
An Electroreductive Approach to Silyl Radical Chemistry via Strong Si–
Cl Bond Activation  

Lingxiang Lu, Juno C. Siu, Yihuan Lai, and Song Lin*  

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA 

ABSTRACT: The construction of C(sp3)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions 
mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new 
strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants 
access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene 
silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.

    Organosilicon compounds find widespread use in many aspects of 
modern chemistry. For example, organosilanes are extensively used 
in chemical synthesis in classic reactions such as the Fleming-
Tamao, Hosomi-Sakurai, and Hiyama coupling reactions.1 Further, 
incorporation of Si in pharmaceuticals can improve their potency 
and pharmacokinetics.2  Organosilanes have also been extensively 
studied as lubricants, adhesives, and other polymer materials.1a As 
such, new and efficient approaches to the synthesis of organosilanes 
remain highly desirable. In this context, pathways involving the 
addition of silyl radicals to unsaturated C–C bonds constitute an 
attractive strategy,3 and recent developments in this direction have 
led to mild and selective ways to construct Si–C bonds.4 Silyl radicals 
are predominantly generated via hydrogen-atom abstraction from 
hydrosilanes induced by peroxides 5  or photoredox catalysts 6 
(Scheme 1A). While these methods have provided innovative 
transformations, the reliance on hydrosilanes as silyl radical sources 
are met with several salient challenges, including the limited variety 
of readily available hydrosilanes and the strongly reducing 
conditions required for their preparation.7 Alternative methods for 
generating silyl radicals are available but limited to the use of esoteric 
precursors with labile Si–X bonds (X = Si,8 B,9 P,10 etc.11).  

    We envision an alternative and potentially general method for the 
generation of silyl radicals by means of reductive activation of 
chlorosilanes. Chlorosilanes are among the most readily available 
reagents for organic synthesis.7a Currently, chlorosilanes are 
predominantly employed as an electrophile to form Si–O12 and Si–
C 13  bonds in the 2e– regime (Scheme 1B). These reactions are 
thermodynamically favorable owing to the formation of strong 
chemical bonds or the use of potent organometallic agents. In stark 
contrast, the use of chlorosilanes as radical silylating agents in the 1e– 
regime has yet to be explored. We reasoned that by applying a 
sufficiently reducing potential, chlorosilanes could undergo single-
electron reduction and fragmentation, giving rise to polarity-
reversed nucleophilic silyl radicals. Traditionally, this chemistry has 
been inaccessible due to the challenging reduction required of the 
strong Si–Cl bonds (ca. –0.5 V vs Mg0/2+, BDE ~ 110 kcal/mol). 
Electrochemistry is capable of driving reactions far from equilibrium 
under highly biased potentials, often exceeding the limits of 
traditional chemical oxidants or reductants.14 Indeed, early studies 
showed that electroreduction of chlorosilanes is possible toward the 

formation of dimeric and polymeric silanes (Scheme 1C). 15 
However, these reactions are proposed to undergo a silyl-anion 
pathway and are limited to Si–Si coupling. In this work, we 
employed a combination of synthetic and mechanistic tools to 
establish the electroreductive activation of chlorosilanes as a new 
and general strategy for the discovery of new radical silylation 
chemistry. 

Scheme 1. Background information. 

 
     We focused our initial exploration on the development of an 
electroreductive alkene silylation reaction and discovered that the 
electrolysis of a mixture of TMSCl and styrene (1) in THF led to the 
formation of vicinal disilane 2 (Schemes 2 and S1). 16  Recently, 
Oesterich reported an elegant example of alkene disilylation via 
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silylium catalysis; however, the reaction scope is currently limited to 
the installation of TMS groups using TMS–TMS.17 A combination 
of TBAClO4 as the electrolyte, a magnesium sacrificial anode, and a 
graphite cathode provided the optimal 94% yield under a constant 
current of 10 mA (cathodic potential ~ –0.85 V vs. Mg0/2+). Notably, 
even TMSOAc with a very strong Si–O bond (120–140 kcal/mol) 
can be activated, resulting in 31% yield. Using TBA(TFSI) as the 
electrolyte instead of TBAClO4 attained comparable reactivity 
(77%). This electrochemical protocol is easily scaled to 5 mmol 
without increasing solvent volume.  

Scheme 2. Electroreductive disilylation of alkenes. 

 
We subsequently evaluated the scope and functional group 

compatibility of our electroreductive strategy in the context of the 
disilylation reaction. Various functionalities that are potentially 
sensitive to chemical redox agents, such as boronate (4), tertiary 
amine (5), thioether (7), alcohol (8), and ketone (9) were 
preserved. Several electron-deficient and electron-rich heterocycles 
(10–11) and ferrocene (12) were also compatible with the reaction 
conditions. We also investigated other types of π-systems such as 
allenes (15), internal alkynes (16), conjugated dienes (17), and 
enynes (18) to generate a range of allyl and vinyl silanes, which could 
be further derivatized using cross-coupling and allylation reactions. 
Moreover, vinyl boronates proved to be suitable substrates, 
providing products (19–23) with gem-(B,Si) substitution, which 
are versatile functional groups in organic synthesis. 18   Simple 
aliphatic olefins can also react with electrogenerated silyl radicals but 
suffer from lower reactivity and chemoselectivity likely due to the 

lack of anion-stabilizing substituents (Scheme S17). An initial 
solution to this issue was obtained using information gleaned from 
mechanistic analysis (vide infra). 

    A diverse array of chlorosilanes proved to be effective for the 
construction of value-added organosilanes (24–29). In particular, 
dimethylsilane (24), vinyldimethylsilane (26), and 
allyldimethylsilane (27) led to products that could be used as 
monomers for silicon-containing polymers. 19  Furthermore, the 
incorporation of disilane groups vicinally to an alkene (25, 28) 
demonstrated the potential utility of this reaction for the preparation 
of parallel single-molecular silicon wires for materials and electronic 
applications.20 Chlorotrimethylgermane could also react to furnish 
product 29. The success and limitation of our reaction scope piqued 
our interest in investigating the reaction mechanism with the 
objective of expanding the reactivity to other synthetically useful 
transformations. 

    The electrochemical disilylation is comprised of three 
components that can be reduced at the cathode—the alkene, 
chlorosilane, and anodically generated Mg2+. The reduction of each 
of these components could contribute to the observed disilylation 
(Scheme S6). For example, electrogenerated Mg0 could activate 
either styrene21 or TMSCl to form magnesiated nucleophiles prior 
to C–Si formation. Alternatively, cathodic reduction of styrene 
could lead to a radical anion that initiates the disilylation. Finally, the 
direct reduction of TMSCl followed by mesolytic Si–Cl cleavage 
could produce TMS• prior to its addition to the alkene (Scheme 1A). 

A series of electroanalytical experiments, multivariate linear 
regression (MLR) analyses, and density functional theory (DFT) 
calculations lent strong support to the silyl radical pathway and 
provided more insights into the reaction mechanism. First, control 
experiments using either Mg powder (Table 1, entry 1) or 
electrogenerated Mg0 (entries 2–4) gave no conversion. We also 
carried out divided-cell electrolysis that separates the cathodic 
disilylation reaction from oxidation of the sacrificial anode. Using 
either Mg or Zn as the anode (entries 5–6), moderate yield of 2 was 
observed. The low yields were due to sluggish reaction caused by 
high cell resistance. These experiments led us to exclude reaction 
pathways involving electrogeneration of Mg0.  

Table 1. Control experiments. 

           
    Cyclic voltammetry studies revealed that onset potential for the 
reduction of TMSCl (ca. –0.5 V) is higher than that of styrene (ca. –
1.2 V).22 Meanwhile, the cathodic potential of a standard disilylation 
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reaction was measured to vary between –0.7 to –1.0 V. Controlled 
potential electrolysis at –0.7 V and –1.0 V (Table S3) produced 
nearly identical reaction yield to standard conditions, supporting the 
notion that TMSCl, not styrene, is reduced in the predominant 
pathway. Notably, a current enhancement was observed for the 
reduction of TMSCl upon addition of Mg2+, indicating that while 
Mg2+ is not required, it facilitates the reduction of TMSCl likely by 
binding to the leaving Cl–. 

Having established the mechanism of initiation via TMSCl 
reduction, we subsequently employed structure-activity relationship 
studies using various substituted styrenes to probe the mechanism 
of the first C–Si bond formation. Attempts to correlate relative rates 
with either Hammett parameter (σ) or radical stability parameter 
(σ*)23 alone were unsuccessful (R2 < 0.65; Figure S16). Thus, a two-
parameter MLR model was developed (Figure 1), which shows that 
both electronic property of the alkene and stability of the ensuing 
benzylic radical influence the reaction rate.24 , 25  These results are 
consistent with the formation of the first C–Si bond proceeding via 
addition of a nucleophilic silyl radical to the alkene, which is also the 
rate-determining chemical step (RDCS) of the reaction. 13C kinetic 
isotope effect experiments provided additional support for this 
hypothesis (Scheme S19-20). 

      
Figure 1. Multivariate linear regression analysis. 

Further experiments using radical and anion probe substrates 
support a radical-polar crossover mechanism for the formation of 
the second C–Si bond (Scheme 3). First, vinyl cyclopropane 
30/31 underwent rupture of the three-membered ring, suggesting 
the intermediacy of radical Int-3. In addition, allylether 34 was 
converted to allylsilane 35, thereby supporting the formation of 
benzylic anion Int-4 that triggers the elimination of the BnO leaving 
group. Int-4 is likely generated in a second cathodic reduction event 
from the corresponding radical intermediate.  

The slow kinetics of TMSCl reduction as shown in the CV 
suggests that it is the global rate-determining step (GRDS). This 
hypothesis was supported by kinetic measurements, which showed 
that the reaction displays a zero-order dependence on the reactant 
concentration and first-order dependence on the current applied 
(Figure S12–15). The overall reaction thus proceeds through an 
electrochemical-chemical-electrochemical-chemical (ECEC) 
mechanism,26 which allows for the installation of the vicinal C–Si 
bonds via a radical-polar crossover pathway (Scheme 4). We also 
considered an alternative mechanism wherein the 2e–-reduction of 
TMSCl generates TMS– and initiates the disilylation (Scheme 

1C);15,27 however, this pathway is unlikely based on experimental 
and theoretical data.28 

Scheme 3. Radical and anion probe experiments. 

        
Scheme 4. Proposed mechanism. 

           
    The proposed mechanism led us to envision that a variety of other 
reactions could be realized under the same mechanistic manifold 
(Scheme 4, blue dashed arrow). Specifically, given that the two Si–
C bonds are formed via distinct radical and polar mechanisms, we 
reasoned that the introduction of another electrophilic species (E+), 
which is less likely to reduce than chlorosilanes but easier to react 
with a carbanion, could lead to selective new transformations. To 
test our hypothesis, we first applied this strategy to synthesize 
silacycles from dichlorodisilanes (Scheme 5A). In this case, the 
reduction of the second Si–Cl unit should be slower than the first, 
but intramolecular ring closure should be favored over 
intermolecular substitution. Silacycles are valuable motifs in the field 
of materials sciences as it can modulate the photophysical and 
electrical properties of compounds. 29 , 30  However, no general 
synthetic methods are available for these building blocks with 
limited examples relying on potent reductants such as Li. Using our 
strategy, a suite of 5- and 6-membered silacycles were prepared 
without cleaving weak Si–Si bonds (36–42). 

Scheme 5. Mechanism-guided discovery of new silylation reactions 
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    Hydrosilylation is an important industrial transformation and 
traditionally relies on noble metal catalysts in combination with 

hydrosilanes. Recent contributions made possible the use of earth-
abundant transition-metal31  or organic32  catalysts as well as other 
types of Si reagents.11a,33 We envisioned a complementary strategy 
for transition-metal-free hydrosilylation via electrochemistry by 
intercepting carbanion Int-2 with an appropriate proton source. 34 
Indeed, when weakly acidic acetonitrile was used as the solvent in 
lieu of THF, hydrosilylation proceeded as the predominant pathway 
with little competitive disilylation. Thus, a collection of 
hydrosilylated products were synthesized from conjugated alkenes, 
alkynes, and chlorosilanes (Scheme 5B). Notably, deuterosilylation 
product 45 was obtained using CD3CN as the solvent. 

We also postulated that if a suitable leaving group is positioned β- 
to the carbanion in intermediate Int-2, an elimination event could 
occur to produce synthetically valuable allylsilanes. 35  This 
hypothesis was first validated in the anion probe experiment and was 
further expanded to various other substrates (Scheme 5C). 
Importantly, this system allowed us to expand the scope of 
electroreductive silylation from conjugated alkenes (34, 54) to 
simple alkenes (55–56, 61). In addition to allylethers, even allylic 
alcohols (63–65) can be directly used as starting materials 
presumably via the initial formation of a TMS-ether. We reason that 
simple alkenes are challenging substrates in the disilylation due 
largely to the instability of non-conjugated carbanion intermediates, 
but the vicinity of a leaving group in the radical-polar substitution 
reaction reduces the necessity for a long-lived carbanion. Our 
reaction thus provides a new and efficient means to access value-
added allylsilanes from readily available allylic ethers 36  and 
alcohols 37 . This approach was further applied to a cyclization 
reaction with a tethered leaving group (69). 

    Finally, we demonstrated the derivatization of organosilicon 
products to a variety of structurally diverse compounds via allylsilane 
fluorination 38 , hydrosilane oxidation 39 , and Tamao-Flemming 
oxidation (Scheme 6). 40  Interestingly, electrochemical oxidation 
returned disilane 2 to styrene 1, providing a potential protecting 
group strategy for styrenes.41  

Scheme 6. Product derivatization. 

 
    In conclusion, we developed a general electrochemical protocol to 
access silyl radicals by activating chlorosilanes at deeply reducing 
potentials and demonstrated its use in Si–C bond forming reactions. 
We anticipate this operationally simple and modular protocol will 
enhance the accessibility of a diverse range of organosilanes, and that 
the general design principle will lead to new non-spontaneous 
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reactions that are difficult to achieve with traditional chemical 
methods.  
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