
Page 1 of 3

UEMtomaton: A Source-Available Platform to Aid in Start-up of Ultrafast

Electron Microscopy Labs

Daniel X. Du, Spencer A. Reisbick, and David J. Flannigana)

AFFILIATION
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN

55455, USA

a)Author to whom correspondence should be addressed: flan0076@umn.edu

ABSTRACT
The steady rise in the number of ultrafast electron microscopy (UEM) labs, in addition to the opacity and lack of detailed descriptions of

current approaches that would enable point-by-point construction, has created an opportunity for sharing common methods and

instrumentation for (for example) automating data acquisition to assist in efficient lab start-up and to learn about common and robust

protocols. In the spirit of open sharing of methods, we provide here a description of an entry-level method and user interface (UI) for

automating UEM experiments, and we provide access to the source code and scripts (source-available) for ease of implementation or as a

starting reference point for those entering or seeking to enter the field (https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0).

Core instrumentation and physical connections in the UEM lab at Minnesota are described. Interface communication schemes consisting of

duo server-client pairs between critical components – the optical delay stage and the UEM digital camera – are presented, with emphasis

placed on describing the logic and communications sequence designed to conduct automated series acquisitions. An application designed

and programmed with C++/CLI as Windows Forms in Microsoft Visual Studio – dubbed UEMtomaton – is also presented. Key to the UI

layout is centralization of the automation tasks and establishment of communication within the software rather than by interfacing with each

individual workstation. It is our hope that this note provides useful insight for current and future UEM researchers, particularly with respect

to generalizability and portability of the approach to emerging labs. We note that while this basic, entry-level approach is certainly not the

most sophisticated or comprehensive of those currently in use, we feel there is nevertheless value in clearly communicating a proven

straightforward method to hopefully lower the barrier to entry into the field.

Keywords: automation, pump/probe, source-available, femtosecond

Transmission electron microscope (TEM) temporal resolution

can be extended to femtosecond (fs) timescales via incorporation of

optical ports and coupling to short-pulsed lasers in an approach

called ultrafast electron microscopy (UEM).1-6 Accordingly,

optical-pump/electron-probe experiments can be conducted in the

manner common to other ultrafast techniques.7-9 Because electrons

in the probe packet experience Coulombic interactions that degrade

spatiotemporal resolution, UEM experiments are often conducted in

a stroboscopic manner so that the number of electrons per packet

can be limited.10,11 Signal at a specific time point is generated with

repeated pump/probe cycles and, following readout, the next time

point is generated by changing the relative arrival time of the pump

and probe at the specimen using a retroreflector mounted on a

mechanical stage (i.e., the delay stage), ideally in a randomized

fashion to control for systematic errors. The process is repeated

until all time points are acquired, and the sequence is assembled post

experiment.

Because a single UEM series may be comprised of many

individual acquisitions, experiments are ideally automated. This is

important because it reduces movement of the researcher in the lab

and minimizes total experiment time. This translates into increased

stability and reduces the impact of deleterious effects like specimen

drift and temperature fluctuations. Automation requires

establishing robust communications across key pieces of equipment,

especially between the optical delay-stage controller used to set

individual time points and the TEM detector used to acquire data.

Automation of UEM experiments (and automation of TEM methods

in general – of which there are a multitude of examples) is not a new

idea and indeed has been a critical (some would argue required) part

of labs seeking to obtain femtosecond-picosecond time resolutions

since the first sustained efforts emerged.11-14 However, to our

knowledge, what is lacking is a dedicated description of the

technical elements of such an approach freely available and

published in the literature, including the associated platforms, logic

approaches, and access to the source code and scripts. Without this,

establishment of new labs can be challenging and time consuming,

requiring the PI or facility to dedicate significant funds to either

developing their own approach (i.e., to reinvent the wheel) or to

hiring outside consultants or companies to do the work for them.

The latter is particularly unappealing, because the PI or facility,

though now equipped with a functioning system, may not have the

expertise to modify, update, or properly maintain the system without

continuous outside help. Indeed, we view automation as a practical

but non-trivial barrier to establishing UEM labs, as gleaned from

discussions with our fellow colleagues and newcomers to the field.

Here we describe a basic, entry-level approach to automating

UEM experiments, and we have included access to the associated

source code and scripts through a GitHub page in the hopes that this

will aid in efficient lab establishment or, at a minimum, provide

ideas for starting points on constructing new systems. The main

goal for this publication then is to communicate one simple

FIG 1. Layout and connections for the UEM system at the University of

Minnesota. Green rectangles denote components with a user-controlled
interface.

mailto:flan0076@umn.edu
https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0

Page 2 of 3

approach taken to automating UEM experiments and to provide

access to the necessary code and scripts. It is our hope that this will

also inspire similar open sharing of technical approaches to UEM

instrumentation and automation in the community – which are

certainly much more sophisticated and comprehensive than the

basic approach described here – so that new labs may benefit from

the community’s collective efforts and thus come online more

rapidly than if the researchers had to develop their own approaches

with nothing provided in advance.

The hardware layout and connections scheme is shown in

Figure 1. Key pieces of equipment include a modified 200 kV

thermionic TEM (Thermo Fisher Tecnai Femto), a fs pulsed laser

(Light Conversion PHAROS), a mechanical delay stage (Aerotech

PRO165LM) equipped with a broadband hollow retroreflector

(Newport UBBR2.5-1UV), and a digital camera (Gatan OneView).

Critical elements for automation are the stage controller (Aerotech

Soloist CP10-MXU) and the camera; communication between these

two components largely constitutes the automation process. The

laser and TEM are passive actors. The camera begins acquiring

signal once the stage is in position. Upon completion of data

collection, the stage is automatically moved to a new random

position, and signal for the next time point is acquired. The

communications logic is centered on movement and positioning of

the stage and on signal acquisition by the camera. The fs laser and

the TEM remain on and unchanged during series acquisition.

The two computers connected to the stage and camera are

actively used during setup and execution of the automated series

acquisition. Further, these two components are in communication

during the experiment. The other computers shown in Figure 1

serve as interfaces for completing tasks specific to a particular

instrument or process but are not involved in the automation itself.

Communication occurs via a duo of socket server-client pairs with

the Windows Sockets library.15 One communicates stage

information and commands, while the other communicates the

camera status and current series acquisition. A user interface (UI)

for initiating the automated process, called UEMtomaton, was

developed using the C++/CLI Windows Forms package in

Microsoft Visual Studio.

Two buffers in the socket server-client pairs are 1,024-

character strings that contain relevant passed data at each step. The

first character in each dictates the operation required on each side of

the system, while the remainder contain numerical data for

parameters of the specific operation. The first bit of the stage

communication buffer can be set to ‘1’ or ‘0’. The ‘0’ character

passes the length of time the stage computer and the camera

computer have been connected, while the ‘1’ character indicates an

update to stage position. The first bit of the camera communication

buffer can also be set to ‘1’ or ‘0’. The ‘1’ character acts as

confirmation for completion of the current process, while ‘0’

indicates the process is currently active. Another communication

link between the UI and the camera is established via a script

running in DigitalMicrograph on the camera computer (DM, Gatan).

This script is responsible for saving the acquired data.

Communication between DM and an external program is

accomplished using a text file that dictates the name of the current

image in the series, as well as the path and other metadata necessary

to determine the action the script is to perform.

Figure 2 shows the logic used to guide programming and

automation. The requirements and processes are separated into

three components, two of which are operated with UEMtomaton and

the other with DM. Two instances of UEMtomaton are initiated,

one for controlling the stage and one for controlling the series

acquisition. Before starting the acquisition, the two instances of

UEMtomaton communicate the current status and position of the

stage. Upon initialization, the delay-stage side waits to receive a

command indicating the desired position. Upon receipt, the stage

moves into position, and UEMtomaton on the camera side begins

the data acquisition by sending a command to the DM script. The

script also saves the individual acquisitions under a specific path and

FIG. 3. Screenshots of the UEMtomaton user interface (UI). (Left) Delay stage UI. (Center) Camera side UI. (Right) Applet attached to UEMtomaton used
to construct time points.

FIG 2. Logic for the automated UEM system. The red dashed rectangle

contains the operating procedures of the delay-stage side, while everything

else constitutes the camera side. Operations are performed using the “Delay
Stage Computer” and the “Camera Computer”.

Page 3 of 3

filename, which are defined using the UI prior to initiating the

experiment. The process that follows initialization consists of a

series of logic and communication steps between the three

components that are designed to collect the series items in a

randomized fashion.

The UEMtomaton UI (Fig. 3) was designed and programmed

to consolidate and centralize tasks. The UI was developed using the

C++/CLI Windows Forms package in Microsoft Visual Studio.

Visual Studio was chosen for its straightforward placement and

adjustment of individual elements, the ability to directly program

each in C++/CLI, and the ability to easily communicate with the

stage via the C++ application programming interface in the

Aerotech Soloist software. (Note that the Aerotech software

elements are not provided as part of the open-source materials as

they are the property of Aerotech.) Windows Forms also allows for

multiple asynchronous processes to run in the background, as is

needed when communicating stage position while other operations

take place. While this simple application is designed around the

UEM lab at Minnesota, the basic principles governing functionality

are universal, and the source code and logic is immediately

extendable to similarly-outfitted labs.

The UI consists of a Delay Stage tab and a Camera Side tab.

The delay stage side was designed to minimize user input so all

other operations are performed on the camera computer (i.e., the

camera side). On the delay-stage side, the process is started by

initializing the communication servers between the delay-stage side

and the camera side. There is a Disconnect button that will

disconnect the stage and the camera computer from the application.

In the center there is a panel labeled “Manual Delay Stage Control”

for positioning the stage during individual acquisitions. A status bar

displays updates on the present position. The date and time appear

on the bottom left after initialization.

User operation is concentrated mainly on the camera side. The

sequence of operations to initiate automated acquisition are

sequentially numbered (Fig. 3, central panel). Following

initialization, the camera-side server connection is established. The

delay stage IP address is customizable, and one needs to run only

two instances of the application and set the IP to “127.0.0.1” if the

stage and camera are controlled using the same computer. The stage

position is reported in both spatial and temporal units; the temporal

indicator is provided so that the user knows the time range being

scanned. Below this are locations for entering a file-naming scheme

and a path for saving the data. The next step makes use of the “3.

Make Timepoints” command, which opens an applet that allows the

user to enter delay-stage parameters that comprise the entire

automated series (Fig. 3, right panel). The automated series

parameters are then entered into the main UEMtomaton program

using the “Presto!” button, and the experiment is started using the

“4. Run Scan” button under the Camera Side tab. Progress is

updated in the table, and the status of each step is displayed in the

status bar. The scan can be stopped using the “Stop Run” button.

In summary, we have briefly described here a simple and

proven entry-level approach to automating UEM experiments that

centralizes operations to a single user interface programmed in an

accessible and portable source-available platform. We have

interfaced the delay-stage side with the camera side through, among

other elements, scripting in DigitalMicrograph. Owing to the goal

of combined high spatiotemporal resolutions in UEM experiments,

automation that increases efficient collection of data is key, as

deleterious effects of user presence and movement, as well as

prolonged experiment times, are minimized. It is hoped that this

basic, entry-level description, as well as the ability to access the

associated source code and scripts through the GitHub site, will

serve as both a clear introduction to UEM automation approaches

and also as a useful starting point for those entering the field and

seeking to establish a new lab.

This material is based on work supported by the U.S.

Department of Energy, Office of Science, Office of Basic Energy

Sciences under Award No. DE-SC0018204. We thank Ben Miller

and Bernhard Schaffer for the information regarding image listeners

in DM scripting.

SOURCE CODE AND SCRIPTS AVAILABILITY

The source code and scripts are freely available at

https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0.

UEMtomaton is copyrighted by the Regents of the University of

Minnesota. It can be used only for evaluation purposes, and any

further uses will require prior approval. The software may not be

sold or redistributed without prior approval. One may make copies

of the software for their use provided that the copies are not sold or

distributed, and are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as

is” basis without warranty of any kind, either expressed or implied.

The downloading, or executing any part of this software constitutes

an implicit agreement to these terms. These terms and conditions

are subject to change at any time without prior notice.

REFERENCES

1A. H. Zewail, Science 328, 187 (2010).
2D. J. Flannigan and A. H. Zewail, Acc. Chem. Res. 45, 1828

(2012).
3L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and

F. Carbone, Chem. Phys. 423, 79 (2013).
4D. A. Plemmons, P. K. Suri, and D. J. Flannigan, Chem. Mater. 27,

3178 (2015).
5A. Feist, N. Bach, N. R. da Silva, T. Danz, M. Möller, K. E. Priebe,

T. Domröse, J. G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R.

Bormann, M. Sivis, S. Schäfer, and C. Ropers, Ultramicroscopy

176, 63 (2017).
6C. Zhu, D. Zheng, H. Wang, M. Zhang, Z. Li, S. Sun, P. Xu, H.

Tian, Z. Li, H. Yang, and J. Li, Ultramicroscopy 209, 112887

(2020).
7H. Park, Z. Hao, X. Wang, S. Nie, R. Clinite, and J. Cao, Rev. Sci.

Instrum. 76, 083905 (2005).
8J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B.

Deyirmenjian, R. E. Jordan, and R. J. D. Miller, Philos. Trans. R.

Soc. A 364, 741 (2006).
9S. P. Weathersby, G. Brown, M. Centurion, T. F. Chase, R. Coffee,

J. Corbett, J. P. Eichner, J. C. Frisch, A. R. Fry, M. Gühr, N.

Hartmann, C. Hast, R. Hettel, R. K. Jobe, E. N. Jongewaard, J. R.

Lewandowski, R. K. Li, A. M. Lindenberg, I. Makasyuk, J. E. May,

D. McCormick, M. N. Nguyen, A. H. Reid, X. Shen, K.

Sokolowski-Tinten, T. Vecchione, S. L. Vetter, J. Wu, J. Yang, H.

A. Dürr, and X. J. Wang, Rev. Sci. Instrum. 86, 073702 (2015).
10D. A. Plemmons and D. J. Flannigan, Chem. Phys. Lett. 683, 186

(2017).
11V. A. Lobastov, R. Srinivasan, and A. H. Zewail, Proc. Natl. Acad.

Sci. U.S.A. 102, 7069 (2005).
12B. W. Reed, M. R. Armstrong, N. D. Browning, G. H. Campbell,

J. E. Evans, T. LaGrange, and D. J. Masiel, Microsc. Microanal. 15,

272 (2009).
13A. Kulovits, J. M. K. Wiezorek, T. LaGrange, B. W. Reed, and G.

H. Campbell, Philos. Mag. Lett. 91, 287 (2011).
14A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S.

Schäfer, and C. Ropers, Nature 521, 200 (2015).
15B. Quinn and D. Shute, Windows Sockets Network Programming

(Addison-Wesley Professional, Reading, MA, 1995).

https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0

