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Abstract

A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here,
we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards
desirable properties. This task can be framed as a machine translation problem in natural language processing,
where in our case, a molecule is translated into a molecule with optimized properties based on the SMILES
representation. Typically, chemists would use their intuition to suggest chemical transformations for the
starting molecule being optimized. A widely used strategy is the concept of matched molecular pairs where two
molecules differ by a single transformation. We seek to capture the chemist’s intuition from matched molecular
pairs using machine translation models. Specifically, the sequence-to-sequence model with attention
mechanism, and the Transformer model are employed to generate molecules with desirable properties. As a
proof of concept, three ADMET properties are optimized simultaneously: logD, solubility, and clearance, which
are important properties of a drug. Since desirable properties often vary from project to project, the
user-specified desirable property changes are incorporated into the input as an additional condition together
with the starting molecules being optimized. Thus, the models can be guided to generate molecules satisfying
the desirable properties. Additionally, we compare the two machine translation models based on the SMILES
representation, with a graph-to-graph translation model HierG2G, which has shown the state-of-the-art
performance in molecular optimization. Our results show that the Transformer can generate more molecules
with desirable properties by making small modifications to the given starting molecules, which can be intuitive
to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.

Keywords: molecular optimization; matched molecular pairs; seq2seq; transformer; recurrent neural networks;
ADMET

Introduction
A main challenge in drug discovery is finding molecules
with desirable properties. A drug requires a balance
of multiple properties, e.g. physicochemical properties,
ADMET (absorption, distribution, metabolism, elim-
ination and toxicity) properties, safety and potency
against its target. To find such a drug in the extremely
large chemical space (i.e. 1023-1060) [1] is challenging.
It is often that a promising molecule needs to be im-
proved to achieve a balance of multiple properties. This
problem is known as molecular optimization. Tradi-
tionally, chemists would use their knowledge, experi-
ence and intuition [2] to apply some chemical transfor-
mations to the promising molecule. In particular, the
matched molecular pair (MMP) analysis [3, 4]—which
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compares the properties of two molecules that differ
only by a single chemical transformation—has been
widely used as a strategy by medicinal chemists to sup-
port molecular optimization [5, 6, 7]. Typically, simi-
larity, transferability, and linear analoguing [8, 9, 10]
are assumed and applied by the chemists to suggest
transformations to improve the promising molecule.
However, they are not generally true, and become more
problematic and difficult to apply when optimizing
multiple properties simultaneously.

To address these shortcomings, this work uses deep
learning models to learn the transformations involved
in molecular optimization directly from MMPs. Re-
cently, deep generative models, e.g. recurrent neural
networks (RNNs) [11, 12], variational autoencoders
(VAEs) [13, 14, 15, 16, 17, 18], and generative ad-
versarial networks (GANs) [19, 20, 21, 22], coupled
with reinforcement learning [23, 19, 22, 20], adver-
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sarial training [24, 25, 26], transfer learning [11], and
different optimization techniques [13, 27], have been
investigated to generate molecules towards desirable
properties. Additionally, conditional generative mod-
els [15, 18, 28, 29] have been developed where the
desirable properties are incorporated as condition to
directly control the generating process. Another ap-
proach is to use reinforcement learning to modify a
molecule directly based on molecular graph represen-
tation [30, 31]. However, all the above methods are
not direct and intuitive methods for molecular opti-
mization. When given a promising molecule and the
desirable properties, the direct way would be applying
intuitive chemical transformations to achieve the de-
sirable properties, while the above methods ignore the
domain knowledge of chemical transformations.

In this paper, we focus on utilizing chemical trans-
formations (i.e. MMPs), which reflect the chemist’s
intuition to optimize a promising molecule. In partic-
ular, given a starting molecule and the desirable prop-
erty changes, the goal is to generate molecules, which
(i) have the desirable properties and (ii) are struc-
turally similar to the starting molecule. As a proof of
concept, we focus on optimizing three ADMET prop-
erties simultaneously: logD, solubility and clearance,
which are important properties of a drug. LogD mea-
sures the hydrophobicity of a molecule, which influ-
ences the molecule’s potency, metabolism and phar-
macokinetic properties. Solubility influences absorp-
tion and bioavailability. Clearance is a measure of the
capacity of drug removal by various organs, which is a
key parameter to understand metabolic stability and
dosing.

The problem of molecular optimization can be
framed as a machine translation problem [32] in natu-
ral language processing (NLP), where a text is trans-
lated from one language to another. For molecular
optimization, an input starting molecule is translated
into a target molecule with optimized properties based
on the simplified molecular-input line-entry system
(SMILES) representation. The sequence-to-sequence
(Seq2Seq) model [33] with attention mechanism [34]
has been developed and applied in machine translation
successfully. Recently, the Transformer, which only
uses attention, has been shown to achieve the state-
of-the-art (SOTA) performance in machine transla-
tion [35], and has become the basic building block of
most SOTA architectures in NLP. Lately, it has been
applied to predict chemical reactions and achieved
SOTA performance (above 90% accuracy) on a com-
mon benchmark data set [36]. This motivated us to
investigate the Seq2Seq with attention and the Trans-
former for molecular optimization tasks in this work.

The models are trained on MMPs extracted from
ChEMBL. Since it is difficult to obtain the experimen-
tal property values for molecules in ChEMBL, we built
a property prediction model for each ADMET prop-
erty based on in-house experimental data. Then the
models are applied on the extracted ChEMBL MMPs.
In order to generate molecules towards customized de-
sirable properties, the desirable property changes are
concatenated with the source molecules’ SMILES, as
input to the models.

The most relevant work to this paper are Jin et
al. [24, 37, 38], who view molecular optimization
as a graph-to-graph translation problem. A varia-
tional junction tree encoder-decoder (VJTNN) [24]
was trained on a set of MMPs, and achieved the
SOTA performance in molecular optimization. Based
on VJTNN, Jin et al. [37] proposed a multi-resolution,
hierarchically coupled encoder-decoder for graph-to-
graph translation, and extended it to be conditioned
on desirable property criteria, to allow for different
user-specified property criteria and multi-property op-
timization. Recently, Jin et al. [38] proposed a new
hierarchical graph encoder-decoder (HierG2G) by uti-
lizing graph motifs as building blocks, which are fre-
quently occurring substructures, to facilitate generat-
ing large molecules. It was also extended to graph-
to-graph translation for molecular optimization, and
outperformed VJTNN.

All the above models are based on molecular graph
representations, while our models are based on SMILES
representations and utilize the SOTA machine transla-
tion models, the Seq2Seq with attention and the Trans-
former. Although Jin et al. [24, 37, 38] compared their
models with Seq2Seq and showed that they performed
better, the Seq2Seq used only one one-layer long short-
term memory (LSTM) in the encoder and decoder,
while we use multiple layers. Additionally, the Trans-
former, has not been explored in molecular optimiza-
tion. Therefore, we conduct a comparison over these
three models, Seq2Seq with attention, Transformer
and HierG2G. For HierG2G [38], the conditional ex-
tension in [37] is applied to support customized prop-
erty optimization and multi-property optimization.

Methods
Molecule Representation and Property Representation

The models are trained on a set of MMPs together
with the property changes between source and tar-
get molecules. Figure 1 shows an example of a MMP,
and the properties of source and target molecules. The
SMILES representation of molecules [39], as a string-
based representation, is used in our study to facilitate
the use of machine translation models from NLP.
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Figure 1 An example of a matched molecular pair and the
properties.

Figure 2 Property change encoding

Considering practical desirable criteria and exper-
imental errors, solubility and clearance changes are
encoded using three categories, while the change in
logD is encoded into range intervals, with each inter-
val length=0.2 except for the two open intervals on the
sides (Figure 2). For clearance, human liver microsome
intrinsic clearance (HLM CLint) is used in this work,
and the thresholds for low/high solubility and low/high
CLint are 50 µM and 20 µL/min/mg respectively (1.7
and 1.3 respectively in log10 scale).

In order to translate source molecules into tar-
get molecules with customized properties, the en-
coded property changes are concatenated with the
SMILES representation of starting molecules as input
sequences for machine translation models, while the
target sequences are the SMILES representation of tar-
get molecules. Figure 3 shows an example of source and
target sequences which are fed into machine transla-
tion models during training.

Given a set of MMPs {(X,Y, Z)} where X repre-
sents source molecule, Y represents target molecule,
and Z represents the property change between source
molecule X and target molecule Y , the Seq2Seq with

Figure 3 An example of source and target sequences fed into
Seq2Seq or Transformer during training

attention and the Transformer will learn a mapping
(X,Z) ∈ X ×Z → Y ∈ Y during training where X ×Z
represents the input space and Y represents the target
space. During testing, given a new (X,Z) ∈ X × Z,
the models will be expected to generate a diverse set
of target molecules with desirable properties.

Seq2Seq with Attention
The Seq2Seq [33] is a framework that maps an input

sequence to an output sequence, which has wide appli-
cations, such as machine translation, text summariza-
tion, chatbot, question answering system, and image
captioning. In particular, it has brought a major break-
through in neural machine translation. The Seq2Seq is
based on an encoder-decoder architecture using RNN.
The encoder takes an input sequence, and compresses
it into a context vector, defined by the hidden state in
the last time step of encoder, which captures the in-
formation of the whole input sequence. Specifically, at
each time step in the encoder, the RNN takes a word
from the input sequence and a hidden state from the
previous time step, and output a hidden state. The
hidden state memorizes the words seen earlier and is
updated at each time step, and the one from the last
time step is called context vector, which captures the
information of the whole input sequence. The context
vector is then passed to the decoder to predict an out-
put sequence. The drawback of the Seq2Seq is that it
becomes difficult to deal with long sequence because
the encoder has to compress the whole sequence into
a single context vector in the last time step. To over-
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Figure 4 The Seq2Seq with attention architecture for molecular optimization.

come this problem, attention mechanism [34] was in-
troduced, which utilizes the hidden states at each time
step from the encoder. It enables the decoder to focus
on specific tokens in the input sequence when predict-
ing each token in the output sequence.

In this paper, the Seq2Seq with attention is ex-
plored for molecular optimization (Seq2Seq refers to
Seq2Seq with attention in the rest of this paper).
First, all the source and target SMILES in our dataset
were tokenized to construct a vocabulary, which con-
tains all the possible tokens. Two special symbols
were added, start and end, representing the start
and end of a sequence respectively. In order to guide

the model to generate molecules with different spec-
ified property constraints, the property changes be-
tween source and target molecule were concatenated
with the source SMILES as the input sequence to
Seq2Seq as illustrated in Figure 3. Therefore, each pos-
sible single property change was treated as a token
(e.g. LogD change (-1.1,-0.9]) and added to the vocab-
ulary.

The model architecture is shown in Figure 4. It con-
sists of an encoder RNN and an attention decoder
RNN, with LSTM cells. The encoder consists of an
embedding layer of 256 dimensions and 5 stacked bidi-
rectional LSTM layers with hidden size of 512 and
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dropout of 0.3. The embedding layer converts the in-
put token at each time step into a continuous repre-
sentation, which is then passed through the stacked
bidirectional LSTM. At the last time step, the LSTM
ouputs for both directions are summed and passed to
the decoder. Similarly, the LSTM hidden states at each
time step for both directions are summed and used to
compute the attention with the hidden state from the
current time step of decoder.

The decoder consists of an embedding layer of 256
dimensions and 5 stacked unidirectional LSTM layers
with hidden size of 512 and dropout of 0.3. Addition-
ally, it includes an attention layer. The initial input
token is the start token. At each time step in decod-
ing, the attention layer computes the attention weights
which captures the importance of each source token for
predicting the next target token. The attention weights
are computed by the scaled dot product between the
the hidden states at all time steps in the encoder and
the hidden state at the current time step in the de-
coder, followed by a softmax function. Then a context
vector is obtained by a weighted sum of the encoder
hidden states at all time step. The context vector cap-
tures relevant information from every source token to
help predict the next target token. It is concatenated
with the hidden state at the current time step in de-
coder and then passed through a linear layer with a
hyperbolic tangent activation function. The output is
lastly passed through a linear layer to reshape to the
vocabulary size, and a softmax activation function is
applied to obtain the probabilities of each token in the
vocabulary.

The model is trained to predict the next token of the
target sequence, given previous tokens of the target
sequence conditioned on the input sequence. In par-
ticular, teacher forcing, as a commonly used training
technique for aiding efficient training of RNN, is used
in the decoder, where the ground-truth target token in
the training set at the current time step rather than
the output generated by the model, is used as input
for the next time step. Specifically, given a training
set, D = {(xi,yi)} where xi and yi represents the
ith source sequence and target sequence respectively
in the dataset D, we find θ to minimize negative log
likelihood (NLL):

NLL(θ) = −
∑
i∈D

|yi|∑
t=1

log P (yi,t | yi,1:t−1,xi; θ) (1)

where θ represents all the parameters in the model,
yi,t represents the tth token of yi.

Model training and inferencing was performed on a
NVIDIA GeForce RTX 2080 Ti. The Adam optimizer

with learning rate 0.0001 and a batch size of 128 were
used. The hyperparameters were tuned based on previ-
ous experience [35, 33]. After training, when using the
model for generation, the ground-truth target sequence
is not available and the output sequence is generated
by sampling one token at a time from the distribution
over the vocabulary until the end token is sampled.
Specifically, multinomial sampling is used to generate
multiple molecules for a given input sequence.

Transformer Architecture
Although the Seq2Seq with attention has achieved

great success in machine translation, it is still chal-
lenging to deal with long-range dependencies, and the
sequential nature of the RNN prevents parallelization.
The Transformer [35] was proposed to discard the
RNN and rely only on attention mechanism instead.
In this paper, the Transformer architecture illustrated
graphically in [35] is explored for molecular optimiza-
tion, as shown in Figure 5. The Transformer consists
of an encoder and a decoder. First, a vocabulary is
constructed the same way as the Seq2Seq with atten-
tion. Before feeding the input sequence to the encoder,
each token in the input sequence is converted into an
embedding vector, followed by a positional encoding,
which gives the embeddings order information.
Encoder The encoder consists of a stack of N iden-

tical encoder layers. Each encoder layer takes a list of
input encodings from the previous encoder layer (list
size is determined by the input sequence length) as in-
put, and generates a list of output encodings that pass
through the next layer. The input for the first encoder
layer is the embedding of each token in the input se-
quence. Each encoder layer has two sub-layers: a multi-
head self-attention sub-layer and a position-wise fully
connected feed-forward network sub-layer. A residual
connection is used around each of the two sub-layers,
followed by layer normalization.

In the first encoder layer, for each positional token
embedding at position t in the input sequence, it first
flows through the multi-head self-attention sub-layer,
which helps the encoder focus on relevant tokens in
the input sequence to better encode it. Specifically,
three vectors, Q (query), K (key), V (value) are first
created from the input token embedding by multiply-
ing with three weight matrices that are learned during
training. These three vectors are used to compute the
self-attention score for the input token at position t,
which determines the importance of all the tokens in
the input sentence for encoding the input token be-
ing processed. The score is computed by the scaled
dot-product between Q of the input token at t being
processed and K of each token in the input sequence,
followed by a softmax function. Then a weighted sum
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Figure 5 The Transformer architecture (following Vaswani et al. [35]) for molecular optimization

of the value vectors of all tokens in the input sequence
is obtained as the attention vector for the token at po-
sition t being processed. This process is for obtaining
a single head attention. Multi-head attention [35] was
introduced to help to focus on the input from differ-
ent perspectives. Specifically, multiple weight matrices
are learned to project the input embedding into mul-
tiple sets of Q, K, V, which are then used to derive
multiple attention vectors. These attention vectors are
then concatenated and projected to produce the fi-
nal output of the multi-head self-attention sub-layer,
which is then passed through the feed-forward neural
network sub-layer. The output from the feed-forward
neural network sub-layer is fed to the next encoder
layer.
Decoder Similar to the encoder, the decoder con-

sists of a stack of N identical decoder layers. Each de-
coder layer has three sub-layers, masked multi-head
self-attention sub-layer, fully connected feed-forward
network sub-layer, and encoder-decoder multi-head at-
tention sub-layer. The decoder operates in a similar
fashion to the encoder, except that the attention differ
from those in encoder in the following: (i) while self-
-attention in encoder allows each position to attend
all positions from previous encoder layer, self-attention
in decoder only allows each position to attend earlier

positions by masking the future positions. (ii) An ad-
ditional encoder-decoder multi-head attention was in-
troduced to help the decoder focus on specific parts
of the input sequence, which is similar to the role of
encoder-decoder attention mechanism in Seq2Seq with
attention. Specifically, the output of the top encoder
layer is transformed into a set of vectors K and V,
which is used by each encoder-decoder multi-head at-
tention sub-layer.

Model training and inferencing was performed on a
NVIDIA Tesla K80. The hyperparameters were tuned,
and most remained the same as [35], except that the in-
put and output encoding dimension was changed from
512 to 256, and label smoothing was changed from 0.1
to 0. Similar to Seq2Seq with attention, the model was
trained using teacher forcing, and multinomial sam-
pling was used to generate multiple molecules for a
given input sequence.

Data Preparation
The models are trained on a set of MMPs extracted
from ChEMBL together with the property changes be-
tween the source and target molecules.

Constructing Matched Molecular Pairs
The matched molecular pairs (including reverse trans-
formations) are extracted from ChEMBL using an
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open-source matched molecular pair tool [40]. All
the molecules were standardized using MolVS [41].
There are 9,927,876 pairs considering the following
constraints,

• the number of heavy atoms of the core < 50
• the number of heavy atoms in R group < 13
• the ratio of heavy atoms in the R group to the

molecule Rgroup < 0.33
• the number of H-bond donors in R group < 3
• the number of H-bond acceptors in R group < 3
• AstraZeneca’s AZFilter=“CORE” [42] to filter

out bad-quality compounds
• each molecule’s property values are within 3 stan-

dard deviations of all molecules’ property values

2% from the full 9,927,876 pairs are randomly sampled
for comparing three models because HierG2G does not
scale well on large data. We split it into 90% as train-
ing and validation, and 10% as test, and further split
the 90% into 90% as training and 10% as validation,
which results in 160,831 training, 17,871 validation and
19,856 test.

ADMET Property Prediction Model

The property prediction models are built based on
message passing neural network [43]. They are used for
constructing data during training and also for evaluat-
ing the generated molecules during testing. In partic-
ular, in-house experimental data are used for building
property prediction models. Table 1 shows the train
and test size, root-mean-square error (RMSE), nor-
malized RMSE (NRMSE) and R2 for each property
prediction model. More results on the experimental
properties and predicted properties can be found in
Figure S1 in Supplementary.

Table 1 Property prediction model performance

LogD Solubility HLM CLint

Train size 170,337 184,883 144,300
Train RMSE 0.304 0.485 0.264
Train NRMSE 0.041 0.079 0.083
Train R2 0.935 0.774 0.749

Test size 18,927 20,543 16,034
Test RMSE 0.395 0.602 0.350
Test NRMSE 0.054 0.104 0.113
Test R2 0.892 0.658 0.557

Experimental Settings
Test Sets

Each test sample (X,Z) consists of two parts, the
starting molecule being optimized X and the desir-
able property change Z, which therefore determines
the input data space X . In order to evaluate our mod-
els comprehensively, three test sets are constructed:

• Test-Original is the original test set {(X,Z)test}
(10% of dataset) with 19,856 samples, where the
desirable property changes are determined by the
MMPs in the test set. It has the same input space
as the training set, which is typical in machine
learning models. But note that each test sample
(X,Z)test has not been unseen in the training set.
This test set is used to test if our models can gen-
eralize well on unseen different combinations of X
and Z in the input space X × Z.

• Test-Molecule is a subset of Test-Original with
12,721 samples where the starting molecules are
not seen in the training set, {(X,Z)test|X /∈
Xtrain} where Xtrain represents the set of source
molecules in the training set. This set is used to
test if our models can generalize well on unseen
(X,Z) with further constraint of unseen starting
molecules.

• Test-Property consists of 7,813 starting molecules
with low solubility, high CLint, and logD be-
tween 2 and 4.4 in Test-Original. We are in-
terested in optimizing the starting molecules
to achieve lower logD, high solubility and low
CLint. The desirable target logD is further con-
strained to be between 1.0 and 3.4 because the
in-house experimental logD lie mostly in this
range. The desirable property change for all
starting molecules is set to LogD change =(-
1.1,-0.9], Solubility low→high, CLint high→low.
Therefore, the test set can be represented by
{(X,Z}|(X ∈ Xtest) ∧ (solubility(X) = low) ∧
(CLint(X) = high)∧(logD(X) ∈ [2.0, 4.4])∧(Z =
LogD change (−1.1,−0.9]Solubility low → high
CLint high→ low)}. This test set is used to test
if our model can generalize well on a particular
property change we are interested in.

Evaluation Metrics
Aligning with our goal, the models are evaluated in
two main aspects,
• Satisfying all three desirable properties.

For each starting molecule in the test set, 10
unique valid molecules, which are not the same
as the starting molecule, were generated, and the
number of molecules satisfying all three desirable
properties out of the 10 generated molecules was
counted. The ADMET property prediction model
described earlier is used to compute the properties
of generated molecules. Additionally, the model
error (Test RMSE) in Table 1 is considered to de-
termine if a generated molecule satisfies its desir-
able properties. For logD, the generated molecules
with |logDgenerated− logD target| ≤ 0.4 will be con-
sidered as satisfying desirable logD constraint. For
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Figure 6 Source vs. target molecule’s properties and their distributions on the training set (solubility and CLint are in log10 scale)

solubility, the threshold for low and high will be
a range considering the model error, i.e. 1.7±0.6.
The generated molecules with solubility ≤ 2.3 will
be considered as low, and those with solubility ≥
1.1 will be considered as high. Similarly, for CLint,
the threshold is 1.3±0.35.
• Generation of MMPs. The MMP analysis

was performed on the starting molecules and
generated molecules to check if the generated
molecules have single transformation to the start-
ing molecules. Furthermore, the ratio of heavy
atoms in the R group to the generated molecule
Rgroup < 0.33 and Rgroup < 0.50 are examined.

Baseline
We compare our models, Seq2Seq and Transformer
with the baseline HierG2G. HierG2G training and in-
ferencing was performed on a NVIDIA Tesla V100.
The hyperparameters were tuned, and most remained
the same as [38], except that beta was changed from
0.3 to 0.6.

K-Sample Anderson–Darling Test
The K-Sample Anderson–Darling Test [44] is a non-
parametric test for testing if k-samples are drawn from
the same population without having to specify the dis-
tribution function of that population. It is applicable
to continuous and discrete data. This test is used to
compare different models’ performance in terms of sat-
isfying all three desirable properties.

Results and Discussion
Data Statistics
Figure 6 shows the source and target molecule’s prop-
erties distribution on the training set. The property
distribution for the source molecules is the same as
the one for the target molecules because reverse trans-
formations are included in the data set. Figure 7 shows

(a) Data distribution over logD and solubility change

(b) Data distribution over logD and CLint change

(c) Data distribution over solubility and
CLint change

Figure 7 Data distribution over pairwise property changes on
the training set where the circle size corresponds to counts. In
(a) and (b), each tick x in horizontal axis represents
(x− 0.1, x+ 0.1], e.g. 0 represents (−0.1, 0.1]. For ease of
presentation, x < −1.6 and x > 1.6 are not shown here.

the training data distribution over pairwise property
changes where most MMPs result in no change in
properties. However, such MMPs are still useful be-
cause we could generate molecules with same proper-
ties, but different structures. It would also be useful
when it is desired to keep some properties unchanged
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and change some other properties. Additionally, it can
be seen from Figure 7a and Figure 7b that solubility
tends to be negatively correlated with logD, and CLint
tends to be positively correlated with logD.

Figure 10a shows the top 20 most frequently occur-
ring transformations on the training set, which are en-
coded as SMIRKS [40]. The most frequently occurring
transformation is [*:1][H]>>[*:1]C where a hydrogen
is replaced by a methyl group and its reverse trans-
formation. Note that they do not occur with exactly
same frequency because we sampled 2% from the full
MMPs. Table 2 shows the statistics of transformations
on the training set where around 51.9% of transforma-
tions only occur once. The top 20 most frequently oc-
curring transformation only accounts for around 8.2%
of the training set, which means there are no dominant
transformations.

Table 2 Transformation statistics on the training set

Percentage of unique transformations 59.4%
Percentage of transformations that occur only once 51.9%
Percentage of the most frequently occurring
transformation

1.2%

Percentage of the top 20 most frequently occurring
transformations

8.2%

Unconditional Models vs. Conditional Models
This set of experiment compares conditional models—
which use source molecule and property criteria as
input, with unconditional models—which use only
source molecule as input. For each starting molecule
in the test set, 10 unique valid molecules, which are
not the same as the starting molecules, were gener-
ated. Figure 8 shows the performance of unconditional
Transformer and conditional Transformer in terms of
satisfying all three desirable properties on three test
sets. K-Sample Anderson–Darling Test was performed,
and conditional Transformer was found to statistically
outperform unconditional Transformer. In particular,
50% of the starting molecules in Test-Original and
Test-Molecule have at least 6 molecules with desir-
able properties out of the 10 generated molecules using
conditional Transformer, while the number dropped
to 3 using unconditional Transformer. Similar results
have been found on the comparison of unconditional
Seq2Seq and conditional Seq2Seq (Figure S2).

Discussion
Why does conditional models perform better than un-
conditional models? It is shown that using prop-
erty criteria as additional input can help generat-
ing molecules with desirable properties. One reason is
that unconditional models are trained only on MMPs
(X,Y ) without property changes Z, with only source

(a) Test-Original

(b) Test-Molecule

(c) Test-Property

Figure 8 Number of generated molecules with desirable
properties per molecule using unconditional Transformer and
conditional Transformer on three test sets. Conditional
Transformer outperforms unconditional Transformer using
K-Sample Anderson–Darling Test at significance level of 0.1%.

molecule X as input and target molecule Y as output.
In this case, given a source molecule, it can be mapped
to different target molecules with different properties
because there could be multiple target molecules that
are MMP with the source molecule in the training set.
However, when using conditional models, the property
change Z between source molecule and target molecule
is used as part of input, which guides the model to gen-
erate molecules with desirable properties.

What do the results on three test sets convey? The
performance on Test-Original shows that conditional
models can generalize well on the unseen combination
of starting molecules and desirable property changes,
while the performance on Test-Molecule shows condi-
tional models can generalize well on the combination
of unseen starting molecules and seen/unseen property
changes. On Test-Property, both unconditional and
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conditional models perform worse, especially uncondi-
tional models. Note that Test-Property is challenging
because only 344 (0.2%) samples out of 160,831 train-
ing samples have the particular change. Even in this
case, conditional models still perform well with 50%
of starting molecules having at least 5 molecules with
desirable properties out of the 10 generated molecules.

Model Comparison for Conditional Models
This set of experiment compares the conditional ver-
sion of the three models: Seq2Seq, Transformer and
HierG2G.

Satisfying Multiple Desirable Properties
For each starting molecule in the three test sets, 10
unique valid molecules, which are not the same as
starting molecules, were generated. Figure 9 shows the
performance of the Seq2Seq, the Transformer and Hi-
erG2G in terms of satisfying multiple desirable prop-
erties on three test sets. The Transformer outper-
forms the Seq2Seq and HierG2G on all the three test
sets, with more generated molecules satisfying desir-
able properties.

Generation of MMPs
For each starting molecule in the test set and the
10 generated molecules, MMP analysis [40] was per-
formed between the starting molecule and each gener-
ated molecule. Table 3 shows the percentage of gener-
ated molecules that are MMPs with their correspond-
ing starting molecules and the ratio of heavy atoms in
R group to the generated molecule Rgroup < 0.33 and
Rgroup < 0.50. Additionally, among all the transfor-
mations results from Rgroup < 0.33, the percentage of
transformations that are seen in the training set is re-
ported. It can be seen that the Transformer generates
much more MMPs than the Seq2Seq and HierG2G for
all the three test sets.
Discussion The Transformer generated much more

molecules with single transformation to the starting
molecules. This mimics the chemist’s strategy that ap-
plying single transformations when optimizing a start-
ing molecule. Additionally, looking at “in Train”, all
three models have learned to use not only the exist-
ing transformations in the training set but also novel
transformations that have not been seen in the train-
ing set, to optimize novel combinations of starting
molecules and specified desirable properties. Note that
the MMP concept is used as a general concept for cap-
turing the chemist’s intuition. This does not imply that
the MMP concept is the only viable and solely strat-
egy applied, but nevertheless due to its simplicity of
linear analoguing it is commonly used. Furthermore,
there are several well established algorithms [40] to
access and analyze MMPs readily supporting struc-
ture–property relationship analysis.

(a) Test-Original

(b) Test-Molecule

(c) Test-Property

Figure 9 Number of molecules with desirable properties
among 10 generated molecules per molecule using conditional
version of HierG2G, Seq2Seq and Transformer on three test
sets. The difference between each two is significant using
K-Sample Anderson–Darling test at significance level of 0.1%.

Top 20 most frequently occurring transformations gen-
erated by Transformer We further check the top 20
most frequently occurring transformations among the
generated molecules from the Transformer, and com-
pare them with the ones on the training set, as shown
in Figure 10. Most of the generated transformations
on Test-Original and Test-Molecule are very similar to
the ones on the training set.

Discussion The result indicates that the Trans-
former model has captured the transformations on the
training set. The generated transformations on Test-
Property are more different from the ones on the train-
ing set compared with the other two test sets. It is
reasonable because the input space on Test-Property
is very different from the one on the training set due to
the constraint of particular property change. The gen-
erated transformations on Test-Property are biased to-
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Table 3 Comparison of the percentage of generated molecules from HierG2G, Seq2Seq and Transformer that are MMPs with starting
molecules. Among all the generated molecules for each test set, MMP 0.33 and MMP 0.50 represent the percentage of generated
molecules that are MMPs with their corresponding starting molecules and the ratio of heavy atoms in R group to the generated
molecule Rgroup < 0.33 and Rgroup < 0.50 respectively. Among all the transformations results from MMP 0.33, in Train represents the
percentage of transformations that are seen in the training set.

HierG2G Seq2Seq Transformer

MMP 0.33 MMP 0.50 in Train MMP 0.33 MMP 0.50 in Train MMP 0.33 MMP 0.50 in Train

Test-Original 52.50% 61.19% 45.46% 71.98% 81.01% 44.01% 89.98% 96.12% 47.60%
Test-Molecule 25.87% 30.98% 54.99% 65.84% 76.00% 52.40% 88.12% 94.94% 55.27%
Test-Property 13.04% 15.20% 41.49% 70.57% 79.45% 38.00% 89.13% 95.53% 36.72%

Table 4 Comparison of the percentage of generated desirable molecules from HierG2G, Seq2Seq and Transformer that are MMPs with
starting molecules. Desirable represents the percentage of molecules with desirable properties among all the generated molecules.
Among all these generated molecules with desirable properties for each test set, MMP 0.33 D and MMP 0.50 D represent the
percentage of generated molecules that are MMPs with their corresponding starting molecules and the ratio of heavy atoms in R group
to the generated molecule Rgroup < 0.33 and Rgroup < 0.50 respectively.

HierG2G Seq2Seq Transformer

Desirable
MMP
0.33 D

MMP
0.50 D

Desirable
MMP
0.33 D

MMP
0.50 D

Desirable
MMP
0.33 D

MMP
0.50 D

Test-Original 38.66% 62.94% 70.77% 47.74% 78.88% 86.62% 55.67% 92.41% 97.41%
Test-Molecule 37.62% 56.81% 65.44% 45.91% 73.32% 82.32% 54.48% 90.96% 96.54%
Test-Property 34.90% 55.74% 63.30% 39.73% 72.95% 81.68% 49.14% 90.01% 96.36%

(a) Train (b) Test-Original

(c) Test-Molecule (d) Test-Property

Figure 10 Top 20 most frequently occurring transformations
on (a) Training set, and the top 20 most frequently occurring
transformations among generated molecules from Transformer
on (b) Test-Original (c) Test-Molecule and (d) Test-Property.

wards generating molecules with that particular prop-

erty change.

MMPs within Generated Desirable Molecules
We take a closer look at the generated molecules with
desirable properties from three models, and examine
the percentage of MMPs (Table 4). The Transformer
can generate much more desirable molecules than Hi-
erG2G and Seq2Seq, with 15%-17%, and 8%-10% ab-
solute improvement respectively. Within the generated
molecules with desirable properties, above 90% of the
desirable molecules generated from the Transformer
make single transformation to starting molecules and
the ratio of the change (R group) compared to the gen-
erated molecule is no more than 1/3, while the num-
ber dropped significantly to around 73% and above
35% for Seq2Seq and HierG2G respectively. Clearly,
the Transformer can generate molecules with desirable
properties by making small modifications to starting
molecules as a chemist would do.

Varying Performance of Three Models
Although the Transformer outperforms the Seq2Seq
and HierG2G overall, it is not clear if it performs best
for each test starting molecule. Therefore, we are in-
terested in the following questions, which will help us
understand if it will be beneficial to use all three mod-
els together.
1 Does the Transformer always perform best for

each starting molecules in the test set?
2 Are the generated molecules from the three mod-

els the same or different?
To answer the first question, we examine if one

model always generates more desirable molecules for
each starting molecule than the other two models.
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(a) Transformer vs. Seq2Seq (b) Transformer vs. HierG2G (c) Seq2Seq vs. HierG2G

Figure 11 Pairwise comparison of HierG2G, Seq2Seq and Transformer on the number of molecules with desirable properties out of
10 generated molecules per molecule on Test-Original. The x axis and y axis represent the number of molecules with desirable
properties out of 10 generated molecules. If two models always generate the same number of desirable molecules for each same
starting molecule, all points will lie on the diagonal line.

Table 5 Among all the starting molecules in Test-Original, the
percentage of starting molecules for which each model generates
either less or more desirable molecules when compared with the
other two models.

less than the others more than the others

HierG2G 47.43% 10.23%
Seq2Seq 20.99% 21.94%
Transformer 9.52% 45.37%

Figure 11 shows the pairwise comparison of three
models on the number of molecules with desirable
properties out of 10 generated molecules on Test-
Original. The Transformer generated more desirable
molecules than the Seq2Seq and HierG2G for most
starting molecules, with those dots lie below the di-
agonal line in Figure 11a and Figure 11b. However,
there are still some starting molecules where the Trans-
former generated less desirable molecules. Table 5
shows the percentage of starting molecules for which
each model generates either less or more desirable
molecules compared with the other two models on
Test-Original. For 45.37% of the starting molecules on
Test-Original, the Transformer generated more desir-
able molecules than HierG2G and Seq2Seq. But there
are 10.23%+21.94%=32.17% of the starting molecules,
where either HierG2G or Seq2Seq generated more de-
sirable molecules. Therefore, it could be beneficial to
use all three models together.

The second question was examined to see if the
three models can generate diverse desirable molecules.
For each starting molecule in Test-Original, we com-
pute the overlapping and non-overlapping set of gener-
ated desirable molecules from HierG2G, Seq2Seq and
Transformer, and sum the numbers over all starting
molecules, which results in the Venn diagram in Fig-
ure 12. First, the Transformer generated more de-
sirable molecules than the Seq2Seq and HierG2G.
Second, there is not much overlap of the generated

Figure 12 The overlap of the generated molecules with
desirable properties from HierG2G, Seq2Seq and Transformer
given each starting molecule in Test-Original. Each circle
represents the set of molecules with desirable properties for
each model. Transformer generated more desirable molecules
than HierG2G and Seq2Seq, with the biggest circle. Most
generated molecules with desirable properties from three
models given the same starting molecule are different from
each other, with only 3,276 identical molecules. Transformer
and Seq2Seq have more identical desirable molecules (14,082)
compared with (HierG2G, Seq2Seq) and (Transformer,
HierG2G).

desirable molecules among the three models. Third,
the Transformer and Seq2Seq generate identical de-
sirable molecules more frequently than the other two
pairs. The reason might be that the Transformer and
Seq2Seq are both based on SMILES representation
and have a more similar working mechanism compared
to HierG2G which is based on graph representation.
Overall, the three models can generate diversified sets
of molecules with desirable properties, which encour-
ages us to use them in an ensemble way to enrich the
generated desirable molecules.

Figure 13 shows an example of the diverse molecules
with desirable properties generated by HierG2G,
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(a) Starting molecule and desirable properties

(b) HierG2G

(c) Seq2Seq

(d) Transformer

Figure 13 Example of diverse molecules with desirable properties generated by (b) HierG2G (c) Seq2Seq and (d) Transformer. The
changes in the generated molecules compared with starting molecule are highlighted in red. The last molecule outlined by red
rectangle in (c) is not a desirable molecule because of logD. Seq2Seq and Transformer have one molecule overlapping outlined by
black rectangle.

Seq2Seq and Transformer. Given the starting molecule

[45] and desirable properties in Figure 13a, the three

models generate diverse molecules with desirable prop-

erties (except the molecule outlined by the red rect-

angle in Figure 13c) with different small modifications

to the starting molecule. The Seq2Seq and the Trans-

former have one molecule overlapping as outlined by

the black rectangles. Overall, we see the diverse set of

desirable molecules that the three models generated.

Conclusions and Future Work
The molecular optimization problem was framed as a
machine translation problem where a given molecule
is translated into a molecule with optimized proper-
ties based on the SMILES representation. Two ma-
chine translation models, the Seq2Seq with attention
and the Transformer have been investigated to gen-
erate molecules with desirable properties by captur-
ing the chemist’s intuition, i.e. MMPs. The property
changes have been incorporated into the input (start-
ing molecule being optimized) as condition to guide
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the models to generate molecules with different com-
binations of property constraints. Given a starting
molecule and user-specified properties, our models can
generate molecules satisfying multiple property con-
straints which are structurally similar to the starting
molecule. Specifically, for the Transformer, around half
of all the generated molecules satisfied all target prop-
erties, and within the generated molecules with de-
sirable properties, around 90% had a single transfor-
mation with respect to the starting molecules and no
more than 1/3 change.

This can be beneficial to lead optimization, where a
promising molecule needs to be improved to achieve a
balance of multiple properties. The small modifications
to the starting molecule, which mimic the chemist’s
strategy, would be intuitive for chemists and provide
insights for designing new molecules. Our deep learn-
ing models start from capturing the chemist’s intuition
from MMPs, but they go beyond the working assump-
tions of chemists, e.g. transferability where the effect
of a chemical transformation is assumed to be gener-
alized to different molecular context. As data-driven
approaches, our models can learn the intuitive chemi-
cal transformations without explicit assumptions.

The SOTA method for molecular optimization, Hi-
erG2G, which is a graph-to-graph translation model
was compared with Seq2Seq and Transformer. The
Transformer performed best overall in generating more
molecules with desirable properties and structurally
similar to starting molecules. However, Seq2Seq and
HierG2G can still generate different molecules with
desirable properties. We believe the ensemble use of
three models will contribute to a further enrichment
of diverse molecules.

We have extracted a dataset of MMPs from ChEMBL
with the source and target molecules’ ADMET prop-
erties (e.g. logD, solubility and clearance) predicted
by the property prediction models trained on a large
number of in-house experimental data. We believe it
will be beneficial for the studies of MMP analysis and
optimizing ADMET properties.

As a proof a concept, we have focused on optimizing
three ADMET properties. For future work, additional
properties, e.g. permeability and bioactivity will be in-
cluded.
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D.-A.: Efficient multi-objective molecular optimization in a continuous

latent space. Chemical science 10(34), 8016–8024 (2019)

28. Li, Y., Zhang, L., Liu, Z.: Multi-objective de novo drug design with

conditional graph generative model. Journal of cheminformatics 10(1),

33 (2018)
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