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Abstract Optical rotation (OR) is a foundational tech-

nique for the detection and characterization of chiral

molecules, but it is poorly understood how the observed

property relates to the structure of the molecule. Over

the years, several schemes have been developed to de-

compose the OR into more chemically intuitive con-

tributions. In this paper, we introduce two alternative

formulations of our previously developed S̃ molecular

orbital space decomposition. These new expressions use

the Modified Velocity Gauge-Magnetic (MVG-M) and

-Electric (MVG-E) definitions of OR, rather than the

Length Gauge-Magnetic (LG-M) definition used in the

original paper. Comparing these formulations across a

small set of previously studied chiral molecules, we find

that these different definitions produce consistent phys-

ical interpretations of the OR. These results further

confirm the robustness of the S̃ methodology for the

investigation of structure-property relationships in chi-

ral molecules.

Keywords Optical Rotation · Gauge Dependence ·
Response Theory · Orbital Decomposition

1 Introduction

Detecting and controlling molecular and supra-molecular

chirality is an active area of research with applications

ranging from pharmaceutical development [1] and or-

ganic chiral catalysis [2, 3, 4] to nanostructure assembly

[5, 6] and chiral light generation [7, 8]. Optical rotation

(OR), the change in orientation of plane polarized light
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impinging on a chiral sample, is a foundational tech-

nique for absolute configuration assignment and chiral

sensing [9, 10, 11, 12]. Despite the long standing use of

OR measurements, the relationship between the struc-

tural features of a compound and its observed OR re-

mains unclear.

In recent years, a number of theoretical schemes

have been developed to decompose the OR into elec-

tronic contributions in an effort to understand how the

molecular shape affects the OR. Wiberg et al. have used

the sum-over-states formulation to describe OR contri-

butions in terms of movement of charge density in ex-

cited state transitions [13]. Polavarapu et al. used mod-

ern electronic structure methods to test the semiem-

pirical Kirkwood model, which expresses the OR as a

sum of bond polarizabilities and anisotropies [14, 15].

Beratan et al. developed a Mulliken-like partitioning to

assign OR contributions to individual atoms and func-

tional groups of a molecule [16]. Autschbach et al. stud-

ied how OR could be split into molecular orbital (MO)

contributions [17].

We previously proposed a similar method to Autschbach

et al. where instead of assigning contributions to indi-

vidual MOs, we instead decompose the OR into contri-

butions from occupied to virtual MO transitions [18].

We refer to these contributions as S̃ia values, where

i/a is the index of an occupied/virtual MO pair. While

a molecule can have many possible transitions, the OR

can often be described qualitatively using just the tran-

sitions with the largest S̃ia values. In this way, the in-

duced OR can be ascribed to the movement of electronic

density during these transitions. These shifts in the den-

sity can be tied to particular functional groups of the

molecule, offering chemical intuition that can be applied

more generally to other systems. We have used this ap-

proach to explain differences in OR between molecular
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conformers [19], as well to determine the effect of func-

tionalization [20].

In these prior studies, S̃ia was expressed in the length

gauge (LG), which is a commonly used form for OR

calculations. In principle, the choice of gauge should

not affect the OR, but this is only true for variational

electronic structure methods using an infinite basis and

so practical calculations of OR exhibit gauge depen-

dence [21]. Even ignoring these differences in the total

OR, there is no guarantee that S̃ia contributions and

their corresponding physical interpretations remain the

same if a different gauge is used to define S̃. To address

this ambiguity, here we develop two new definitions of

S̃ia with the modified velocity gauge (MVG) and apply

them to a subset of the molecules from these prior stud-

ies. By comparing among these different definitions, we

can determine if they produce consistent physical inter-

pretations of the OR.

This paper is organized as follows. Section 2 gives

a brief description of the various definitions that can

be used to calculate optical rotation and its MO space

decomposition, S̃. Section 3 defines Ŝ values, a normal-

ized version of S̃, and describes the model chemistry

used in our electronic structure calculations. In Section

4, we compute Ŝ values for a small test set of molecules

and analyze how the values change with the choice of

gauge/perturbation. We conclude with a discussion of

the use of S̃ as an interpretive tool and whether in-

sights from this method are dependent on the choice of

definition in Section 5.

2 Theory

The specific rotation [α]ω (deg [dm (g/mL)]−1) induced

by light of frequency ω impinging on an isotropically

dispersed chiral sample can be calculated as [21, 22, 23]:

[α]ω =
−(72× 106)h̄2NAω

2

c2m2
eM

Tr(β) (1)

where ω is expressed in atomic units, h̄ is the reduced

Planck’s constant (J s), NA is Avogadro’s number, c is

the speed of light (m/s), me is the electron rest mass

(kg), and M is the molecular mass (amu). In Eq. 1, β

is the electric dipole-magnetic dipole polarizability (in

a.u.):

βαβ = 2
∑
j 6=0

Im
〈Ψ0|µα|Ψj〉〈Ψj |mβ |Ψ0〉

ω2
j − ω2

(2)

The α/β subscripts index Cartesian components of vec-

tor/tensor quantities, while j indexes the excited states

of the molecule. µ = −r and m = i
2 (r × ∇) are re-

spectively the electric and magnetic dipole operators in

atomic units, with the position r and gradient ∇ op-

erators implicitly summed over all the electrons of the

molecule.

Eq. (2) is not used in practice, as the sum over ex-

cited states is slow to converge [24]. Instead, β is typi-

cally evaluated via linear response (LR) theory, which

for self consistent field (SCF) methods takes the form:[23,

25, 26]

βαβ =
1

cω

Nocc∑
i

Nvirt∑
a

〈φi|µα|φa〉〈φa|X+
mβ
|φi〉

=
1

cω

Nocc∑
i

Nvirt∑
a

〈φi|X−µα
|φa〉〈φa|mβ |φi〉

(3)

where 〈φa|X±yα |φi〉 represents the density perturbed by

the y field (either electric or magnetic) expressed in the

molecular orbital (MO) basis, and cω = ω for LG or

cω = ω2 for MVG (see below). Typically, the expres-

sions in Eq. 3 are actually calculated in atomic orbital

basis (AO), but the MO basis is more convenient here

for clarity’s sake. The perturbed density is computed

by solving the linear response equations:

〈φa|X±yα |φi〉 = 〈Φai |X±yα |Φ0〉

=

Nocc∑
j

Nvirt∑
b

〈Φai |(H − E0∓ω)−1|Φbj〉〈Φbj |yα|Φ0〉

(4)

where H is the molecular Hamiltonian operator, φi/a is

an occupied/virtual MO, Φ0 is the unperturbed Slater

determinant with energy E0, and Φai are singly excited

Slater determinants. This changes the problem from de-

termining a large number of excited states to finding a

self-consistent response of the density to the applied

perturbation. Either type of perturbed density can be

determined iteratively by solving the LR-SCF equations

starting from the ground state wavefunction; as shown

in Eq. 3, the electric and magnetic perturbations are

equivalent and will result in the same values for β.

Electric dipole matrix elements in principle satisfy

the hypervirial relationship [27]:

〈φa|µα|φi〉 =
ie

meωia
〈φa|pα|φi〉 (5)

where p is the momentum operator and e is the charge

of an electron. However, this relationship does not hold

for approximate electronic structure methods with fi-

nite basis sets and β will differ depending on the gauge

used to model the perturbation [28]. Optical rotation

calculations are generally done in the length gauge (LG),

which uses the form of the dipoles on the left-hand side

of Eq. (5), or the modified velocity gauge (MVG), which
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uses the form on the right-hand side. Length gauge cal-

culations of OR are not origin invariant, which is typi-

cally corrected by using gauge-including atomic orbitals

(GIAOs) for SCF methods [29]. However, using GIAOs

introduces extra terms into the expression for β in Eqs.

3-4. These terms can be incorporated into the magnetic

perturbed density via the LR equations in Eq. 4, while

they remain separate for the electric perturbed density,

thus breaking the symmetry between the two sides of

Eq. 3 [30]. On the other hand, the OR in the velocity

gauge is origin independent for any electronic structure

method, but it contains a spurious static field contri-

bution that needs to be evaluated and subtracted out

explicitly (hence the name “modified” velocity gauge)

[31].

Recently, we developed a configuration space analy-

sis of the β tensor as a tool to determine the underlying

electronic processes that induce optical rotation in chi-

ral molecules [18, 19]. We defined a rotatory strength in

molecular orbital space, S̃ia, resulting from an occupied

to virtual (i −→ a) MO transition, which can be written

in the length gauge as:

S̃LG−Mia = Im
[
〈i|µ|a〉 · 〈a|X+

m
|i〉
]

(6)

such that:∑
ia

S̃LG−Mia = ωTr(βLG) (7)

The insight behind this approach is that it allows the

optical rotation to be expressed as a sum of contribu-

tions from individual transitions: By determining which

transitions make a large contribution to the OR, one

can make qualitative predictions about how particu-

lar changes to the molecular geometry or the electronic

density will affect the total OR. The S̃ values in the

LG are defined in terms of the magnetic perturbed den-

sity in Eq. 6 because GIAOs will introduce additional

terms for the electric perturbation, as was the case for

β. Incorporating these terms into an S̃ia definition is

nontrivial, so we forgo consideration of the LG-electric

perturbed density for the remainder of this paper.

In this work, we propose two new definitions of the

S̃ rotatory strength using the modified velocity gauge:

S̃MVG−M
ia =

1

ω
Re
[
〈i|p|a〉 · 〈a|X+

m
|i〉
]

S̃MVG−E
ia =

1

ω
Re
[
〈i|X−

p
|a〉 · 〈a|m|i〉

] (8)

such that:∑
ia

S̃MVG−M
ia =

∑
ia

S̃MVG−E
ia = ωTr(βMVG) (9)

The unphysical static term is already subtracted out in

the expressions in Eq. 8. These two definitions provide

the same MVG OR once all contributions are included,

but each individual value is different. We can define two

separate expressions for S̃ with this choice of gauge be-

cause there is no complication due to GIAOs. As for the

original S̃ definition in Eq. 6, the computational cost to

evaluate all S̃ia values in Eq. 8 is negligible compared

to that of the SCF and LR equations. In fact, evaluat-

ing S̃ costs 6N3 for the AO→MO transformation of the

Cartesian components of the dipole integrals and of the

perturbed density matrices.

The main goal of this work is to test whether the

three S̃ definitions: LG-M in Eq. 6, and MVG-M and

MVG-E in Eq. 8 provide a similar qualitative picture of

the OR for chiral molecules in terms of constituent one-

electron transitions or whether one definition is prefer-

able to the others.

3 Computational Procedure

To analyze how the choice of gauge and perturbed den-

sity affects the S̃ values, we compiled a test set of

molecules from previous studies based on the length

gauge with the magnetic-perturbed density (LG-M) def-

inition of S̃ in Eq. 6, depicted in Figure 1. The op-

timized geometries were taken as-is from these prior

studies (or references therein) and are recorded here in

Tables S1-S9 of the Supporting Information (SI) [13,

20, 32, 33]. For each of these molecules, we calculated

the total optical rotation and S̃ using the MVG-M and

MVG-E definitions in Eq. 8 and compared them with

previous LG-M results. Calculations were performed

with the B3LYP/aug-cc-pVDZ model chemistry [34, 35]

with a 589.3 nm perturbation wavelength in a devel-

opment version of the GAUSSIAN suite of programs

[36]. Note that while this model chemistry has been

shown to be reasonable for calculating OR, we make

no effort here to assess its accuracy. Rather, we seek

to compare the physical interpretation of S̃ with each

perturbed density, regardless of how accurately the OR

is described using this method.

The overall OR does not change much for different

perturbations, see Table S10 in the SI. However, to en-

sure that differences in the total OR are not influencing

comparisons of S̃, we define a normalized configuration

rotatory strength, Ŝ:

Ŝia =
S̃ia∑
jb S̃jb

=
S̃ia

ωTr(β)
(10)

where the second equality comes from Eqs. 7 or 9. Since

by definition
∑
ia Ŝia = 1 for each molecule and pertur-

bation type, each Ŝia value gives the relative contribu-

tion of that transition to the total OR. The sign of Ŝia is
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Fig. 1: Structure of the molecules in the test set: (1) (1S,4S)-norbornenone, (2) P-(2,3)-pentadiene, (3,4) axial

and equatorial (R)-(+)-3-methycyclopentanone, (5,6) A and B conformers of (S)-(+)-2-carene, (7) [6]helicene, (8)

dithiol[5]helicene, (9) benzothiadiazole[6]helicene. Atoms are colored as follows: C (gray), H (white), O (red), N

(blue), S (yellow).

positive if S̃ia has the same sign as Tr(β) and negative

if S̃ia has the opposite sign.

4 Results

In this section, we compare Ŝ values computed with the

various perturbed densities for the molecules in Figure

1. To make a comprehensive comparison, we analyze

the Ŝ values of each molecule with increasing level of

detail. In Section 4.1, we compare the cumulative con-

tribution to the OR of different sets of Ŝ values, sepa-

rated according to their magnitude. In Section 4.2, we

use heat maps of Ŝia to visualize how these contribu-

tions are distributed among the frontier orbital transi-

tions. From these transitions, we plot the perturbation

vectors for the largest contributors in Section 4.3 to de-

termine whether these transitions are consistent across

the choice of gauge and perturbed density.

Before delving into these comparisons, we briefly

summarize the prior S̃ studies of these molecules. For

molecules 1 and 2, it has been shown that the OR can

be qualitatively described by a small fraction of the to-

tal number of transitions, coming within an order of

magnitude of the total OR with only 3 out of 6583 and

4 out of 3192 S̃ia values, respectively [18]. The highest

occupied molecular orbital (HOMO) to lowest unoccu-

pied molecular orbital (LUMO) transition of molecule

1 is considerably larger than the other transitions and

has the same sign as the overall Tr(β), which helps to

explain the large OR observed for this molecule. While

the four largest magnitude transitions of molecule 2 are

comparable in size to the largest transitions of molecule

1, they come in opposite signed pairs, so their combined

contribution is small. This near cancellation provides

an explanation for why the observed OR for molecule 2

([α]exp355 = 408 deg [dm (g/mL)]−1) is significantly smaller

than that of molecule 1 ([α]exp355 = −6310 deg [dm (g/mL)]−1).

For molecules 3-6, S̃ analysis was used to determine

the origin of OR differences between conformers [19].

Molecules 3 and 4 each had their largest contribution

from the (HOMO−→LUMO) transition, but these con-

tributions were opposite in sign, as was the total OR for

each conformer. This change in sign was attributed to

the electric vector being nearly parallel with the mag-

netic vector in the axial conformer (3), but nearly an-

tiparallel in the equatorial conformer (4) due to the

change in orientation of the methyl. The difference in

OR between molecules 5 and 6 mainly stemmed from

differences between HOMO transitions, specifically the

(HOMO−→LUMO+2) transition. The electric and mag-

netic vectors for this transition had an angle less than

90° for molecule 5, but greater than 90° for molecule 6,

resulting in a different sign for the S̃ia of this transi-

tion. For each set of conformers, including transitions

within a factor of 10−3 of the total sum (30-40% of the

transitions) captures 97% of the total OR.
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Molecules 7-9 are helicenes, which exhibit a strong

chiroptical response due to their axial chirality. S̃ was

applied to these molecules and other functionalized he-

licenes to determine the effect of length and withdraw-

ing/donating character of functional groups on the ob-

served OR [20]. While these molecules have many S̃

contributions, the dominant transitions were character-

ized by magnetic vectors pointed parallel to the heli-

cal axis, which corresponds to electron density moving

along the helix body. The magnitude of the magnetic

vector for these types of transitions was found to in-

crease with the length of the helix and with delocaliza-

tion of charge density.

4.1 Cumulative Contribution to the OR

In Figure 2, we plot the cumulative Ŝ for molecule 1. On

the left hand side, only the largest contributors are in-

cluded. Moving to the right, progressively smaller con-

tributions are added until all contributions are included

and
∑
Ŝia = 1 for each perturbed density. Scanning

across the figure, we can see that the contributions to

the OR for each Ŝ definition become more similar as

more transitions are included. The only notable dissim-

ilarity is found in the first set of transitions, where the

contribution for the MVG-E definition is half as large

as the others. Nevertheless, all Ŝ definitions require the

same number of relevant transitions (2 out of 6583) to

provide a qualitative understanding of the OR for this

molecule [19]. Once Ŝia values larger in magnitude than

10−2 are included in the sum, each Ŝ definition is no

farther than 0.09 from the others. Not only are all the

definitions similar at this point in the summation, but

they are also within 0.07 of their total sums. There-

fore, these results suggest that this MO decomposition

of the OR may not be very sensitive to the choice of Ŝ

definition.

Molecules 2-9 also show similarity between the Ŝ

definitions, as depicted in Figure 3. There is some sig-

nificant variation when only large values are included in

the sum, as can be seen for molecule 2. For the largest

magnitude transitions, |Ŝia| ≥ 1, the LG-M and MVG-

M definitions actually have opposite signs compared to

their total sums, while the MVG-E definition has the

same sign as its total. Note that the four largest tran-

sitions do give the correct sign for all the definitions

of S̃, consistent with our prior study, but here we have

chosen a smaller cutoff for significant contributions and

these additional transitions change the sign for the LG-

M and MVG-M definitions. For these definitions, there

are 7 transitions with 1.0 > |Ŝia| ≥ 0.95, so the choice of

cutoff can greatly influence the value and even the sign

of this partial sum. While in this paper we choose con-

sistent cutoffs in order to facilitate comparisons across

molecules and S̃ definitions, in practice, the cutoffs used

to define significant transitions should be tailored to

each molecule. This is clearly exemplified in the case

of molecule 2: the |Ŝia| values for the 4 largest tran-

sitions are around an order of magnitude larger than

any of the other transitions, which suggests that they

should considered separately from the other |Ŝia| ≥ 1

transitions.

Some of the molecules still have the wrong sign when

contributions greater than 10−1 are included. For ex-

ample, the MVG-M definition for 6 is a different sign

than the other Ŝ definitions, though the absolute dif-

ference between perturbations is no more than 0.20 in

this case. However, once Ŝia contributions larger than

10−2 are included, all definitions are qualitatively con-

sistent for all the molecules tested. With |Ŝia| ≥ 10−3

contributions included, the different Ŝ definitions are

generally indistinguishable.

It is noteworthy that where there are differences be-

tween the Ŝ definitions, the LG-M and MVG-M choices

tend to be very similar while MVG-E differs. This is

somewhat surprising since the MVG-M and MVG-E

definitions are based on the same choice of gauge and

produce identical overall OR values. In the next sec-

tion, we explore whether this trend extends to the level

of individual transitions.

4.2 Distribution of Contributions

We have seen up to this point that by summing the

same set of transitions, we can obtain a similar propor-
tion of the total OR for each Ŝ definition. However, the

cumulative summation does not show how much indi-

vidual transitions contribute. To give a more detailed

representation of how the OR is distributed among the

transitions, we present heat maps of Ŝia in Figures 4-5.

As most of the sizable transitions are between frontier

orbitals, the heat maps only display transitions among

the 15 highest occupied and 15 lowest virtual orbitals.

Full maps are reported in Figures S1-S9 of the SI.

Focusing first on 1, Figure 4 plots its frontier tran-

sitions using the LG-M, MVG-M, and MVG-E defi-

nitions. The largest two |Ŝia| values for each defini-

tion correspond to the (HOMO−→LUMO) and (HOMO-

1−→LUMO) transitions, which are also the transitions

included in the first range of Figure 2. However, while

these transitions have similar Ŝia for LG-M and MVG-

M, they are much smaller for the MVG-E definition

(e.g. Ŝ29,1=4.65, 5.12, and 1.84 for the LG-M, MVG-

M, and MVG-E definitions respectively). This pattern

seems to hold across frontier transitions of 1, with a
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Fig. 2: Cumulative Ŝia for molecule 1 computed with LG-M, MVG-M, and MVG-E definitions. The transitions

selected are those for which the LG-M |Ŝia| is greater than the specified value. The height of each bar is the sum

of these transitions, while the number of transitions included is listed above the bars.

consistent distribution of Ŝia for each choice of per-

turbed density, but with smaller magnitudes with the

MVG-E choice.

For the rest of the test set, shown in Figure 5, the

distribution of Ŝ among the frontier transitions remains

largely unchanged with different Ŝ definitions. While

some of the molecules, such as 2 and 3, exhibit con-

sistently smaller Ŝ values with MVG-E than with the

other definitions, this is not the case in general. For

example, Ŝia values for 5 are similar in magnitude for

each definition and the MVG-E choice for 7 actually

has some larger transitions than the other definitions,

e.g. (HOMO-1−→LUMO).

The similarity in the distribution of values for each

Ŝ definition would suggest that Ŝ is largely invariant

to the choice of gauge and perturbed density. However,

the differences in magnitude seen for MVG-E could still

be a sign that it is producing physically distinct tran-

sitions when compared to the magnetic perturbed den-

sities. To resolve this possible ambiguity, we focus on

individual transitions and determine whether they pro-

duce the same kind of transition for each Ŝ definition.

4.3 Major Contributions to the OR

To address whether Ŝia has the same physical inter-

pretation with different definitions, we superimpose the

electric and magnetic dipole/perturbed density vectors

of the largest transitions onto the molecules using the

VMD program [37]. These vectors describe how the

electronic density rearranges itself to induce OR; simi-

lar vectors for a given occupied-virtual transition indi-

cate a similar underlying physical process. The angles

between the vectors for the transition considered here

are reported in Table S11 of the SI.

The first row of Figure 6 depicts these vectors for

1, calculated with each Ŝ definition. It is clear from the

figure that the vectors for all types of Ŝ have the same

orientation and involve the same occupied-virtual MO

pair, indicating that the process is indeed the same.

While the Ŝ values for LG-M and MVG-M values are

very similar in magnitude, the lengths of their vectors

differ, see the left and center columns of Figure 6. This

is due to the differences in length nearly canceling in

the product (i.e. the electric vector is 2.8 times larger

for LG-M than MVG-M, but the magnetic vector is

2.6 times smaller). On the other hand, the MVG-E

Ŝ value is smaller because its much shorter magnetic

vector length (1.7 times smaller than LG-M, 4.8 times

smaller than MVG-M) is not compensated for by the

electric vector length (1.3 times smaller than LG-M, 1.9

times larger than MVG-M).

The other molecules exhibit the same qualitative be-

havior, where the largest Ŝia contributions come from

the same transitions independently of the Ŝ definition.

There are some notable differences between the Ŝ values

obtained with the electric and magnetic perturbed den-

sity. For instance, for the HOMO−→LUMO+4 transition

of molecule 2 in the second row of Figure 6, the angle

between the vectors for the MVG-M and LG-M Ŝ type

is around 25°, while for the MVG-E type it is 40°. While

this is the largest magnitude transition for the MVG-M

and LG-M definitions, it is only the second largest for

the MVG-E definition. It also has a smaller |Ŝia| value

(44 for MVG-M, 20 for MVG-E) despite having a sim-
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Fig. 3: Cumulative Ŝia for molecules 2-9 computed with LG-M, MVG-M, and MVG-E perturbations. The tran-

sitions selected are those for which the LG-M |Ŝia| is greater than the specified value. The height of each bar is

the sum of these transitions, while the number of transitions included is listed above the bars. The total sum is

marked with a dashed line.

Fig. 4: Ŝia values for the 15 highest occupied and 15 lowest virtual MOs of molecule 1 computed with (from left

to right) the LG-M, MVG-M, and MVG-E definitions of S̃.
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Fig. 5: Ŝia values for the 15 highest occupied and 15 lowest virtual MOs for molecules 2-9 computed with (from

left to right) the LG-M, MVG-M, and MVG-E definitions of S̃.
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Fig. 6: Electric (red) and magnetic (blue) dipole or perturbed density vectors for the largest transition of molecules

1-4, computed with (from left to right) the LG-M, MVG-M, and MVG-E definitions of S̃. The transitions depicted

are: 1 (HOMO−→LUMO), 2 (HOMO−→LUMO+4), 3 (HOMO−→LUMO), 4 (HOMO−→LUMO). For visibility, the

length of the the largest electric and magnetic vectors for each molecule is fixed at an arbitrary value and the

other vectors are scaled relative to this length.

ilarly sized product of vector magnitudes. Despite this

angle difference, the transitions are qualitatively con-

sistent, as the perturbation vectors point essentially in

the same direction.

5 Discussion and Conclusions

We have investigated whether different definitions of

the S̃ rotatory strength, based on different choices of

gauge and perturbed density, provide the same or differ-

ent pictures for the qualitative description of the optical

rotation of chiral molecules. We used a sample of chiral

molecules previously studied using the LG-M definition.

We find that these different S̃ definitions produce con-

sistent pictures of what physical processes contribute

to the optical rotation. This is true at multiple levels

of detail. As shown in Section 4.1, partial sums of Ŝ

over selected sets of transitions give similar convergence

to the total OR. Going one level deeper, the distribu-

tion of Ŝ within these sets is mostly the same for each

perturbation, as shown in Section 4.2 for the frontier

orbital transitions. Finally, at the level of individual

transitions, Section 4.3 shows that the largest transi-

tions correspond to the same physical process. There-

fore, we posit that S̃ analysis is largely independent of

the definition used. However, computing the OR in the

modified velocity gauge is approximately twice as costly

as in the length gauge, because the MVG approach re-

quires solving the linear response equations both for the

desired perturbation frequency and the zero frequency

limit. Since the different definitions offer the same in-

terpretation of the OR, the LG-M definition of S̃ may

be preferable in terms of the overall computational ef-

ficiency of the calculation.
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Fig. 7: Electric (red) and magnetic (blue) dipole or perturbed density vectors for the largest transition of molecules

5-9, computed with (from left to right) the LG-M, MVG-M, and MVG-E definitions of S̃. The transitions de-

picted are: 5 (HOMO-5−→LUMO), 6 (HOMO−→LUMO+2), 7 (HOMO−→LUMO+1), 8 (HOMO−→LUMO), and 9

(HOMO−→LUMO). For visibility, the length of the the largest electric and magnetic vectors for each molecule is

fixed at an arbitrary value and the other vectors are scaled relative to this length.

Supporting Information

The Supporting Information includes the geometry for

each of the molecules discussed in the main text (Tables

S1-S9). It also includes the total OR computed with

each definition (Table S10), the full heat maps of Ŝia for

each of the molecules (Figures S1-S9), and the angles

between the vectors of the largest transitions (Table

S11).
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