional and 
tunable. Following filtering, two objects are returned by the Deriver API: the list of candidates 
which passed all filters, and a dictionary containing information about every derived molecule, 
whether it passed all filters, on which criteria it was rejected, and its physicochemical properties. 
The filters in this study applied both, the drug-likeness based physicochemical property 
restrictions listed in Table 1 (the default in Deriver), and the unwanted SMARTS filters described 
in the Guacamol benchmark study (Brown et al., 2019). Each of the four SMARTS pattern sets 
(PAINS, Glaxo, SureCHEMBL, BAI) are available in Deriver, and are implemented via the 
`rd_filters` python package. Enabling filtering in Deriver activates PAINS and Glaxo filtering 
rules by default. 

Exploration 

Evolutionary algorithms for chemical space traversal typically involve an iterative process where, 
starting from some seed population, (1) new candidate molecules are generated, (2) some 
fraction of previous candidates are selected as seeds on the basis of their objective score, and 
(3) the process is repeated (Hartenfeller & Schneider, 2011). The method for selecting seeds 
from the population, the size of population, the number of seeds, and the number of new 
candidates to generate are all potentially confounding when comparing generative methods. It is 
important to properly control these, especially when comparing against other baseline models 
via benchmarks. While the use of Deriver doesn’t prohibit the selection of any particular 
exploration algorithms, in this report we limit our choice of exploration algorithm to three basic 
types: (1) greedy sampling, (2) linear probabilistic sampling (as used in the Guacamol 
implementation of Jensen’s graph-based genetic algorithm (Brown et al., 2019)), and (3) an 
adapted form of the Metropolis-Hastings algorithm (Hastings, 1970).  

The greedy sampling method simply selects the top n highest scoring molecules from the 
combined population of new candidate molecules and previous top molecules. The linear 
probabilistic sampling method normalizes the scores within the population (dividing each score 
by the population sum) before sampling the population (with replacement) using the normalized 
scores as probabilities.  

The Metropolis sampling method makes use of two additional parameters: the highest score h 
from the previous generation, and a temperature T which decays each generation. For each 
molecule in the population, if its score exceeds or matches h, it is chosen as a seed for the next 
generation. For the remaining population of molecules, scores are converted to weights using 
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the following formula: 

LATEX: e^{-(h-score)/T} 

 

The weights are normalized by division by the sum of the weights, and these remaining 
molecules are sampled (without replacement) according to the normalized weights (as 
probabilities). The intent of Metropolis sampling is to gradually decrease the temperature and 
shift the selection paradigm from exploration toward purely greedy sampling, over multiple 
generations. Notably, this method is always semi-greedy, since any new top scoring candidates 
in each generation are always selected as seeds. 

 

Results 

The effect of generator step-size on chemical space exploration 
 
To assess the changes to chemical space exploration, and to benchmark performance, Deriver 
was applied for each of the twenty Guacamol goal-directed benchmarks while changing only the 
generators. When applied to a given benchmark, Deriver generates approximately 10,000 
candidate molecules to score and assess for each generation. Greedy sampling is used, such 
that the top 100 molecules seen so far are used to reseed the generator in the next iteration.  
 
Multiple methods, each having different degrees of granularity, are used as generators: BRICS 
(coarse granularity), naive SELFIES (high granularity), Scanner (highest granularity), and 
specified combinations of these methods. When using BRICS and naive SELFIES in tandem, 
the 10,000 requested molecules were divided into 7000 BRICS-based molecules and 3000 
naive SELFIES-based molecules. When the Scanner method is also enabled, it may supply on 
the order of 10,000 additional candidate molecules, but this is highly variable. The 70:30 ratio 
between BRICS- and naive SELFIES-based molecules was chosen following casual 
observation of effectiveness made during prior experiments and represents a tunable parameter 
that is likely to affect the outcome of a goal-directed benchmark. The optimal number of 
candidate molecules selected per generation is dependent on the computational costs 
associated with the descrimination step. Descrimination based on inexpensive ligand-based 
strategies such as QSAR models may benefit from higher compound counts per-generation, 
while discrimination based on molecular dynamics or docking simulations would warrant more 
selective thresholds. 
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Figure 1 demonstrates that combining more than one generative method may result in improved 
solutions to chemical space navigation problems, when compared to using a single method 
alone. While the naive SELFIES method is seen to generally perform well alone, its 
performance may be altered by mixing its derived candidates with those from the BRICS and 
Scanner methods. For instance, in the Median Molecules 2 benchmark, the combination of all 
three methods results in the highest score of 0.4397. Another example is seen in the 
Osimertinib MPO benchmark, where the BRICS + naive SELFIES combination outperforms all 
other methods at a score of 0.9779, and the further addition of Scanner reduces performance to 
0.9404. The improvement in performance observed when combining methods, which is most 
clearly seen in the multi-parameter-optimization objectives, is likely a result of combining coarse 
and fine-grained methods for chemical space navigation; in this instance, BRICS is a 
coarse-grained fragmentation method, while the SELFIES and Scanner methods are 
increasingly fine-grained. Furthermore, the two methods incorporating Scanner frequently 
converged in many fewer generations than those which did not, while only using BRICS 
frequently resulted in no convergence within 200 generations (Figure S1). 

(Figure 1: All Benchmarks) 
 
The effect of generator granularity can be clearly seen when the starting population consists of 
only a single candidate, as in the Ranolazine MPO Benchmark shown in Figure 2. The scoring 
function for this benchmark integrates the following objectives: similarity to Ranolazine, 
maximization of logP and of TPSA, and the presence of exactly 1 fluorine atom (Brown et al., 
2019). For this benchmark, any Deriver which used BRICS had all top-100 molecules with 
scores exceeding 0.5 (scores range from 0 to 1 with closer to 1 being better) after just one 
generation. In contrast, the worst-of-top-100 and mean-of-top-100 for naive SELFIES are 
slightly below and above 0.2, respectively, after one generation. For the Scanner-only Deriver, 
the worst-of-top-100 score is approximately 0 at the same point. In addition, the Scanner-only 
Deriver reached convergence quickly, producing a less-than-optimal candidate set with a final 
score of 0.8977. Interestingly, while the BRICS and naïve SELFIES combination was similarly 
high-performing (score of 0.9623), further combination with scanner converged to a higher score 
(0.9935), and in 135 fewer generations. The BRICS only Deriver reached the maximum 
permitted number of generations (200), suggesting that it may be possible to achieve higher 
scores given more time. 

(Figure 2: Ranolazine MPO Benchmark) 

Another particularly informative benchmark is the Perindopril MPO benchmark, seen in Figure 3. 
The per-generation performance illuminates some of the emergent behaviours arising from 
combining generative methods, as well as the vulnerability of some approaches to the stopping 
criteria. Convergence is said to be reached if the mean score of the top-n molecules does not 
increase for 5 consecutive generations, where n is the expected number of candidates to return 
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to Guacamol (in this benchmark, n=100). For each single-method Deriver, the mean score 
plateaus at ~0.7, whereas for all three methods combined it plateaus near 0.725. Removing 
Scanner increases the score to 0.75 for [BRICS + naive SELFIES]. The second plateau near 
0.82, for [BRICS + naive SELFIES], highlights that omitting the Scanner method may avoid 
deleterious local-optimum trapping. In other words, it is not always advantageous to blindly 
combine every available method. 

(Figure 3: Perindopril MPO Benchmark) 

The impact of filtering approaches on chemical space exploration 

The two most common methods for filtering molecules in de novo design are to apply a filter 
persistently through each iteration of an experiment, such that every scored molecule has 
necessarily passed all filters (Yuan et al., 2011; Green et al., 2019), or, to counter-screen at the 
end of the design process by filtering the final scored molecules (especially to augment linked 
generator-discriminators, as in Zhavoronkov et al., 2019). Interestingly, the modularity built into 
Deriver permits a third option: a delayed filtering mechanism, in which the algorithm is allowed 
to explore chemical space without filtering, until it is turned on by reaching some important 
threshold (typically a first convergence). It is important to consider how filtering is applied, as it 
not only impacts the quality of the produced molecules, but also the trajectory through chemical 
space. 

To assess how different approaches for filtering impact chemical space exploration, Deriver is 
again assessed on the twenty goal-directed benchmarks from Guacamol, while varying the 
strategy for applying the algorithmic filters (as described in the Strategy section, under 
Discriminators). In this experiment, the Deriver implementation of Jensen’s graph based genetic 
algorithm (Jensen, 2019) is used with the same parameters as originally used in the Guacamol 
benchmarks (Brown et al., 2019). Four versions are compared, which only differ in how filtering 
is applied: (1) unfiltered; (2) filtered persistently; (3) delayed filtering; and (4) a counter-screen 
that applies the filters only at the end of each benchmark. For each of these cases it is important 
to consider both the benchmark performance as well as the “quality” of the final molecules as 
drug candidates, of which Brown et al. (2019) evaluated by detecting undesirable substructures. 
 
In most cases, delayed filtering worsens performance to a lesser extent than does persistent 
filtering (Figure 4). While the unfiltered version had a higher total score (the summed score 
across all benchmarks) than the delayed filter (17.85 unfiltered compared to 17.60 delayed), the 
Troglitazone rediscovery benchmark result is worth highlighting. Filtered Deriver methods are 
unable to succeed because Troglitazone itself does not pass one of the SMARTS filters 
(SureCHEMBL). The counter-screened molecules almost always performed worse than all other 
approaches (Figure 4), suggesting a need to integrate drug-likeness objectives into the selective 
pressures being applied throughout the process. Supplementary Table 1 shows the fraction of 
the top-100 and fraction of requested molecules which passed all filters, alongside the scores, 
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for each benchmark. The delayed filtering method was able to produce the required number of 
acceptable candidates for each benchmark except the Sitagliptin MPO. The counter-screen was 
performed on the unfiltered Deriver results and occasionally resulted in the entire top population 
being eliminated. 
 
(Figure 4: Comparison of Filtering Methods on all Benchmarks) 
 
Filtering molecules before they are scored hinders chemical space traversal. Not only are fewer 
candidate molecules available from one generation to the next, but any filtered molecule will not 
be scored and will never seed new exploration. This helps to explain the behavior of the 
persistent filter Deriver over time (Figure 5); initial progress toward the solution is slower, and 
the highest scoring molecules are not optimized as well as in the delayed filter or the unfiltered 
Deriver. In contrast, the behavior of both the unfiltered and the delayed filter Deriver are very 
similar to each other until convergence, with variation attributable to chance. After convergence, 
the filters are enabled in the delayed filter Deriver, and the mean score of the whole population 
decreases sharply as new sub-optimal but filter-passing candidates extend the original 
population, followed by a second round of selection-based improvement convergence to an 
even higher overall score (Figure 5). It should be noted that because convergence occurs twice, 
the convergence criterion may be considered less strict, and so amenable to greater scores at 
the cost of additional computation. 
 
(Figure 5: Comparison of Filtering Methods on Perindopril MPO) 
 
To complement the algorithmic quality checks, a separate assessment was conducted based on 
the blind opinion of two medicinal chemists. The molecules generated by each filtering method 
on the Zaleplon MPO benchmark were combined into an unlabelled set of 264 unique 
molecules (Supplementary Figure 3), and the chemists were asked to label each “acceptable” 
molecule, individual chemists were allowed to impose their own definition of acceptability. Table 
2 indicates the consensus of acceptability between both chemists and algorithmic filters, and 
serves as a proxy for the number of potential candidates of interest each method might produce. 
Here the delayed filter and persistent filter Deriver were comparable, with 40% compared to 
37% consensus acceptance respectively. Medicinal chemist 1 was far more strict than medicinal 
chemist 2, who rejected about half as many molecules and a similar number to the algorithmic 
filters. Interestingly, upon inspection of the disagreement between medicinal chemists, ~59% 
(63/107) of the rejections could be attributed to the presence of a Michael acceptor, which has 
potential for covalent modification. Accepting or rejecting this group may depend heavily on the 
project criteria and the hit discovery philosophy of the medicinal chemist. Table 3 indicates that 
not only is there a large degree of discord between chemists and the substructure filters, but 
also between individual chemists as seen in (Kutchukian et al., 2012). 
 
It is of particular interest to see cases in which the medicinal chemists accepted a molecule 
which was rejected algorithmically (of which there are 14), and the reverse situation, where the 
filters appear to have missed some undesirable characteristic apparent to chemists (occurred 
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24 times). Supplementary Figures 4 and 5 illustrate these cases alongside the reasons provided 
for rejection.  

The impact of exploration algorithms on benchmark performance  
 
The impact of exploration algorithms, such as sampling methods and evolutionary algorithms, 
must be understood on a case-by-case basis to properly assess generative methods. Deriver 
was assessed using the previously seen combination of BRICS, naive SELFIES, and Scanner 
as a generator, while three different exploration algorithms were tested: greedy, linear 
probabilistic, and Metropolis. Performance on goal-directed benchmarks can be seen in Figure 
6. 
 
(Figure 6: Comparison of Selection Method on All Benchmarks) 
 
The greedy, Metropolis, and linear probabilistic sampling methods achieved total scores across 
all 20 benchmarks of 17.264, 17.440, and 17.758 respectively, and no single exploration 
algorithm demonstrates consistent improved performance over another. Instead, the key 
differences between these approaches are in specific benchmark performance, as well as the 
number of generations required to converge (Supplementary Figure 1). On average (across 
benchmark tasks), the greedy approach took 47 generations to converge, compared to 83 for 
Metropolis and 134 for linear, and for 6 out of 7 multiparameter optimization benchmarks the 
linear approach failed to converge after 200 generations. 
 
Despite converging in far fewer generations than the linear method (and thus sampling fewer 
molecules overall), the greedy selection scheme gave state-of-the-art results on the Ranolazine 
(0.9935) and Sitagliptin (0.9258) multi-parameter optimization benchmarks. The benchmark 
tasks with the largest difference in performance between the three sampling methods are the 
three rediscovery benchmarks; the linear probabilistic sampling in particular excelled at these 
tasks (Figure 5, leftmost black box). 

Hyperparameter optimization as a necessary step for design challenges 
 
Deriver is a framework for generative methods, molecule filtering, capture of statistics, and 
ultimately experimentation. Notably, different combinations of generators, discriminators, 
exploration algorithms, and associated parameters (eg. population size) lead to significantly 
different results on the same benchmarks (Figure 1, Figure 4). Based on the results observed in 
the other experiments in this study, we chose a specific set of parameters for Deriver that we 
expected to be high-performing (but not the highest-possible): 1000 BRICS Deriver candidates, 
1000 Jensen SMILES Deriver candidates, and 1000 Jensen SELFIES Deriver candidates with a 
mutation rate of 0, per generation; the previously described linear probability selection scheme; 
200 molecules to seed each generation, selected from a population of 1000 best-seen 
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molecules.  

This combination of methods (Figure 7, Deriver Optimized) demonstrates equal or improved 
performance on all benchmarks except the Osimertinib MPO, compared to the previous best 
described by Brown et al. (2019) (Figure 7, graph_GA reported). Any number of tunable 
hyperparameters (e.g. the combination of generators, the number of selected top molecules per 
generation, or the selection algorithm used) may have been critical in improving benchmark 
performance. Comparing this optimized Deriver configuration to CReM (Polishchuk, 2020), 
CReM does achieve slightly better performance on the Osimertinib MPO, Amlodipine MPO, and 
Valsartan SMARTS benchmarks (Figure 7, CReM), but it is less consistent across tasks and 
has a summed performance of 17.92 compared to 18.24 for the optimized Deriver 
(Supplemental Table 2). The story is similar for Molecule Swarm Optimization (Winter et al., 
2019), which has superior performance on Median Molecules 1, Osimertinib MPO, and 
Perindopril MPO, but a total score of 18.09. It is clear that tuning and optimization can greatly 
boost both general and task-specific performance, and Deriver was designed to facilitate this 
process. 

(Figure 7: Comparison to Reported Scores) 

 

Discussion 

Deriver is designed with an emphasis on inheritance, where new molecules are derived based 
on a relationship to “parent” molecules provided by the user. It leaves the choice of generators 
used, the parameters of those generators, and how they are combined to the user. The 
tunability and modularity of Deriver enables a high degree of user control to balance the many 
trade-offs inherent in chemical space exploration required from task-to-task. Two specific 
trade-offs in particular are well-handled: the compromise between designing molecules that fit 
arbitrary in-silico objectives while remaining pleasing to chemists (Brown et al., 2019), and the 
compromise between traversing chemical space efficiently while exploring local regions with 
high granularity (Polishchuk et al., 2020).  
 
Deriver also facilitates the separation of objective optimization and discrimination of chemical 
‘quality’, such that there does not need to be any undesired restriction on the available search 
space. While it is difficult to quantify the relative impact of the algorithmic filters vs satisfaction of 
other objectives, the delayed filter does greatly improve the percentage of top-scoring molecules 
that pass filters (100% on all benchmarks except Sitagliptin MPO at 45%), compared to the 
unfiltered molecules (40.35%), while only minimally impacting scores (Supplemental Table 1). 
 
Efficiency of chemical space exploration is not only a concern for computational expense, but 
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also for the tractability of a problem. Enumerating and scoring all members of drug-like chemical 
space, an estimated 10^33 members which could ever be synthesized (Polishchuk et al., 2013) 
is not feasible, so limiting the search space in a useful way is highly desirable. For Deriver, 
combining generators with differing granularity can lead to both more rapid convergence and 
local exploration close to the (goal-specific) optimum. Similarly, combinations with coarser 
methods like the BRICS Deriver can enable escape from local optima, a known concern for 
fine-grained methods (Hartenfeller & Schneider, 2011). While in this report the same generator 
settings were used consistently across all generations of a given experiment, it is also possible 
to change the generators dynamically over time (e.g. becoming progressively finer grained, or 
modifying parameters such as fragment complexity or mutation probabilities).  

Many hyperparameter optimization approaches (such as sequential model-based optimization 
(Bergstra et al., 2011)) could be applied to Deriver to automatically determine high-performance 
settings, either generally across benchmark tasks, or on a task-specific basis. Furthermore, as 
Deriver functions in part as a wrapper to other published generator methods, it is possible to 
extend functionality to include new generators such as CReM (Polishchuk, 2020) or incorporate 
other methods, like MSO (Winter et al., 2019). In principle, any system which generates valid 
molecules could be added as a generator in Deriver and combined with complementary 
approaches for more effective chemical space searches. The same extensibility applies to 
filtering methods, which can be expanded to include any set of SMARTS patterns, or other 
discriminative function. Deriver represents a philosophy for de novo drug design that is centered 
around inheritance of molecular structure, modularity, extensibility, and separation of concerns, 
while maximizing ease of use and modification. All the code to repeat the experiments in this 
study, as well as the source code for Deriver, are available on Github 
(https://github.com/cyclica/deriver), and Deriver can be installed easily via pip and the Python 
Package Index (pypi): https://pypi.org/project/deriver/ .  
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Figures 

Figure 1 

 
Figure 1: Comparison of Individual and Combined Generators with Greedy Sampling. The 
final score assigned by Guacamol to the returned sub-population is plotted on the y-axis, for 
each of the 20 standard goal-directed Guacamol benchmarks, shown on the x-axis. The 
combinations of Deriver generators used in each case are indicated by colored lines: BRICS 
only (orange), scanner only (blue), naive SELFIES only (magenta), BRICS + naive SELFIES 
(lime), and BRICS + naive SELFIES + Scanner (red). The benchmarks are additionally divided 
by black vertical lines into 6 categories provided by Guacamol: rediscovery, similarity, isomer, 
median, multi-parameter optimization, and multi-parameter optimizations including SMARTS. 
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Figure 2 
 
Figure 2: Comparison of Individual and Combined 
Generators on the Ranolazine MPO Benchmark. The 
scores (y-axis) of the top 100 molecules at a given 
generation (x-axis) are shown. The mean (blue line), 
maximum (red line), and minimum (green line) scores from 
this subpopulation are shown in each sub-plot representing 
one or more Deriver generators used alone or in 
combination. a) shows all generations on the x-axis, while b) 
provides a focused view of the first 10 generations. 
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Figure 3 

 
Figure 3: Comparison of Individual and Combined Generators on the Perindopril MPO 
Benchmark. The scores (y-axis) of the top 100 molecules at a given generation (x-axis) are 
shown. The mean (blue line), maximum (red line), and minimum (green line) scores from this 
subpopulation are shown in each sub-plot representing one or more Deriver generators used 
alone or in combination.  
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Figure 4 

 
Figure 4: Comparison of Filtering Methods Applied to Graph_GA. The final score assigned 
by Guacamol to the returned sub-population is plotted on the y-axis, for each of the 20 standard 
goal-directed Guacamol benchmarks, shown on the x-axis. The filtering methods applied to the 
graph_GA implementation in Deriver are indicated by colored lines: no filtering (red), 
counter-screening (lime), persistent filtering (blue), and delayed filtering (magenta). The 
benchmarks are additionally divided by black vertical lines into 6 categories provided by 
Guacamol: rediscovery, similarity, isomer, median, multi-parameter optimization, and 
multi-parameter optimizations including SMARTS. 
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Figure 5  

 
Figure 5: Comparison of Filtering Methods on the Perindopril MPO Benchmark. The 
scores (y-axis) of the top 100 molecules at a given generation (x-axis) are shown. The mean 
(blue line), maximum (red line), and minimum (green line) scores from this subpopulation are 
shown in each sub-plot representing one filtering scheme applied to the graph_GA Deriver 
implementation. 
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Figure 6 

 
 
Figure 6: Comparison of Exploration Algorithms using the same Generator. The final 
score assigned by Guacamol to the returned sub-population is plotted on the y-axis, for each of 
the 20 standard goal-directed Guacamol benchmarks, shown on the x-axis. The sampling 
methods applied to the generator combination of BRICS, naive SELFIES, and Scanner are 
indicated by colored lines: greedy sampling (lime), Metropolis sampling (blue), and linear 
probabilistic sampling (red)). The benchmarks are additionally divided by black vertical lines into 
6 categories provided by Guacamol: rediscovery, similarity, isomer, median, multi-parameter 
optimization, and multi-parameter optimizations including SMARTS. 
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Figure 7 

 
 
Figure 7: Comparison of Selected Deriver Schemas to Literature Results. The final score 
assigned by Guacamol to the returned sub-population is plotted on the y-axis, for each of the 20 
standard goal-directed Guacamol benchmarks, shown on the x-axis. The reported-in-literature 
or observed (Deriver) result are indicated by colored lines: BRICS + naive SELFIES + Scanner 
with Greedy sampling (lime), an optimized Deriver schema (blue), CReM (Polishchuk, 2020) 
(red), graph_GA (Brown et al., 2019) (purple) and Molecule Swarm Optimization (Winter et al, 
2019) (orange). The benchmarks are additionally divided by black vertical lines into 6 categories 
provided by Guacamol: rediscovery, similarity, isomer, median, multi-parameter optimization, 
and multi-parameter optimizations including SMARTS. 
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Tables 
 

Table 1 
 
Property Default Minimum Default Maximum 

Molecular Weight (Da) 100 600 

logP -3 6 

Hydrogen Bond Acceptors  10 

Hydrogen Bond Donors  5 

Total Polar Surface Area  180 

Rotatable Bonds  30 

Number of Rings  6 

Ring Size  18 

Number of Carbons 3 35 

Number of Heteroatoms 1 15 

Hydrogen/Carbon Ratio 0.1 1.1 

Number of charges  4 

Charge -4 4 

Number of Chiral Centers  2 

Table 1: Default physicochemical property filters for Deriver. Each row represents a 
physicochemical property which is measured (via RDKit) and can be used to screen molecules. 
The columns indicate the allowed bounds (outside of which a molecule will be filtered) when this 
kind of filtering is enabled and it is not manually overwritten; if no lower (minimum) bound is 
specified, it can be assumed to be zero. Default parameters are chosen such that approximately 
90% of FDA-approved drugs pass the filters. 
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Table 2 
 

 
Med. 
Chemist 1 

Med. 
Chemist 2 

Med. Chemist 
Consensus 

Algorithmic 
Filters 

Full 
Consensus N 

counterscreen 17 30 17 30 17 30 
graph_GA_delayed_filter 40 86 40 100 40 100 
graph_GA_filtered 40 85 37 100 37 100 
unfiltered 32 65 31 30 17 100 
total unique 98 202 94 194 80 264 

percent passing 37.1 76.5 35.6 73.5 30.3  

 
Table 2: Counts of Acceptable Molecules by Medicinal Chemists and Algorithmic Filters. 
Three columns (Med. Chemist 1, Med. Chemist 2, Algorithmic Filters) show the number of 
“acceptable” molecules generated by a given experiment (row) which were acceptable to either 
a medicinal chemist or passed the algorithmic filters. The consensus columns correspond either 
to the number of molecules both chemists agreed to accept (Med. Chemist Consensus) or both 
chemists and algorithmic filtering agreed to accept (Full Consensus). The column N lists the 
total number of molecules from each experiment. The last two rows: total unique corresponds to 
the total number of unique molecules for each column; percent passing shows the percentage 
of total unique molecules (out of 264) which were accepted by the related discriminator. 
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Table 3 
 
Pearson correlation Med 1 vs SMARTS Med 2 vs SMARTS Med 1 vs Med 2 

graph_GA_delayed_filter   0.32943 

graph_GA_filtered   0.1715 
unfiltered 0.34617 0.48038 0.45844 
all 0.18782 0.40165 0.33013 

Table 3: Pearson Correlation between Discriminative Mechanisms. Each entry represents 
the Pearson correlation between binary vectors representing whether to accept or reject each 
molecule, comparing the chemists' decisions with each other and with the SMARTS filtering for 
a given experiment (row). Blank entries exist when SMARTS filters accepted all corresponding 
molecules. 
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Supplemental Information 
Supplementary Figure 1: Total Number of Generations for each Experiment Set 
 
The following 5 figures display the total number of generations required to reach convergence 
(or be truncated at maximum allowed generations) corresponding to each experiment 
performed, as seen in the results section.The total generations are shown on the y-axis, for 
each of the 20 standard goal-directed Guacamol benchmarks, shown on the x-axis. Different 
coloured bars represent distinct Deriver parameter configurations. 
 
a) Total Number of Generations for each Combination of Generators 

b) Total Number of Generations for Graph_GA Filter Experiment 
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c) Total Number of Generations for Mixed-method Filter Experiment 

 
 
d) Total Number of Generations for each Selection Method 

30 



 
e) Total Number of Generations for Optimized Deriver 

 
 
Supplementary Table 1 
 
 unfiltered filtered delayed counterscreen 

 score % selected % top 100 score % selected % top 100 score % selected % top 100 score 
Celecoxib 
rediscove
ry 1 100 47 1 100 95 1 100 100 1 

Troglitazo 1 0 29 0.703 100 96 0.842 100 100 0.034 
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ne 
rediscove
ry 
Thiothixe
ne 
rediscove
ry 1 100 54 1 100 100 1 100 100 1 
Aripipraz
ole 
similarity 0.999 30 30 0.972 100 100 1 100 100 0.766 
Albuterol 
similarity 1 87 87 0.997 99 99 0.999 100 100 0.957 
Mestranol 
similarity 1 7 7 0.629 77 77 0.91 100 100 0.59 
C11H24 0.971 84.9 88 0.826 95.6 97 0.959 100 100 0.826 
C9H10N2
O2PF2Cl 0.956 6.8 7 0.88 99.6 100 0.959 100 100 0.065 
Median 
molecule
s 1 0.406 85 85 0.334 77 77 0.406 100 100 0.386 
Median 
molecule
s 2 0.441 78 78 0.358 100 100 0.437 100 100 0.41 
Osimertin
ib MPO 0.919 88 88 0.88 100 100 0.95 100 100 0.883 
Fexofena
dine MPO 1 46 46 0.938 100 100 1 100 100 0.82 
Ranolazin
e MPO 0.955 3 3 0.726 100 100 0.966 100 100 0.343 
Perindopr
il MPO 0.786 82 82 0.637 100 100 0.823 100 100 0.739 
Amlodipi
ne MPO 0.894 25 25 0.885 100 100 0.872 100 100 0.665 
Sitaglipti
n MPO 0.795 0 0 0.52 87 87 0.745 45 45 0 
Zaleplon 
MPO 0.739 30 30 0.73 100 100 0.766 100 100 0.57 
Valsartan 
SMARTS 0.99 33 33 0.946 100 100 0.97 100 100 0.772 
Scaffold 
Hop 1 0 0 0.994 53 53 1 100 100 0.185 
Deco Hop 1 1 1 1 44 44 1 100 100 0.123 

 
Supplementary Table 1: Quality of Graph_GA Molecules Generated Under Different 
Filtering Conditions. For each of the 20 Guacamol Benchmarks (rows) and filtering settings 
(major columns), the score of the selected sub-population returned to Guacamol (score), the 
percentage of these molecules which passed filters selected by Brown et al., 2019 (% selected) 
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and the percentage of the top 100 highest scoring molecules in the final population which 
passed these filters (% top 100) are displayed. The % top 100 corresponds to the quality metric 
originally reported by Brown et al., 2019 for other baselines algorithms. The percentage passing 
columns are not shown for counter screening, since by design 100% of molecules pass. 
 
 
Supplementary Figure 2 

 
 
Supplementary Figure 2: Comparison of Filtering Methods Applied to a Mixed-method 
Generator. The final score assigned by Guacamol to the returned sub-population is plotted on 
the y-axis, for each of the 20 standard goal-directed Guacamol benchmarks, shown on the 
x-axis. The filtering methods applied to the combination of BRICS, naive SELFIES, and Scanner 
with greedy sampling as seen in Figure 1. The coloured bars divide the filtering methods: no 
filtering (lime), delayed filtering (blue), and persistent filtering (red). The benchmarks are 
additionally divided by black vertical lines into 6 categories provided by Guacamol: rediscovery, 
similarity, isomer, median, multi-parameter optimization, and multi-parameter optimizations 
including SMARTS. 
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Supplementary Figure 3

 
 
Supplementary Figure 3: Overlap Between Graph_GA Zaleplon MPO Molecules Created 
in Different Filtering Schemes. This Venn Diagram displays, from the 264 total unique 
molecules produced when each of the filtering methods are applied to graph_GA on the 
Zaleplon MPO Guacamol benchmark, which method or methods generated them. Molecules 
generated by the unfiltered method, but which passed the counter screen, are shown in 
parenthesis. Each method, aside from the counter screen, produced 100 molecules. 
 

34 



Supplementary Figure 4

 
Supplementary Figure 4: Molecules Accepted by Medicinal Chemists, but not by 
algorithmic filters. Shown above are the structures of a subset of all 264 unique molecules 
generated by different filterings settings applied to graph_GA on the Guacamol Zaleplon MPO 
benchmark, for which both medicinal chemists accepted the molecules, but they were rejected 
automatically by the algorithmic filters. The reason for rejection is listed below each molecule.   
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Supplementary Figure 5 

 
 
 
Supplementary Figure 5: Molecules Accepted by algorithmic filters, but not by Medicinal 
Chemists. Shown above are the structures of a subset of all 264 unique molecules generated 
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by different experimental filter settings applied to graph_GA on the Guacamol Zaleplon MPO 
benchmark. These molecules were not rejected by the algorithmic filters, but were rejected by 
both medicinal chemists. The reason(s) they were rejected by the medicinal chemists are listed 
below each structure, with the preceding numbers (1,2) indicating which medicinal chemist gave 
each explanation. 
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