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Abstract. Metal–organic frameworks (MOFs) are a widely investigated class of crystalline solids with 
tunable structures that make it possible to impart specific chemical functionality tailored for a given 
application. However, the enormous number of possible MOFs that can be synthesized makes it difficult to 
determine which materials would be the most promising candidates, especially for applications governed 
by electronic structure properties that are often computationally demanding to simulate and time-consuming 
to probe experimentally. Here, we have developed the first publicly available quantum-chemical database 
for MOFs (the “QMOF database”), which consists of properties derived from density functional theory 
(DFT) for over 14,000 experimentally synthesized MOFs. Throughout this study, we demonstrate how this 
new database can be used to identify MOFs with targeted electronic structure properties. As a proof-of-
concept, we use the QMOF database to evaluate the performance of several machine learning models for 
the prediction of DFT-computed band gaps and find that crystal graph convolutional neural networks are 
capable of achieving superior predictive performance, making it possible to circumvent computationally 
expensive quantum-chemical calculations. We also show how unsupervised learning methods can aid the 
discovery of otherwise subtle structure–property relationships using the computational findings in this 
work. We conclude by highlighting several MOFs with low band gaps, a challenging task given the 
electronically insulating nature of most MOF structures. The data and predictive models generated in this 
work, as well as the database of MOF structures, should be highly useful to other researchers interested in 
the predictive design and discovery of MOFs for the many applications dictated by quantum-chemical 
phenomena. 

Keywords: metal–organic framework, machine learning, density functional theory, database, band gap, electronic 
structure 
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Introduction 
 

Over the last several years, significant attention has been focused on the design of novel metal−organic 
frameworks (MOFs), a class of materials composed of discrete inorganic nodes connected to one another 
via organic linkers. One of the main advantages of MOFs is that they often have predictable and atomically 
defined structures with properties that are directly related to the choice of underlying metal and organic 
building blocks.1 In this way, it becomes possible to impart physical and chemical functionality specifically 
tailored for a given application of interest.2 To date, tens of thousands of MOFs have been synthesized,3,4 
and a nearly unlimited number can be proposed5–7 by considering different combinations of constituent 
building blocks. Due to the enormous set of possible framework compositions, structures, and resulting 
properties, it remains difficult to discover truly top-performing MOFs for a particular application based 
solely on chemical intuition, conventional trial-and-error experimental testing, or serendipity alone. 

High-throughput computational screening approaches based on classical simulations have proven 
extremely useful for more efficiently exploring the vast combinatorial space of MOF structures.8,9 Recently, 
the large quantities of data generated during these computational screening studies have led to the 
development of machine learning (ML) models10 that can accelerate the MOF design and discovery process 
even further. ML-assisted screening studies have been successfully applied to the discovery of MOFs 
suitable for H2 storage,11–13 CO2 separation/capture,14–16 and numerous other applications predominantly in 
the area of gas storage and separations.9,17,18 Nonetheless, similar efforts remain almost entirely unexplored 
for the countless applications governed by quantum chemistry,19 such as those that are based on the 
electronic, optical, magnetic, and/or catalytic properties of MOFs. Beyond the sheer number of possible 
MOFs that can be realized, the large number of atoms in MOF crystal structures often makes it 
computationally demanding to carry out even moderate-scale quantum-chemical screening studies, further 
magnifying the need for ML approaches in this area. 

To date, the most relevant studies focused on training ML models to predict the quantum-chemical 
properties of MOFs are those of Raza et al.20 and Korolev et al.21 who independently developed ML models 
that can predict the partial atomic charges of MOFs in the Computation-Ready, Experimental (CoRE) MOF 
database.22,23 Beyond these fundamental studies on partial charge prediction, however, there remains a 
significant gap in the literature, particularly for the discovery of MOFs with desired electronic structure 
properties. To the best of our knowledge, the only prior work in this area is that of He et al.24 who trained 
binary classification models to predict whether inorganic solids in the Open Quantum Materials Database 
(OQMD)25,26 are metallic or nonmetallic. Without retraining on MOF data, a multi-model voting procedure 
was then used to predict the metallic or nonmetallic behavior of 2932 MOFs in the CoRE MOF database,22 
which do not have computed band gaps. Of the six identified materials with near-zero band gaps at the PBE 
level of theory,27 all are best-described as metal–cyanide/thiocyanate cluster complexes and none have H 
atoms in the structure. This is likely due in large part to the extreme differences between the OQMD, which 
consists almost entirely of inorganic compounds, and the CoRE MOF database. Furthermore, the fidelity 
of the metallic materials was not considered, leading to highlighted structures such as [CdC4]n that should 
actually be [Cd(CN)2]n.28 

In stark contrast with the existing literature on MOFs, significant progress has been made in the 
development of ML models to aid in the quantum-chemical screening of a wide range of inorganic and 
molecular compounds.29–36 One of the fundamental features underlying much of this work has been the use 
of high-throughput density functional theory37 (DFT) workflows to construct large-scale electronic 
structure property databases, such as those developed for inorganic solids26,38–44 and molecular systems.45–

49 The synergistic combination of high-throughput DFT databases and ML has led to the discovery of a 
diverse range of materials with sought-after properties, including efficient organic light-emitting diodes,50 
superhard inorganic materials,51 and thermally conductive polymers,52 among many others.35 With this in 
mind, there is a significant need for an analogous database of DFT-computed material properties for MOFs 
so that new ML models can be developed to rapidly predict their electronic structure properties. High-



  3 
 

throughput screening, database generation, and subsequent ML model development are crucial components 
for realizing the full potential of reticular chemistry53 and accelerating materials discovery in general.54–57 

In the present study, we leverage a recently developed high-throughput periodic DFT workflow tailored for 
MOF structures58 to construct a large-scale database of MOF quantum-mechanical properties. This publicly 
available dataset59 – the Quantum MOF (QMOF) database – contains computed properties for 14,204 
experimentally characterized MOF structures after structure relaxation via DFT, including but not limited 
to optimized geometries, energies, band gaps, charge densities, partial charges, spin densities, and bond 
orders. We anticipate the QMOF database will serve two primary purposes: 1) materials discovery using 
the as-deposited data; 2) the evaluation and development of novel ML algorithms to reduce, or circumvent 
altogether, the need for otherwise expensive DFT calculations. 

To demonstrate the utility of the data generated via the high-throughput DFT workflow, we use the QMOF 
database to develop several ML models for the prediction of MOF band gaps from nothing more than an 
encoding of the experimental (i.e. unrelaxed) crystal structures. Beyond serving as a proof-of-concept, an 
ML model that can predict MOF band gaps is particularly desirable, as most MOFs are known to be 
electronically insulating,60 which limits their potential use in electrocatalysis, sensing, energy storage, and 
other applications where some degree of electrical conductivity is necessary.60–64 We identify a top-
performing band gap regression model based on a crystal graph convolutional neural network65 and show 
how dimensionality reduction techniques can be used to discover overarching structure–property 
relationships to identify MOFs with targeted electronic structure properties. We conclude by highlighting 
several iron MOFs with low band gaps identified for the first time in this work. 

Results 

Generation and Overview of the QMOF Database 

Prior to carrying out any periodic DFT calculations, a dataset of starting structures must be assembled. 
There are several databases of MOF structures that have been published to date.3–6,22,66 However, it is 
imperative to note that existing databases of synthesized MOFs cannot be used as-is for quantum-chemical 
screening purposes. If even a single atom is missing or duplicated in a MOF crystal structure, the resulting 
DFT calculations are unlikely to be physically meaningful. Put another way, the simulation unit cell is 
expected to be charge-neutral unless otherwise specified, and any additional or missing electron in the 
system ruins the integrity of the resulting charge density, and therefore all the quantum-chemical properties 
derived from it. These situations can arise as a result of deficiencies in the deposited experimental crystal 
structure and/or in the dataset curation process when generating a database of MOF crystal structures. 
Therefore, in this work we aim to start with as “clean” a dataset as reasonably possible, one we will refer 
to as a suitably “DFT-ready” dataset of MOFs. 

We considered the list of materials identified as MOFs in the Cambridge Structural Database (CSD)3,67,68 
and the 2019 Computation-Ready, Experimental (CoRE) MOF database.4 All starting structures were taken 
directly from the CSD,69 and free (i.e. unbound) solvents were automatically removed from the frameworks. 
From this set of experimental crystal structures, we constructed a DFT-ready dataset of 42,362 non-
disordered MOF structures (“CSD-42362”) after an extensive suite of automated fidelity checks, as 
summarized in Figure S1. In contrast with existing databases of experimental MOF structures,3,4,22,66 this 
process better accounts for issues such as omitted H atoms, unresolved disorder, deleted framework atoms, 
lone (i.e. unbonded) atoms, an improper number of charge-balancing ions, and other structural issues that 
have been discussed in several recent studies.68,70–75 Of these 42,362 structures, a subset of 24,013 materials 
with 150 atoms or fewer per primitive cell were considered such that large-scale screening could be carried 
out. After completing the high-throughput DFT screening procedure, static single-point (SP) calculations 
on the un-relaxed structures were successfully completed for 19,691 materials (“CSD-19691-SP”), and full 
structure relaxations (including cell volume and atomic positions) were successfully carried out for 14,204 
materials (“CSD-14204-opt”). All periodic DFT calculations during this dataset construction process were 
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carried out at the PBE-D3(BJ)27,76,77 level of theory using the Vienna ab initio Simulation Package 
(VASP)78,79. Additional methodological details regarding the dataset construction, DFT calculations, and 
ML methods can be found in the Supporting Information. 

 

Figure 1. Selected DFT-computed properties for the structurally relaxed MOFs made available in the QMOF database. 
The DDEC6 properties are enumerated on a per-atom basis.  

In carrying out the high-throughput periodic DFT calculations, several properties were computed at each 
stage of the workflow, a selection of which are shown Figure 1. Of these, band gaps are likely to be of 
interest for electronic and optical properties, especially in the search for (semi)conducting MOFs60,62,80,81 or 
screening for photocatalytic materials.82 Electronic energies, particularly if converted to formation energies, 
may provide insight into the relative stability of MOFs.83 Machine learning the charge density84 is of interest 
as a way to bypass the Kohn-Sham equations of DFT85–87 and can be incorporated as a feature to predict a 
variety of additional quantum-chemical properties.88,89 DDEC6 partial atomic charges,90–92 bond orders,93 
and spin densities90,91 have a wide range of potential use-cases, from describing electrostatic interactions in 
classical simulations of MOFs23 to serving as descriptors to better understand trends in catalytic 
reactions.94,95 Furthermore, the DFT-optimized structures can be used as starting points for further quantum-
chemical calculations and for analyzing geometric properties of MOFs. In addition to the curated data 
mentioned in Figure 1, all raw output data from the DFT calculations are made publicly available so other 
unforeseen properties of interest can be readily tabulated and investigated. 

Prior to highlighting how this data can be used in practice, we first investigated several properties of the 
QMOF database generated in this work. As shown in Figure 2a, the CSD-14204-opt dataset contains MOFs 
with chemical elements that span nearly the entire periodic table, which is beneficial for the development 
of transferable ML models. When looking at the geometries before and after structure relaxation, we find 
that 97.1% of the DFT-optimized MOFs had a change in cell volume less than 10% (Figure 2b), suggesting 
that the removal of free solvent does not drastically alter the structural properties for the majority of the 
MOFs in this work. The distribution of DFT-computed band gaps for the fully optimized structures is shown 
in Figure 2c and indicates that there is a wide spread of values from nearly 0 eV to 6.45 eV. The band gaps 
are not normally distributed and instead are bimodal, with peaks centered around 0.9 eV and 2.9 eV. This 
can be attributed to different distributions associated with closed- and open-shell materials in the CSD-
14204-opt dataset (Figure 2c), the latter of which have significantly lower band gaps at the PBE-D3(BJ) 
level of theory on average. With regards to partial atomic charges, a wide spread of values is also obtained 
(Figure S4a). In comparing the partial atomic charges before and after structure relaxation, we find that 
92.4% of the ~1.19 million data points have an absolute difference less than 0.05 ��, and 98.8% of the 
points have an absolute difference less than 0.1 �� (Figure S4b). As has been observed on a smaller scale 
in prior work,23,66 it can be safely assumed that the partial charges remain essentially unchanged upon 
structure relaxation in most cases. 
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Figure 2. a) Number of MOFs in the CSD-14204 dataset containing a given element. All elements that occur in greater 
than 800 structures are capped at 800 for ease of visualization. These include: C (14,204), H (14,204), N (11,526), O 
(11,458), Cu (2,617), S (2,493), Cd (2,272), Zn (2,250), Cl (1,575), and Ag (1,120). Elements in gray are not present 
in any structure. b) Histogram of the fractional change in cell volume before (���) and after (����) structure relaxation 
for the MOFs in the CSD-14204-opt dataset. c) Violin plot of DFT-computed band gaps, 	
,�
�, in the CSD-14204-
opt dataset. Separate distributions are shown for the entire dataset (14,204 entries), the closed-shell MOFs (10,995 
entries), and the open-shell MOFs (3,209 entries). Open-shell character is defined here as having a DDEC6 atomic 
spin density with a magnitude greater than 0.1. A box plot, showing the extrema and interquartile range, is included 
in each violin, with the median marked by a white dot. 

As a brief demonstration for how the data generated via the high-throughput DFT workflow could be used 
directly, we identified any materials with high-spin Fe species, which we defined as having an absolute 
DDEC6 spin density greater than 3.5 from the DFT calculations. High-spin Fe complexes are known to be 
promising for oxidation catalysis, in particular for the activation of strong C–H bonds, and recent work has 
focused on stabilizing such motifs in MOFs for this purpose.96–98 We further constrained the list of MOFs 
to only include those with a pore-limiting diameter greater than 3.6 Å (i.e. the kinetic diameter of N2). This 
search resulted in six frameworks, as shown in Figure S5: Fe(bpz) (H2bpz = 4,4′-bipyrazole) (refcode: 
ACODAA),99 Fe2(dobdc) (H4dobdc = 2,5-dihydroxybenzene-1,4-dicarboxylic acid) with (refcode: 
SARHAW) and without (refcode: COKNOH) bound propylene,100,101 Fe2Cl2(bbta) (H2bbta = 1H,5H-
benzo(1,2-d:4,5-d′)bistriazole) (refcode: HAYYUE),102 and geometrically distinct, expanded 
conformations of Fe(bdp) (H2bdp = 1,4-benzenedipyrazole) (refcodes: QUPZIM01, QUPZIM02).103 
Providing validation of this screening approach, Fe2(dobdc) has already been shown to oxidize ethane to 
ethanol,96,104 and Fe2Cl2(bbta) has been computationally investigated for oxidation reactions,105,106 with 
experimental evidence suggesting that both MOFs have high-spin Fe sites.96,102 
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Machine Learning Models for Band Gap Prediction 

Beyond analyzing the DFT-computed properties directly, the QMOF database now makes it possible to 
train a wide range of ML models specifically tailored for MOFs, which are likely to have their own distinct 
feature space compared to isolated molecules and inorganic solids. This serves two primary purposes. The 
first is more theoretical: featurization methods (i.e. how each MOF structure is encoded) and ML algorithms 
that are well-suited for other materials may not be equally suitable for MOFs, so this database of quantum-
chemical properties can serve as a testing ground to benchmark new ML methods. The Materials Project38 
and OQMD25,26 in particular have accelerated this research direction for inorganic solids, and the QM9 
dataset45,107 (as one example) has done the same for small molecule chemistry. The second purpose of this 
new database is to apply these rapid yet accurate ML models to accelerate the materials discovery process, 
now with the ability to train these models directly on properties computed for MOFs. 

In this work, we have chosen to develop an ML regression model that can rapidly predict the DFT-computed 
band gaps of MOFs. Specifically, we aim to predict the computed band gaps of the DFT-optimized 
structures from the un-optimized, experimentally resolved MOF crystal structures such that no quantum-
chemical calculations need to be carried out. To achieve this, all ML models are trained on the band gaps 
of the DFT-optimized structures but take representations of the corresponding unrelaxed experimental 
structures as the input. Since the development of an ML model that can predict the band gaps of MOF 
crystal structures has not been achieved before, we trained several ML models using a variety of common 
featurization methods to benchmark each approach. These featurization methods are graphically 
summarized in Figure 3 for a representative material IRMOF-1 (IRMOF = isoreticular MOF),108 also known 
as MOF-5 (Figure 3a). For the purposes of training ML models throughout this work, we specifically focus 
on a de-duplicated subset of the 13,058 materials in the QMOF database that have gone through the full 
periodic DFT volume relaxation process (“CSD-13058-opt”), as described in Figure S1. 

The simplest featurization methods considered in this work are the feature sets of He et al.24 (with 45 
statistical attributes of elemental properties, denoted “Stoichiometric-45”) and Meredig and Agrawal et 
al.109 (with 103 attributes describing the elemental fractions from H–Lr and 17 statistical attributes of 
elemental properties, denoted “Stoichiometric-120”), which rely solely on the chemical composition of 
each material (Figure 3b). In addition, we consider several structure-sensitive featurization approaches, 
including the sine Coulomb matrix110 that encodes pairwise electrostatic interactions between nuclei in a 
material (Figure 3c, Equation S4) and the orbital field matrix111 that encodes the distribution of valence 
electrons in each coordination environment of a material (Figure 3d). The smooth overlap of atomic 
positions (SOAP)112,113 is another structure-sensitive descriptor considered in this work and can be used to 
compute the similarity between a pair of local atomic environments by representing the atoms as Gaussians 
(i.e. “smoothed positions”), which are then summed to produce a density field (Equation S5). The overlap 
of these density fields, integrated over all three-dimensional rotations (Equations S6–S7), are compared 
between structures to generate a kernel matrix describing the similarity between every pair of MOF 
structures (Figure S2 and Equations S8–S9). In all of the aforementioned examples, these features are used 
to develop a kernel ridge regression114 (KRR) model (Equations S1–S3). Motivated by prior work on 
inorganic solids, we also investigated the use of a crystal graph convolutional neural network (CGCNN),65 
wherein an approximate crystal graph is generated for each MOF, with each node in the graph representing 
an atom and each edge representing the bonds that connect the atoms (Figure 3f). More detailed descriptions 
and full methodological details for each featurization method and ML model architecture can be found in 
the Supporting Information. 
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Figure 3. Visualization of various featurization methods applied to the unit cell of IRMOF-1. a) IRMOF-1 structure. 
b) Examples of composition-based features. c) Sine Coulomb matrix showing the interaction values between each pair 
of atoms. d) Orbital field matrix showing the average interaction value between each pair of orbital- or period-based 
features. Only non-zero values are shown. e) Averaged SOAP fingerprint of IRMOF-1 compared to IRMOF-2 and 
ZIF-8. Taking the dot product of any two vectors yields an unnormalized similarity score. f) Schematic of a crystal 
graph with example node (circle) and edge (line) embeddings (only a representative portion is shown for clarity). 

As shown in Table 1, the KRR models trained on composition-based features (i.e. Stoichiometric-45 and 
Stoichiometric-120) are able to capture some of the band gap trends with mean absolute errors (MAEs) of 
0.44 eV (with respect to the DFT-computed values) on the out-of-sample testing set. Nonetheless, these 
methods are still quite limited for regression purposes given that they do not encode any information about 
the structural properties of the MOF. In terms of structure-sensitive methods, taking an eigenvalue spectrum 
of the sine Coulomb matrix fares worse than the stoichiometry-based features, yielding a testing set MAE 
of 0.55 eV (Table 1). This can likely be traced back to the required use of zero-padding in the sine Coulomb 
matrix to ensure constant-length feature vectors between MOFs with different numbers of atoms per unit 
cell. The KRR model using a flattened orbital field matrix as the feature set is more accurate than the model 
based on the sine Coulomb matrix but shows only a minor improvement over the stoichiometry-based 
features. Overall, SOAP performs the best of all tested KRR descriptor sets, with an MAE of 0.37 eV and 
�� = 0.81 on the testing set. The marked improvement in performance with SOAP is especially clear when 
comparing the parity plots of the different KRR models (Figure S6). 

 

Table 1. Summary of the mean absolute error (MAE), ��, and Spearman rank-order correlation coefficient (�) for 
several machine learning methods to predict the computed band gaps of MOFs from their deposited crystal structures 
with free solvent removed. Kernel ridge regression was used for all featurization methods except for the crystal graphs 
of CGCNN, for which a convolutional neural network was constructed. The testing set statistics are shown, averaged 
over five runs (using different random seeds for data splitting) with ±1 standard deviation shown. For all models, 80% 
of the CSD-13058 dataset was used for training. The MAE for a dummy model that predicts the mean band gap (2.241 
eV) for all the MOFs is shown for reference. 
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ML Method MAE (eV) �� � 
Constant mean model 0.984 — — 
Sine Coulomb matrix 0.551 ± 0.013 0.625 ± 0.019 0.780 ± 0.014 

Stoichiometric-45 0.443 ± 0.011 0.746 ± 0.012 0.846 ± 0.009 
Stoichiometric-120 0.438 ± 0.009 0.748 ± 0.010 0.848 ± 0.006 
Orbital field matrix 0.423 ± 0.007 0.761 ± 0.007 0.865 ± 0.003 

SOAP 0.367 ± 0.007 0.807 ± 0.010 0.903 ± 0.005 
CGCNN 0.272 ± 0.004 0.885 ± 0.007 0.934 ± 0.004 

 

Notably, the CGCNN significantly outperforms all the aforementioned KRR models, achieving an MAE of 
0.27 eV and �� = 0.89 (Table 1). As a point of reference, a trivial model that simply predicts the mean 
band gap for every MOF would have an MAE of 0.98 eV, indicating that CGCNN captures much of the 
underlying chemistry. The performance of the CGCNN model for MOF band gaps is comparable, if not 
slightly better, than state-of-the-art ML band gap models trained on the inorganic solids of the OQMD and 
Materials Project database as well as the organic crystals of the Organic Materials Database 
(OMDB).41,65,115,116 It is also worth noting that the experimentally measured band gaps of MOFs can vary 
by several tenths of an eV depending on the synthesis and post-treatment conditions,117 so an MAE less 
than 0.3 eV is likely to be sufficiently accurate for identifying structure–property trends and for ranking 
material candidates, the latter of which is further justified by the CGCNN’s high Spearman rank-order 
correlation coefficient of � = 0.93. For context, it takes ~7 minutes (6 minutes for a one-time encoding of 
the crystal graphs and 1 minute to evaluate the neural network) on a modern laptop computer to predict the 
band gaps of all 13,058 MOFs in the CSD-13058 set using the CGCNN model. In stark contrast, it took 
approximately 1.5 million hours (~170 years) of computing time on the Stampede2 supercomputer118,119 to 
carry out the structure relaxations and compute the band gaps via DFT. 

 

Figure 4. a) Mean absolute error (MAE) for testing set band gap predictions as a function of training set size for 
various machine learning methods. Each point represents the average value and the shaded region represents ±1 
standard deviation of five runs (with different random seeds for data splitting). The data are shown on log–log axes. 
In all cases, 80% of the total dataset size was used for training. b) Testing set parity plot for the CGCNN model with 
hexagonal binning, comparing the machine learning band gaps, 	
,��, to the DFT-computed band gaps, 	
,�
�. The 
color bar indicates the number of MOFs in each bin, and the line of parity is shown as a dashed line. Histograms 
summarizing the distribution of 	
,�
� and 	
,�� data are displayed parallel to the �- and �-axes, respectively. 

The learning curves for each of the six models are shown in Figure 4a, highlighting the testing set MAE as 
a function of the training set size. Of all the individual models, CGCNN has both the largest learning rate 
and the lowest MAE regardless of training set size. While SOAP has a comparable testing set MAE to the 
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simpler stoichiometric models when trained on ~1600 MOFs, SOAP has a significantly higher learning rate 
such that it performs much better for larger training set sizes (although still underperforms compared to 
CGCNN). Reassuringly, the MAEs of the top-performing CGCNN and SOAP methods have not plateaued 
with respect to the training set size over the range of values considered in this work (i.e. up to ~104 training 
points). This indicates that both CGCNN and SOAP are capable of encoding the MOF crystal structures 
with sufficient uniqueness between structures and that the performance of the ML algorithms could be 
further improved if a greater number of training examples were provided. The testing set parity plot for the 
CGCNN trained on 80% of the CSD-13058 MOF dataset is shown in Figure 4b. As one would expect based 
on the relatively low MAE and high ��, the agreement with the DFT predictions is generally quite strong, 
and this is true across the full range of band gap values. 

Dimensionality Reduction for Structure–Property Analysis 

While the kernel-based methods have a higher MAE than CGCNN when predicting MOF band gaps, one 
of their main advantages is that the underlying descriptors can be readily used for dimensionality reduction 
– an unsupervised learning task that can cluster structurally similar MOFs in feature space for the purposes 
of identifying structure–property relationships. Using the uniform manifold approximation and projection 
(UMAP) algorithm to carry out the dimensionality reduction,120,121 the distance between each MOF in the 
reduced space can be related to the distance in feature space, such that clusters of points tend to have similar 
structures (Equation S10). By overlaying the DFT-computed band gaps over the UMAP, regions of low 
and high band gap emerge, making it possible to identify otherwise subtle structure–property trends. 

 

Figure 5. Unsupervised structural dimensionality reduction performed using UMAP, with a distance matrix obtained 
from the average SOAP similarity kernel of the structures in the CSD-13058-SP dataset. The computed band gaps of 
the DFT-optimized structures, 	
,�
�, are overlaid on the UMAP. Selected MOFs in the projection are highlighted. 

As an example, selecting several MOFs in region A of the SOAP-based UMAP (Figure 5) yields materials 
with long, linear alkane-based linkers (e.g. refcodes NEZMEM122, ROKZOI123), which consistently have 
high band gaps regardless of the coordinating metal. The low band gap MOFs are more scattered throughout 
the reduced feature space, but as one example, region B of Figure 5 contains framework materials with 
linkers consisting of various TCNQ (TCNQ = 7,7,8,8-tetracyano-quinodimethane) derivatives, with several 
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of these materials previously shown to have high electrical conductivities (e.g. BISVUW124, FAFJAZ125). 
The projection in Figure 5 can be used to find MOFs that are structurally similar to a given material of 
interest as well. For instance, Cu[Ni(pdt)2]⋅C2H2 (pdt2– = 2,3-pyrazinedithiolate) (refcode: HIVPOU126) is 
in the CSD-13058 dataset, and it is known to be one of the rare examples of a three-dimensional, porous 
framework that exhibits room temperature electrical conductivity.126 Perhaps unsurprisingly, one of the 
closest points to Cu[Ni(pdt)2]⋅C2H2 is the isostructural framework Cu[Cu(pdt)2]⋅C2H2 (refcode: 
WIHQEM127) (region C), which has also been studied for its conductive properties.128,129 In general, we find 
the SOAP-based UMAP places greater emphasis on the similarity of the organic linkers rather than the 
metal identity, likely due to the averaging scheme used in the generation of the similarity kernel (Table S5). 
Modifications to the SOAP encoding that better account for the discrete building block nature of MOFs, 
such as variations on the recently developed coarse-grained SOAP (cg-SOAP) method,130 may yield 
improvements in the future. 

Similar to what has been done in prior work with revised autocorrelation functions,131 we can use the SOAP 
similarity kernel to understand the diversity of structures in the CSD-13058 database and identify structural 
outliers. The most apparent example is the isolated cluster of points in region D of Figure 5. Investigation 
of these crystal structures indicates that they are predominantly frameworks with high fluorine content, 
such as MOFs with fluorinated linkers (e.g. MUQCEH132, HADMOR133) or metal–fluoride species (e.g. 
EMEJAJ134), which leads to a large difference in the average SOAP fingerprint compared to most other 
MOFs in the dataset. The isolated region E of Figure 5 where there is a low band gap cluster contains 
polyoxovanadate-based MOFs, some of which have already been investigated for their conductive and 
electrocatalytic properties (e.g. FEYCOE135, XEHYEP136). Similarly, the nearby isolated region F contains 
molybdenum oxide-based frameworks (e.g. LUYQUT137, SASCIB138). 

 

Figure 6. Unsupervised dimensionality reduction performed using UMAP, with a distance matrix obtained using a 
Euclidean distance metric of the Stoichiometric-120 encodings for the structures in the CSD-13058-SP dataset. The 
(a) maximum atomic number in each structure, max���, and (b) computed band gaps for the corresponding DFT-
optimized structures, 	
,�
�, are overlaid on the UMAPs. 

While the SOAP-based UMAP is useful for identifying local trends in feature space, significantly greater 
clustering is observed when using the Stoichiometric-120 encoding. As is evident in Figure 6a, the UMAP 
based on the Stoichiometric-120 encoding partitions the MOF chemical space based on the maximum 
atomic number in each chemical formula. The variations within a given cluster are due to more subtle 
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differences in the elemental fractions and compositional features that compose the Stoichiometric-120 
descriptor. Notably, the band gaps are well-separated between and within each cluster in the reduced space 
(Figure 6b). For these reasons, the Stoichiometric-120 UMAP can be a valuable tool for obtaining a global 
view of the QMOF database. For instance, we find that the CSD-13058 dataset closely overlaps with both 
the larger CSD-42362 dataset it was drawn from and the separate CoRE MOF 2019 database4 based on the 
reduced space of Stoichiometric-120 features (Figures S7 and S8). To enable additional data exploration, 
we have made interactive versions of the UMAPs available in the supporting dataset.59 

Highlighting Notable Low Band Gap MOFs 

We conclude by highlighting several framework materials identified in this work that have low band gaps, 
motivated in part by the search for a greater number of (semi)conducting MOFs. It should be noted that 
while the PBE-D3(BJ) level of theory makes it possible to generate a sufficiently large database for the 
purposes of ML model development and to identify structure–property relationships, it is known to 
underestimate band gaps like essentially all generalized gradient approximation functionals.139,140 As such, 
we carried out full structure relaxations and corresponding band gap calculations using the hybrid-level 
HSE06-D3(BJ) functional141,142 on select materials to generate more accurate band gap predictions. As a 
point of reference, materials with band gaps in excess of ~4 eV are often classified as electronic insulators, 
including many of the most commonly studied MOFs (e.g. MOF-5,117 UiO-66 (UiO = Universitetet i 
Oslo),143 ZIF-8 (ZIF = zeolitic imidazolate framework)144).60,139 Generally, lower band gaps are necessary 
to support electrical conductivity (although it is not the sole factor required for achieving high electrical 
conductivities60). 

When the CGCNN model is used to predict the band gaps of all 42,362 structures that compose the CSD-
42362 dataset, the lowest band gap material is predicted to be Ag(DCl)2 (DCl = 2,5-Cl,Cl-N,N′-
dicyanoquinone diamine) (refcode: OTARUX145), which is known from experiments to exhibit metallic 
character via organic radicals that connect the Ag(I) cations.145 The introduction of radical or redox-active 
linking units is a well-established strategy to increase the electrical conductivity of framework materials.60 
Although Ag(DCl)2 is arguably best described as a coordination polymer, one notable MOF in the CSD-
42362 dataset with a low predicted band gap and a radical-containing linker is 
(TTF)[{Rh2(CH3CO2)4}2TCNQ] (TTF = tetrathiafulvalene) (refcode: WAQMEJ146) – a pillared layer 
framework material built from Rh(II) paddlewheels and a TTF–TCNQ charge-transfer salt (Figure 7a). The 
HSE06-D3(BJ) band gap for this material is found to be particularly small with a value of 0.71 eV, which 
can be directly attributed to a reduced conduction band minimum (CBM) from the TTF and TCNQ 
components (Figure 7d). Furthermore, the valence band maximum (VBM) also exhibits hybridization 
between the 4d orbitals of Rh and 2p orbitals of C and N atoms belonging to the radical TCNQ linker, 
which is important for applications involving electron transport. In contrast, the most insulating structure 
in the CSD-42362 set based on CGCNN-predicted band gap is the non-porous coordination polymer 
Sr[C2H4(SO3)2] (refcode: GUTYAW147), which has an HSE06-D3(BJ) band gap of 8.36 eV (Figure S11). 

Consistent with prior experimental work,148 we also find several Fe-containing materials in the CSD-42362 
dataset with low band gaps, many of which have not been studied for their electronic properties. One 
representative example is Fe(sq)(bpee)(H2O)2 (bpee = 1,2-bis(4-pyridyl)ethylene; sq = squarate) (refcode: 
RAXNEK149), shown in Figure 7b, which has a band gap of 1.06 eV at the HSE06-D3(BJ) level of theory. 
The high-spin Fe(II) species in an octahedral crystal field with t2g

4eg
2 electron configuration dominate the 

VBM in this material, whereas the bpee linker (as opposed to the bridging sq species or inorganic node) 
make up the conduction band edge (Figure 7e). 
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Figure 7. Structures of a) (TTF)[{Rh2(CH3CO2)4}2TCNQ], b) Fe(sq)(bpee)(H2O)2, and c) Fe(bipytz)(Au(CN)2)2. 
Total and projected density of states (DOS) at the HSE06-D3(BJ) level of theory for d) 
(TTF)[{Rh2(CH3CO2)4}2TCNQ], e) Fe(sq)(bpee)(H2O)2, f) Fe(bipytz)(Au(CN)2)2 (high spin), and g) 
Fe(bipytz)(Au(CN)2)2 (low spin). The energy, 	, in eV is shown with respect to the Fermi level, 	�. DOS values above 
and below zero refer to the spin-up and spin-down channels, respectively. 
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Another noteworthy example is the three-dimensional porous framework material Fe(bipytz)(Au(CN)2)2 
(bipytz = 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine) (refcode: LOJLAZ150), shown in Figure 7c. At the HSE06-
D3(BJ) level of theory, we find that the high spin state exhibits a band gap of 1.17 eV (Figure 7f) – similar 
to that of Fe(sq)(bpee)(H2O)2. The projected density of states indicates that the Au(I) species are unrelated 
to the relatively low band gap; instead, the low band gap can be attributed to the combination of Fe(II) and 
bipytz linker. Fe(bipytz)(Au(CN)2)2 is known to be a spin-crossover framework (with a sharp spin transition 
around 290 K),150 and we find the low spin HSE06-D3(BJ) band gap to be 1.95 eV (Figure 7g), suggesting 
that the material may have tunable electronic properties as a function of temperature. For the low spin case, 
the VBM is composed of Fe 3d orbitals and the CBM is composed of N 2p orbitals. The reduction in band 
gap from low spin to high spin state can be rationalized on the basis of crystal field theory. In the high spin 
state, the Fe(II) centers have a t2g

4eg
2 electronic configuration, whereas in the low spin state they have a 

t2g
6eg

0 electron configuration. This occupation of the eg orbitals in the high spin state is directly related to 
the predicted ~0.8 eV reduction in the band gap compared to the low spin state. For both highlighted Fe-
containing frameworks, the band gaps are lower – or comparable in the low spin state for 
Fe(bipytz)(Au(CN)2) – to those of several iron-containing MOFs that have been studied for their conductive 
properties, such as Fe2(dobdc), Fe2(dsbdc) (H4dsbdc = 2,5-disulfhydrylbenzene-1,4-dicarboxylic acid), and 
Fe(bpz).99,148 Collectively, these findings demonstrate the practical utility of the QMOF database for 
identifying MOFs with targeted quantum-chemical properties. 

Conclusion 
In this work, we have developed a database of quantum-chemical properties for over 14,000 MOF structures 
(the “QMOF database”)59 via a high-throughput periodic DFT workflow. DFT-computed geometries, 
energies, band gaps, partial charges, spin densities, bond orders, and related electronic structure properties 
are made publicly available. We highlight how this database can be used to identify MOFs with targeted 
electronic structure properties and then develop several ML models to predict the DFT-computed band gaps 
using descriptors derived from the un-optimized MOF crystal structures. A crystal graph convolutional 
neural network (CGCNN)65 is found to achieve high predictive performance for this task, making it possible 
to circumvent large numbers of computationally expensive DFT calculations in future studies. While not 
as accurate as CGCNN for regression purposes, we show that both the smooth overlap of atomic positions 
(SOAP)112,113 and composition-based features109 can be used to discover otherwise subtle structure–property 
relationships in the QMOF database via unsupervised dimensionality reduction techniques. Finally, we 
show how top-performing ML models generated from the database of DFT-computed properties can be 
used to aid in the discovery of MOFs with desired quantum-chemical properties – in this case, discovering 
MOFs with low band gaps that could be suitable candidates to consider further for applications where 
electrical conductivity is necessary. 

Importantly, the QMOF database now makes it possible to pursue several important research directions that 
are reliant on a large database of quantum-chemical properties for MOFs beyond those directly discussed 
in this work. For instance, with the success of transfer learning,115,151 multi-task learning,152 and Δ-ML153 
methods in materials research, the QMOF database can serve as a valuable resource to increase the accuracy 
– and reduce the required training set size – for ML models tasked with the prediction of new MOF 
properties not present in the QMOF database. Since the output of any ML models will depend on the chosen 
density functional approximation, related transfer learning approaches may also prove useful in 
generalizing ML model predictions to other levels of theory using the PBE-D3(BJ) data as a starting point. 
Instead of relying on representation approaches that were originally designed for inorganic solids or small 
molecules, the QMOF database can also be used to develop better methods for the encoding of MOF 
structures in ML models. Even outside the area of high-throughput DFT screening, data mining, and ML, 
there are countless possible use-cases for the QMOF database. As just one example, the DFT-generated 
properties in the QMOF database could be used to develop and/or benchmark (semi-)empirical methods 
(e.g. tight binding approaches154 or molecular mechanics force fields155) with the hopes of achieving high 
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accuracies for MOF structures. Finally, we note that the QMOF database should be considered a living 
resource; several additions to the QMOF database are planned in the future, and we welcome the 
development of subsets, modifications, and supplements to the database that suit the diverse needs of the 
MOF community. With all this in mind, we anticipate that this database will accelerate the material design 
and discovery process while being specifically tailored for the chemical space of experimentally realized 
MOF structures. 
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