Theoretical estimates of equilibrium carbon and hydrogen isotope effects in microbial methane production and anaerobic oxidation of methane

Jonathan Gropp^{1,*}, Mark A. Iron², and Itay Halevy¹

¹Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel ²Computational Chemistry Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel

*Corresponding author, E-mail address: jonathan.gropp@weizmann.ac.il (J. Gropp)

Abstract

Microbial production and consumption of methane are widespread in natural and artificial environments, with important economic and climatic implications. Attempts to use the isotopic composition of methane to identify its sources are complicated by incomplete understanding of the mechanisms of variation in methane's isotopic composition. Knowledge of the equilibrium isotope fractionations among the large organic intracellular intermediates in the microbial pathways of methane production and consumption must form the basis of any exploration of the mechanisms of isotopic variation, but estimates of these equilibrium isotope fractionations are currently unavailable. To address this gap, we calculated the equilibrium isotopic fractionation of carbon $({}^{13}C/{}^{12}C)$ and hydrogen (D/H) isotopes among compounds in the anaerobic methane metabolisms, as well as the abundance of double isotope substitutions ("clumping," i.e., a single ¹³C–D bond or two ¹²C–D bonds) in these compounds. The density functional theory calculations are at the M06-L/def2-TZVP level of theory with the SMD implicit solvation model, which we have recently tested against measured equilibrium isotope fractionations. The computed ${}^{13}\beta$ and ${}^{2}\beta$ values decrease with decreasing average oxidation state of the carbon atom in the molecules, resulting in a preference for enrichment in ¹³C and D of the molecules with more oxidized carbon. Using the computed β values, we calculated the equilibrium isotope fractionation factors in the prominent methanogenesis pathways (hydrogenotrophic, methylotrophic and acetoclastic) and in the pathway for anaerobic oxidation of methane (AOM) over a temperature range of 0-700 °C. Our calculated equilibrium fractionation factors compare favorably with experimental constrains, where available, and we then used them to investigate the relation between the apparent isotope fractionation during methanogenesis or AOM and the

thermodynamic drive for these reactions. We show that a detailed map of the equilibrium fractionation factors along these metabolic pathways allows for an evaluation of the contribution of equilibrium and kinetic isotope effects to apparent isotope fractionations observed in laboratory, natural and artificial settings. The comprehensive set of equilibrium isotope fractionation factors calculated in this study provides a firm basis for future explorations of isotope effects in methane metabolism.

1 **INTRODUCTION**

² 1.1 General

The isotopic distributions in thermodynamic equilibria can be predicted with quantum mechanical 3 calculations. These theoretical predictions are invaluable in exploring isotope fractionation system-4 atics where experimental data are lacking or hard to obtain (e.g., Rustad et al., 2008; Eldridge et al., 5 2016), such as for the intracellular components of biological production and oxidation of methane 6 (methanogenesis and methanotrophy, respectively). Theoretical approaches, in particular density 7 functional theory (DFT), have been widely applied to small molecules (Li & Liu, 2011; Fujii et al., 8 2014), and recently also to large organic molecules (Black et al., 2007; Rustad, 2009; Wang et al., g 2009a,b, 2013; Moynier & Fujii, 2017; Iron & Gropp, 2019) in the gas, aqueous and solid phases. 10 The application of DFT is of special interest in methanogenesis and methanotrophy since these 11 processes involve large organic molecules, which have received less attention than small molecules 12 due to issues of calculation cost and accuracy (Iron & Gropp, 2019). Consequently, studies to date 13 of the isotopic compositions in methanogenesis and methanotrophy have focused on the extracel-14 lular substrates and products, mainly H₂, CO₂, CH₄ and H₂O, but have neglected the intracellular 15 components of these processes. To bridge this gap, we (i) provide a novel set of constraints on 16 the temperature-dependent carbon and hydrogen isotope equilibrium fractionation factors (EFFs) 17 among the intracellular molecules involved in the methanogenesis and methanotrophy pathways, 18 (ii) compare these results to previous reports, mostly of the pathway end-members, and (iii) discuss 19 the possible applications and the associated caveats of these results in geochemical and bioisotopic 20 models. 21

1.2 Methanogenesis and anaerobic methanotrophy

1.2.1 Physiology of methanogens and methanotrophs

Methanogenic organisms produce methane by fixing CO₂ in the hydrogenotrophic pathway or by reducing methylated compounds, such as acetate (i.e., acetoclastic methanogenesis) or methanol (i.e., methylotrophic methanogenesis), as described in the following net reactions:

$$\operatorname{CO}_2 + 4\operatorname{H}_2 \ \rightleftharpoons \ \operatorname{CH}_4 + 2\operatorname{H}_2\operatorname{O},$$
 (1)

$$CH_3COOH \rightleftharpoons CH_4 + CO_2,$$
 (2)

$$4CH_3OH \ \ \overrightarrow{=} \ \ 3CH_4 + CO_2 + 2H_2O \,. \tag{3}$$

These three metabolic pathways have been described in detail (Thauer et al., 2008) and all are assumed to originate from a single, common ancestor that utilized a version of the hydrogenotrophic pathway (Berghuis et al., 2019) (Fig. 1). In the hydrogenotrophic pathway (Eq. 1), CO₂ is reduced

to methane in seven, consecutive enzymatic reactions, with four reduction steps, which are medi-30 ated by the electron carriers ferredoxin (Fd), coenzyme F₄₂₀ (F₄₂₀) and coenzyme B (HS-CoB). In 31 acetoclastic methanogenesis (Eq. 2), acetate (CH₃COO⁻) is initially activated to acetyl-CoA (CH₃-32 COSCoA). The methyl group is then transferred to tetrahydromethanopterin (H₄MPT) and then 33 into the classic hydrogenotrophic pathway (Welte & Deppenmeier, 2014), while the CoA-bound 34 carbonyl carbon is oxidized to CO_2 . In the methylotrophic pathway (Eq. 3), the methyl group is 35 transferred from methanol directly to HS-CoM to form methyl coenzyme M (CH₃-SCoM). The 36 CH₃-SCoM is then either oxidized to CO₂ in the oxidative direction of the methanogenesis path-37 way or reduced to methane. The reductive and oxidative branches of this pathway operate at a ratio 38 of \sim 3:1, to balance the electrons needed for the reduction of CH₃-SCoM (Vanwonterghem et al., 39 2016). 40

Anaerobic oxidation of methane (AOM) is an important process in mitigating the emission of methane from anoxic sediments to the atmosphere (Egger et al., 2018). More specifically, AOM is mediated by anaerobic methanotrophs (ANME) in a modified reverse-methanogenesis pathway, where the same enzymes of the hydrogenotrophic pathway catalyze methane oxidation. The oxidation is generally coupled to syntrophic sulfate, nitrate or ferric iron reduction (Scheller et al., 2010; Thauer, 2011; McGlynn, 2017; Scheller et al., 2017) or to nonsyntrophic formation of elemental sulfur (Milucka et al., 2012).

48 1.2.2 Isotopic composition of methane

The hydrogen (D/H) and carbon $({}^{13}C/{}^{12}C)$ isotope ratios of methane have been extensively used to 49 distinguish among environmental methane sources (Whiticar, 1999), yet the sources often overlap 50 in their characteristic isotopic compositions (e.g., Alstad & Whiticar, 2011), masking the source 51 of methane. Recent developments in the precise measurement of the abundance of the doubly-52 substituted ("clumped") isotopologues of methane (i.e., ¹³CH₃D and ¹²CH₂D₂) further constrain 53 the temperature of methane formation under equilibrium conditions (Stolper et al., 2014a; Ono 54 et al., 2014; Stolper et al., 2015; Ash et al., 2019). However, disequilibrium clumped isotope com-55 positions are common in laboratory and natural settings (Wang et al., 2015; Gruen et al., 2018; 56 Young et al., 2017; Young, 2019; Ono et al., 2020), and the mechanisms that control these depar-57 tures from equilibrium are not fully understood. 58

⁵⁹ Bioisotopic models have the potential to reveal details of the elusive mechanisms that control ⁶⁰ such isotopic fingerprints. Such models have been successfully applied to microbial sulfate re-⁶¹ duction by demonstrating how the sulfur isotope fractionations of individual steps in the pathway ⁶² combine to control the net fractionation (Wing & Halevy, 2014; Bradley et al., 2016; Zaarur et al., ⁶³ 2017; Wenk et al., 2017; Sim et al., 2019). A similar hypothesis was suggested for carbon and ⁶⁴ hydrogen isotopes in methanogenesis (Valentine et al., 2004). Previous applications of simplified ⁶⁵ isotope mass-balance models to the hydrogenotrophic methanogenesis pathway assign EFFs of the intracellular intermediate reactions as free parameters without any theoretical or experimental constraints (Wang et al., 2015; Stolper et al., 2015; Cao et al., 2019). To address this gap, to facilitate the application of bioisotopic models to microbial production and consumption of methane, and to allow a better understanding of data from laboratory experiments and natural environments, we provide hydrogen and carbon isotope and clumped isotopologue EFF values for the three main pathways of methanogenesis and for 'reverse-methanogenesis' AOM.

1.3 Calculating equilibrium fractionation factors

Experimentally-measured EFFs are the basis for understanding the distributions of isotopes in many 73 geochemical systems, but the scope of these methods is often limited by long equilibration times 74 at low temperatures, potential fractionation during the sampling processes, and complex separation 75 procedures of the reactants and products. Early studies demonstrated that EFFs can be calculated 76 from the observed molecular vibrational frequencies using a simplified quantum mechanical model 77 of the experimentally measured molecular vibrations and rotations and expressed as a reduced par-78 tition function ratio (RPFR) (Urey, 1947; Bigeleisen & Mayer, 1947). Subsequently, computational 79 methods such as Hartree-Fock (HF) (Roothaan, 1951) and DFT (Hohenberg & Kohn, 1964; Kohn 80 & Sham, 1965) provided an independent means of estimating the vibrational frequencies. These 81 approaches have been extensively used to study several systems of geochemical interest, primarily 82 for small molecules in the gaseous and aqueous phases, including sulfur compounds (Otake et al., 83 2008; Eldridge et al., 2016), metals (Domagal-Goldman & Kubicki, 2008; Fujii et al., 2014) and 84 crystalline solids (e.g., Méheut et al., 2007). The application to large organic molecules in the 85 aqueous phase has remained limited due to computational cost and inaccurate results. Accordingly, 86 in methanogenesis, experimental and theoretical work so far has focused on the small gaseous end-87 members, namely the H₂O-H₂, CH₄-H₂ and CO₂-CH₄ systems (e.g., Suess, 1949; Bottinga, 1969; 88 Horibe & Craig, 1995; Horita, 2001), and not on the intracellular organic intermediates. 89

There have been attempts to calculate EFFs among large organic molecules for some elements, 90 such as Mg (Black et al., 2007; Moynier & Fujii, 2017), C (Rustad, 2009), Cu (Tennant et al., 91 2017) and H (Wang et al., 2009a,b, 2013). Wang et al. (2009a; 2013) compared experimental and 92 DFT calculations (B3LYP/6-311G**) of hydrogen isotope EFFs of the C_{α} positions in ketones 93 finding a good overall agreement. The B3LYP functional is commonly used in geochemical DFT 94 calculations, and is the most commonly used functional in general. However, there are more mod-95 ern and cost-effective methods (Zhao et al., 2011; Mardirossian et al., 2016), and until recently 96 the accuracy of these and other functionals in predicting EFFs of large organic molecules has not 97 been systematically compared. We recently conducted a thorough examination of various DFT 98 functionals and basis sets to determine the uncertainty associated with the prediction of EFFs of 99 H, C, N and O stable isotopes among large soluble organic molecules (Iron & Gropp, 2019). The 100 mean unsigned error (MUE) of these calculations in predicting the hydrogen fractionation in the 101

 C_{α} position of linear and cyclic ketones is 20.8%, comparable to the results of Wang et al. (2009a; 102 2013). For C, N and O isotopes, there was an insignificant difference between the various meth-103 ods, but the M06-L functional with the def2-TZVP basis set and the SMD solvation model yielded 104 the best fits, with an MUE of 2.3% for carbon isotopes. In this study, we employed the best-fit 105 DFT model (M06-L functional, def2-TZVP basis set, SMD solvation model) to calculate a novel 106 set of carbon and hydrogen equilibrium fractionation factors for the species involved in the core 107 methanogenesis and AOM pathways. These calculations can aid in the interpretation of isotopic 108 fractionations during methanogenesis and anaerobic oxidation of methane, in both laboratory cul-109 tures and natural environments. Moreover, there calculations eliminate a degree of freedom from 110 future bioisotopic models, which could potentially be used to understand methane isotope compo-111 sitions out-of-equilibrium and their physiological and environmental implications. We will discuss 112 the uncertainties in our predictions and their implications for the observations of the isotopic com-113 position of methane in various systems. 114

115 2 METHODS

2.1 Overview: the Bigeleisen–Mayer equation

¹¹⁷ The RPFR is the equilibrium fractionation factor of a given isotope pair in a given molecule:

$$RPFR = \frac{\sigma}{\sigma^*} \prod_{i=1}^{3N-6(5)} \frac{u_i^*}{u_i} \cdot \frac{\exp(-u_i^*/2)}{\exp(-u_i/2)} \cdot \frac{1 - \exp(-u_i)}{1 - \exp(-u_i^*)}$$
(4)

where $u_i = hc\omega_i/k_BT$, h is the Planck constant, c is the speed of light, ω_i are the vibrational fre-118 quencies, k_B is the Boltzmann constant, T is the absolute temperature, σ is the molecular symmetry 119 number (most large organic molecules lack any symmetry so this term is often unity), and the as-120 terisk denotes the species with the heavy isotope(s). The product runs over the 3N - 5 or 3N - 6121 vibrational frequencies of linear and nonlinear molecules, respectively, where N is the number of 122 atoms in the molecule. The three ratios in the product are the classical factor accounting for rota-123 tional and translational energy, the zero-point energy (ZPE) contribution, and the excitation factor. 124 The RPFR is related to the β factor, which is the RPFR of a compound and an ideal monoatomic 125 gas. For single isotope substitutions, when the excess factors are ignored, $\beta = RPFR$, and the 126 (temperature-dependent) EFF between two species (α) that contain the rare isotope r is the ratio of 127 the respective β s: ${}^{r}\alpha_{A-B}^{eq} = {}^{r}\beta_{A}/{}^{r}\beta_{B}$. 128

We also calculated the EFFs of doubly-substituted (clumped) isotopologues that contain a sin-129 gle ¹³C–D bond or two ¹²C–D bonds. The abundance of clumped isotopologues is commonly 130 reported as the deviation from the expected stochastic distribution, $\Delta_i^{\text{eq}} \equiv \left(R_i^{\text{eq}}/R_i^*-1\right)$ where i 131 is the isotopologue of interest, R_i^{eq} is the abundance of the clumped isotopologue relative to the 132 nonsubstituted isotopologue at equilibrium, and R_i^* is its abundance at a stochastic distribution of 133 the rare isotopes. We calculated Δ_i^{eq} from RPFRs following Cao and Liu (2012), who suggested 134 that Δ_i^{eq} of the clumped isotopologue V'Y'Y_{n-1}, where V' and Y' are the rare isotopes of atoms V 135 and Y, respectively, and n is the number of Y atoms in the molecule VY_n , can be calculated by the 136 general relation: 137

$$\Delta_{\mathbf{V}'\mathbf{Y}'\mathbf{Y}_{n-1}} = \left(\frac{(\boldsymbol{\sigma}^*/\boldsymbol{\sigma}) \times {}^{\mathbf{V}'\mathbf{Y}'}\mathbf{RPFR}_{\mathbf{V}\mathbf{Y}_n}}{{}^{\mathbf{V}'}\boldsymbol{\beta}_{\mathbf{V}\mathbf{Y}_n} \times {}^{\mathbf{Y}'}\boldsymbol{\beta}_{\mathbf{V}\mathbf{Y}_n}}\right)$$
(5)

where $V'Y'RPFR_{VY_n}$ is the RPFR of the clumped isotopologue of interest. $V'\beta_{VY_n}$ and $Y'\beta_{VY_n}$ are approximately equal to the β values of single substitutions of V' and Y' in VY_n (Cao & Liu, 2012). In addition to the internal equilibrium distribution of V'-Y' bonds in the molecule VY_n (Eq. 5), we are interested in the distribution of V'-Y' bonds in large organic molecules of the general form xVY_n , where x denotes an arbitrary organic moiety. We calculated the EFFs of reactions that include a clumped isotopologue and distinguish between equilibrium isotope effects in which a new V'-Y' bond is formed or broken:

$$^{V'Y'}\alpha_{aV'Y,bVY'/cV'Y'} = {^{V'}\beta_{aV'Y} \times {^{Y'}\beta_{bVY'}}/{^{V'Y'}RPFR_{cV'Y'}}$$
(6)

and equilibrium isotope effects in which the original V'-Y' bond remains intact:

$$^{V'Y'}\alpha_{aV'Y'/cV'Y'} = {}^{V'Y'}RPFR_{aV'Y'}/{}^{V'Y'}RPFR_{cV'Y'}.$$
(7)

By analogy to the terminology for kinetic isotope effects, we refer to these as primary and secondary 146 equilibrium isotopes effects. As suggested by Wang et al. (2015), the clumped isotope fractionation 147 factors can be expressed as ${}^{13,2}\alpha^{eq} = {}^{13}\alpha^{eq} \times {}^{2}\alpha^{eq} \times {}^{13,2}\gamma^{eq}$ and ${}^{2,2}\alpha^{eq} = {}^{2}\alpha^{eq} \times {}^{2}\alpha^{eq} \times {}^{2,2}\gamma^{eq}$. The 148 unitless ${}^{13,2}\gamma^{eq}$ and ${}^{2,2}\gamma^{eq}$ factors are a measure of the deviation of the actual fractionation factor 149 from a simple product of the fractionation factors of the singly-substituted isotopologues. Though 150 originally proposed for KFFs, the γ^{eq} notation may be used to express similar deviations in EFFs, 151 and we adopt it here for consistency with the existing literature. By definition $\alpha^{eq} = \alpha^{-}/\alpha^{+}$, where 152 α^{-} and α^{+} are the backwards and reverse kinetic isotope effects, respectively, and it can be shown 153 that based on this relation $\gamma^{eq} = \gamma^{-}/\gamma^{+}$, where γ^{-} and γ^{+} are the backwards and forward kinetic γ 154 factors, respectively. 155

2.2 Quantum mechanical calculations of partition coefficients for large or ganic molecules

All calculations were done with GAUSSIAN16 revisions A.03, B.01 and C.01 (Frisch et al., 2016). 158 Based on its performance in predicting EFFs in large organic molecules (Iron & Gropp, 2019), 159 we chose the M06-L DFT exchange-correlation functional and def2-TZVP basis set (Andrae et al., 160 1990; Kaupp et al., 1991; Leininger et al., 1996; Metz et al., 2000; Weigend & Ahlrichs, 2005). The 161 use of scaling factors has been shown to provide more accurate predictions of vibrational frequen-162 cies (see Kesharwani et al. (2016) and references therein). As discussed in our benchmark study 163 (Iron & Gropp, 2019), two scaling factors were used in Eq. 4, one for the zero-point (vibrational) 164 energy term (the second term in product, specifically, $\lambda_{ZPE} = 0.9825$) and another for the harmonic 165 frequencies in the other two terms (specifically, $\lambda_{harm} = 0.9965$). 166

The original derivation of RPFR by Bigeleisen and Mayer suited molecules in a gas phase, 167 but biochemical reactions within the cells usually occur in the aqueous phase. Adding explicit 168 water molecules should, in principle, yield more accurate results for reactions in aqueous solution, 169 but this also increases the size of the system and associated calculation costs. Implicit solvation 170 models, which assume that the solvent effects can be described by the free energy cost of solvation 171 alone, thereby offering a substantial reduction in computational cost, are a common solution to this 172 issue (Tomasi et al., 2005). We generated the RPFRs of the end-member molecules in both the 173 gaseous and aqueous phases. To account for the aqueous phase, we used the SMD solvation model 174 of Truhlar and coworkers (Marenich et al., 2009). 175

In this work, we use the singly substituted hydrogen isotopologues as a proxy for the bulk D/H ratios of the compounds, which is a common practice for isotopologues with atoms in equivalent positions (Galimov, 2006; Wang et al., 2009a; Liu et al., 2010). We perform our DFT calculations for frozen-geometry molecules, which produce distinct RPFR values for substitution of D for H in the different positions of the methyl groups. The free rotation of the methyl group makes the three C–H bonds equivalent and chemically indistinguishable, and we therefore calculate the RPFR of the deuterated molecule from the geometric mean of RPFR values determined from the distinct site-specific D/H-substitutions (Wang et al., 2009a).

Liu et al. (2010) considered a number of corrections to the Bigeleisen-Mayer equation, in-184 cluding anharmonic effects and vibrational-rotational couplings. However, they studied small, 185 triatomic molecules, where these corrections are small. In our previous study, where we considered 186 much larger molecules, it was found that these terms were actually detrimental to the accuracy of 187 the results (Iron & Gropp, 2019). We hypothesized that the degradation of accuracy may result 188 from the inclusion of these terms violating the underlying assumptions of the Bigeleisen-Mayer 189 equation, specifically, the assumptions of a rigid rotor and a harmonic oscillator, which in turn al-190 low the use of the Teller-Redlich product rule. As noted by Webb & Miller (2014) in the their study 191 comparing path integral Monte Carlo (PIMC) methods with the Urey-harmonic oscillator model, 192 the latter takes advantage of substantial error cancellation. 193

PIMC methods, which are based on potential energy surface fits to DFT or CCSD(T) data, 194 have recently been used to determine EFFs (e.g., Webb et al., 2017; Eldridge et al., 2019). How-195 ever, these methods are limited to very small molecules such as methane (Eldridge et al., 2019) or 196 ethane (Webb et al., 2017), and their application to the much larger organic molecules studied here 197 as part of the methanogenesis pathways would be a Herculean task and beyond the scope of the 198 current study. He et al. (2020) recently suggested that truncating large organic molecules to ease 199 the calculation cost may have a negligible effect on $^{13}\alpha$ predictions when used with an implicit 200 solvation model. We chose to model the entire molecules, especially since none were too large for 201 the available computer hardware. He et al. used the more expensive Møller-Plesset (MP2) method, 202 yet we found that reliable results can be obtained using cheaper DFT methods and, in fact, MP2 is 203 inferior to many DFT functionals in predicting vibrational frequencies, which are the basis of the 204 Bigeleisen-Mayer equation (Eq. 4) (Iron & Gropp, 2019). In addition, in some cases long-range 205 interactions, such as hydrogen bonds, may affect the vibrational frequency of the primary site, and 206 these effects might be overlooked if truncations are applied without the appropriate considerations. 207 A careful truncation of molecules can be effective, but it does introduce a new potential source of 208 error. 209

210 **3 RESULTS**

We calculated the RPFRs for position-specific single ¹³C or D substitutions and double ¹³C and D 211 or D and D substitutions of the molecules that participate in anaerobic methane metabolisms at the 212 M06-L/def2-TZVP level of theory at 0-700 °C (Full details in Section 2.2). The results of these 213 calculations are presented in Tables 2–5, and Tables S.1 and S.2. The ${}^{13}\beta$ and ${}^{2}\beta$ values at 0-100 214 °C, the temperature range that is relevant for biological activity and the large organic molecules on 215 which we focus, are presented in Fig. 2. In general, ${}^{13}\beta$ and 2,2 RPFR at 25 °C covary with the 216 carbon oxidation state, with the exception of the ${}^{13}\beta$ values for the methyl and carbonyl groups in 217 CH₃-COSCoA and the ¹³ β for the methyl group in CH₃-COOH. The ² β and ^{13,2}RPFR values also 218 covary with the carbon oxidation state, though only for oxidation states between zero and -4. 219

We calculated the EFFs (α^{eq}) for the enzymatic reactions in the hydrogenotrophic, acetoclastic 220 and methylotrophic methanogenesis pathways. The full results at 25 °C, 50 °C and 75 °C are 221 provided in Tables 6, 8 and 9 and Figs. 3-4. For each reaction, we report α -values based on β 222 and RPFR values through the relation ${}^{r}\alpha_{A-B}^{eq} = \beta_{A}/\beta_{B}$, where we arbitrarily chose compound A 223 to be upstream of compound B in the methanogenesis pathway. For convenience, we follow the 224 convention of reporting EFFs as the natural logarithm of $r \alpha_{A-B}^{eq}$ in permil (‰) units (1000ln α). 225 The fractionations of reactions involving H_2O are reported relative to $H_2O_{(1)}$. As calculation of the 226 RPFR for liquid H₂O is notoriously challenging, we chose to apply the approach used by Wang 227 et al. (2009a) and calculate ${}^{2}\beta$ of H₂O_(g) and use the ${}^{2}\alpha_{H_{2}O_{(1)}-H_{2}O_{(g)}}^{eq}$ reported for the range 0-374 228 °C (Horita & Wesolowski, 1994), where ${}^{2}\beta_{H_{2}O_{(1)}} = {}^{2}\beta_{H_{2}O_{(g)}} \times {}^{2}\alpha_{H_{2}O_{(1)}-H_{2}O_{(g)}}^{eq}$. 229

Notably, the carbon isotope fractionations of the reactions in the hydrogenotrophic pathway, 230 which add up to the net CO₂-CH₄ carbon isotope fractionation, distribute almost evenly among 231 four steps in the pathway, three of which are carbon reduction reactions. The CO₂-CHO-MFR, 232 CH=H4MPT⁺-CH2=H4MPT, CH2=H4MPT-CH3-H4MPT and CH3-H4MPT-CH3-SCoM carbon 233 isotope fractionations are all between $\sim 15\%$ and $\sim 18\%$ at 25 °C, whereas the other reactions yield 234 smaller positive or small negative fractionations (Table 6). For hydrogen, primary equilibrium iso-235 tope effects, in which a C-H bond is broken or made, produce larger positive or negative hydrogen 236 isotope fractionations than secondary equilibrium isotope effects, in which C-H bonds remain in-237 tact, except for the reaction between F₄20H₂ and CH₃-H₄MPT that has a smaller primary EFF than 238 its secondary EFFs (Fig. 4). 239

Using the ¹³ β , ² β , ^{2,2}RPFR and ^{13,2}RPFR values of the intermediates in the methanogenic pathways, we calculated these metabolites' equilibrium deviation of clumped isotopologue abundance from a stochastic distribution (Δ_i^{eq} , where *i* is the isotopologue of interest). The Δ_i^{eq} values for ¹³C– D clumping increase with decreasing oxidation state, from $\Delta_{13CDO-H_4MPT}^{eq} = 4.211\%$ to $\Delta_{13CH_3D}^{eq} =$ 5.738‰ at 25 °C, while Δ_i^{eq} values for D–D clumping are larger, ranging from $\Delta_{12CD_2=H_4MPT}^{eq} =$ 13.38‰ to $\Delta_{12CH_2D_2}^{eq} = 18.50\%$ at 25 °C, and they all depend inversely on temperature (Fig. 5 and

Table 7). We also calculated the clumped isotope fractionations of reactions that involve doubly-246 substituted isotopologues ($^{13,2}\alpha^{eq}$ and $^{2,2}\alpha^{eq}$), and the deviation of these values from the product 247 of the ${}^{13}\alpha^{eq}$ and ${}^{2}\alpha^{eq}$ values (${}^{13,2}\gamma^{eq}$ and ${}^{2,2}\gamma^{eq}$). In general, the ${}^{13,2}\alpha^{eq}$ values are similar in magni-248 tude, but not identical, to the corresponding product of ${}^{13}\alpha^{eq}$ and ${}^{2}\alpha^{eq}$. For secondary equilibrium 249 isotope effects, where the ¹³C–D or the ¹²C–D bonds remain intact, ^{13,2} γ^{eq} and ^{2,2} γ^{eq} are very close 250 to unity, with a mean values of 0.9998 and 0.9994 at 25 °C, respectively. For primary equilibrium 251 isotope effects, where a ¹³C–D or ¹²C–D bond is formed or broken, ^{13,2} γ^{eq} and ^{2,2} γ^{eq} are larger, 252 with mean values of 0.9951 and 0.9849, respectively. A complete list of γ^{eq} values is in Tables S.5 253 and S.6. 254

255 4 DISCUSSION

4.1 Beta values

The principles of equilibrium isotopic fractionation can explain the general trends observed in the 257 calculated ${}^{13}\beta$ values. At a given temperature, these values decrease with the carbon oxidation 258 state (from +4 in CO₂ to -4 in CH₄), which exerts first-order control over the carbon bonding 259 environment. The correlation of the ${}^{2}\beta$, 13,2 RPFR and 2,2 RPFR values with the carbon oxidation 260 state is less trivially understood, as the hydrogen's bonding environment is also affected by the 261 S, N and O atoms to which the carbon is often bound and by the orbital hybridization of the 262 molecules. Irrespective of the mechanism(s), similar correlations of β values and oxidation state 263 were observed for S (Eldridge et al., 2016), Fe (Fujii et al., 2014), and Se (Li & Liu, 2011) isotopic 264 fractionations. A natural consequence of this correlation is that, in general, we may expect carbon 265 reduction reactions to have carbon, hydrogen and clumped isotope EFFs larger than unity. 266

4.2 Uncertainties in calculated fractionation factors

The uncertainties in our predicted EFFs would best be estimated by comparison with experimen-268 tally determined isotopic fractionations. However, experimental evaluations of carbon, hydrogen 269 and clumped isotopic fractionations among the intermediate, intracellular metabolites of all three 270 methanogenic pathways have not yet been reported, with the exception of one investigation of the 271 carbon and hydrogen isotopic fractionation among CH₃-SCoM, HS-CoB and CH₄. Moreover, in 272 the methylotrophic and acetoclastic pathways, even measurements of equilibrium isotopic fraction-273 ations between the pathway end-members have not been reported. In the absence of experimental 274 constraints on the isotopic fractionation factors, we follow the approach taken in previous studies 275 for assessing the accuracy of DFT calculations of EFFs of large organic molecules. The 95% con-276 fidence interval (CI95) associated with the comparison of calculated and experimental hydrogen 277 EFFs was found to be $\pm 5\%$ to $\pm 10\%$ for linear ketones (Wang et al., 2009a) and $\pm 10\%$ to $\pm 30\%$ 278 for cyclic ketones (Wang et al., 2013), at the B3LYP/6-311G** level of theory. More recently, we 279 extended the evaluation to isotopes of C, N and O (Iron & Gropp, 2019). The associated CI95 for 280 C, N and O isotopes is $\pm 2.5\%$. However, CI95 represents only the uncertainty in the parameters 281 of the regression model, and the predictive power of our DFT calculations is more rigorously cap-282 tured by the 95% prediction interval (PI95). The nonsimultaneous observation bounds of the PI95s 283 are $\pm 30\%$ for hydrogen isotopes and $\pm 8\%$ for carbon isotopes. While the benchmark database 284 on which these PI95 are based is limited in its coverage of different functional groups, we sug-285 gest that it is currently the most suitable alternative to experimental constraints when attempting to 286 determine the actual magnitude of the uncertainty. 287

4.3 Comparisons with previous experimental and theoretical studies

To validate our calculated EFFs, we compare our results with previous experimental observations and theoretical predictions of EFFs.

4.3.1 Isotopic fractionation in the CO_2 - CH_4 - H_2O - H_2 system

The small, volatile end-members of the hydrogenotrophic methanogenesis pathway have been well 292 characterized in both theoretical and experimental studies, and the efforts to better constrain the iso-293 topic fractionations among them are ongoing. Four EFFs are of interest: (i) the CO₂-CH₄ carbon 294 isotopic fractionation, (ii) the H₂O-H₂ hydrogen isotopic fractionation, (iii) the CH₄-H₂ hydrogen 295 isotopic fractionation, and (iv) the CH₄-H₂O hydrogen isotopic fractionation. For hydrogen iso-296 topes, we also present here the results using the HCTH/def2-TZVP level of theory. Overall, our 297 predictions based on the M06-L/def2-TZVP and HCTH/def2-TZVP levels of theory yield good 298 agreement with previous estimates of the fractionation factors, as discussed below. 299

³⁰⁰ Our results for case (*i*) agree with $1000 \ln^{13} \alpha_{CO_2-CH_4}^{eq}$ values calculated using measured vibra-³⁰¹ tional frequencies over a temperature range of 0-700 °C (Richet et al., 1977) and with experimental ³⁰² observations of $1000 \ln^{13} \alpha_{CO_2-CH_4}^{eq}$ over a temperature range of 200-700 °C (Horita, 2001; Kueter ³⁰³ et al., 2019) (Fig. 7A). To the best of our knowledge, CO₂–CH₄ carbon isotopic fractionations have ³⁰⁴ not been experimentally measured below 200 °C, but the agreement of our theoretical predictions ³⁰⁵ with the available, high-temperature experimental data provides confidence in our predictions at ³⁰⁶ lower temperatures.

For case (*ii*), our $1000\ln^2 \alpha_{H_2O-H_2}^{eq}$ values generally agree with previous experimental measurements at low and high temperatures (Cerrai et al., 1954; Rolston et al., 1976) (Fig. 7B). Rolston et al. (1976) measured fractionation between H₂O₍₁₎ and H_{2(g)}. Our H₂O–H₂ hydrogen isotopic fractionations using M06-L are comparable but slightly higher than other modeling studies based on spectroscopic data rather than DFT (Suess, 1949; Bardo & Wolfsberg, 1976). Our H₂O–H₂ hydrogen isotopic fractionation based on the HCTH functional produce a better fit to the observations, which is identical to the prediction of Bardo & Wolfsberg (1976).

In case (*iii*), our $1000 \ln^2 \alpha_{CH_4-H_2}^{eq}$ values calculated at the M06-L level of theory are larger by 314 40-45% than the values measured in the temperature range 200-500 °C (Horibe & Craig, 1995) 315 (Fig. 7C), while the HCTH level of theory produces a better fit in this temperature range (only 316 10-30% larger than the experimental values). At this range of temperatures, there is disagreement 317 between published theoretical estimates of the CH₄-H₂ equilibrium hydrogen isotopic fraction-318 ation (Bottinga, 1969; Richet et al., 1977). Our results agree with those of Richet et al. (1977) 319 and are smaller by 0-30¹/₆₀ than the fractionations calculated by Bottinga (1969). Of all published 320 theoretical estimates of the CH₄-H₂ equilibrium hydrogen isotopic fractionation, our calculations 321 at the HCTH level of theory are closest to the available high-temperature measurements. At tem-322

peratures below 100 °C, which are relevant for biological activity, there are no experimentally-323 determined CH₄–H₂ equilibrium hydrogen isotopic fractionations. At these temperatures, there is 324 an even larger discrepancy between all available theoretical predictions and a linear regression of 325 $^{2}\alpha_{CH_{4}-H_{2}}^{eq}$ on 10⁶/T, extrapolated from experimental results at 200-500 °C (Horibe & Craig, 1995). 326 Reconciling these discrepancies is beyond the scope of the current study, requiring experiments to 327 determine the CH₄-H₂ equilibrium hydrogen isotopic fractionations at temperatures below 200 °C. 328 For case (iv), there are no direct measurements of the CH₄-H₂O equilibrium hydrogen iso-329 topic fractionation, $1000 \ln^2 \alpha_{CH_4-H_2O_{(1)}}^{eq}$, and a common practice is to combine available values for 330 $1000 \ln^2 \alpha_{CH_4-H_2}^{eq}$ and $1000 \ln^2 \alpha_{H_2-H_2O_{(1)}}^{eq}$. As observed in a previous work (Wang et al., 2015), there 331 is a striking disagreement among the different combinations of $1000 \ln^2 \alpha_{CH_4-H_2}^{eq}$ and $1000 \ln^2 \alpha_{H_2-H_2O_{(1)}}^{eq}$ 332 values, with $1000 ln^2 \alpha_{CH_4-H_2O_{(1)}}^{eq}$ ranging from -110 to -300% at 0 °C and from -85 to -210% at 333 60 °C (Fig. 8A). Most of this spread stems from the uncertainty in $1000 \ln^2 \alpha_{CH_4-H_2}^{eq}$ values at low 334 temperatures. To date, most interpretations of environmental $1000 \ln^2 \alpha_{CH_4-H_2O_{(1)}}^{eq}$ values rely on the 335 extrapolation of the 200-500 °C experimental results (Horibe & Craig, 1995) to environmentally-336 relevant temperatures (e.g., Proskurowski et al., 2006; Wang et al., 2017). As noted above, this ex-337 trapolation does not agree with any method of theoretical calculation. To get a better understanding 338 of this disparity, we compiled from the literature 165 environmental samples of biological origin, 339 from marine sediments and gas reservoirs located below the sulfate-methane transition zone (Table 340 S.11). We compared the measured $CH_4-H_2O_{(1)}$ hydrogen isotopic fractionation to the calculated 341 temperature-dependent $1000 \ln^2 \alpha_{CH_4-H_2O_{(1)}}^{eq}$ (Fig. 8A–B). We also compiled 183 values of mea-342 sured CO₂-CH₄ carbon isotopic fractionations from the same locations and their deviation from 343 the expected temperature-dependent $1000 \ln^{13} \alpha_{CO_2-CH_4}^{eq}$ (Fig. 8C). We found that the distribution 344 of the deviations of the CO₂-CH₄ apparent carbon isotopic fractionation from isotopic equilibrium 345 has a distinct peak at zero, which we interpret as evidence of carbon isotope equilibration in the 346 CO_2 -CH₄ system. This may suggest that the hydrogen isotopes in the CH₄-H₂O system are also 347 at (or close to) isotopic equilibrium. If this is the case, the distribution of compiled apparent hy-348 drogen isotopic fractionations from environmental samples may inform the choice of DFT theory 349 and constrain the error on our calculated hydrogen isotopic fractionation factors. The distribution 350 of the deviation of the CH₄-H₂O₍₁₎ apparent hydrogen isotopic fractionation from isotopic equi-351 librium calculated with the M06-L functional has a distinct peak at zero, whereas with HCTH the 352 distribution peaks at $\sim 20\%$, suggesting that the former provides a more accurate prediction in this 353 case. 354

4.3.2 Isotopic fractionation between large organic molecules in the methanogenesis pathway

To our knowledge, the equilibrium hydrogen isotopic fractionation between CH₃-SCoM and CH₄ ($\ln^2 \alpha_{CH_3-SCoM-CH_4}^{eq}$) is the only experimentally determined fractionation between intracellular intermediate metabolites in the methanogenesis pathway. Scheller et al. (2013) investigated the ki-

netic isotopic fractionation in the Mcr-catalyzed reaction, the final step in methanogenesis. EFFs 359 can be calculated from the kinetic fractionation factors (KFFs) of the reverse and forward reac-360 tions: ${}^{r}\alpha_{A-B}^{eq} = {}^{r}\alpha_{B\to A}^{kin} / {}^{r}\alpha_{A\to B}^{kin}$, where ${}^{r}\alpha_{B\to A}^{kin}$ and ${}^{r}\alpha_{A\to B}^{kin}$ are the reverse and forward KFFs, 361 respectively. The KFF is defined as the ratio of the rate constants for reaction of the heavy iso-362 tope to the light isotope (i.e., ${}^{13}k/{}^{12}k$ for carbon isotopes and ${}^{D}k/{}^{H}k$ hydrogen isotopes). For 363 a normal KFF, where the light isotope reacts more rapidly than the heavy isotope, $r\alpha^{kin}$ is less 364 than unity and its natural logarithm is negative. While Scheller et al. (2013) did not explicitly 365 report $1000 \ln^2 \alpha_{CH_3-SCoM-CH_4}^{eq}$, we calculated a value of $17 \pm 42\%$ at 60 °C based on their mea-366 sured ${}^{2}\alpha_{CH_{3}-SCoM\rightarrow CH_{4}}^{kin}$ (0.840±0.01) and ${}^{2}\alpha_{CH_{4}\rightarrow CH_{3}-SCoM}^{kin}$ (0.855±0.05), taking into account er-367 ror propagation. Our calculated value of 40.4% at this temperature is within error of the experi-368 mental value. 369

370 **4.3.3** Δ_{13}^{eq} and Δ_{12}^{eq} Δ_{12}^{eq}

For methane, our predictions of $\Delta_{^{13}\text{CH}_3\text{D}}^{\text{eq}}$ in thermodynamic equilibrium agree well with previous theoretical and experimental estimates (Webb & Miller, 2014; Liu & Liu, 2016; Eldridge et al., 2019) (Fig. 6A). Our predictions also agree with the theoretical and experimental estimates of $\Delta_{^{12}\text{CH}_2\text{D}_2}^{\text{eq}}$ (Young et al., 2017; Eldridge et al., 2019), though in this case our predictions are systemically lower by ~0.8‰ in the temperature range of 0 °C to 100 °C (Fig. 6B). There are currently no available measurements of the intermediates in the methanogenesis pathway to which we can compare our results.

4.4 Implications of predicted EFFs for methanogenesis and anaerobic oxi dation of methane

Methanogenesis is characterized by large and variable CO₂-CH₄ carbon isotopic fractionations 380 (tens of permil) and CH₄-H₂O hydrogen isotopic fractionations (hundreds of permil). Variations 381 within these ranges have been hypothesized to be controlled by the degree of reversibility of the 382 enzymatically-catalyzed reactions (Valentine et al., 2004; Wang et al., 2015; Stolper et al., 2015). 383 The net isotopic fractionation of any individual biochemical reaction varies between the thermo-384 dynamic and kinetic end-members. The thermodynamic end-member is the product of a fully 385 reversible reaction, and it gives rise to a substrate-product isotopic fractionation equal to the EFF 386 between these compounds. The kinetic end-member is well-defined for a single reaction as the 387 isotopic fractionation when that reaction is unidirectional, and it is equal to the ratio of the isotope-388 specific rate constants of the reaction. The kinetic end-member depends on the reaction mechanism, 389 which depends on the structure of the enzyme catalyzing the reaction, and on the exact substrates 390 participating in the reaction. Thus, the kinetic end-member may vary for different microbial strains 391 and physiological conditions. 392

As a single reaction departs from equilibrium, for example in response to an increase in substrate concentration, its isotopic fractionation will transition from the equilibrium to the kinetic fractionation (DePaolo, 2011; Wing & Halevy, 2014). For the reaction $r \rightleftharpoons p$, the net isotopic fractionation from metabolite pools r and p at steady state ($\alpha_{r-p}^{\text{net}}$) can be calculated from the EFF (α_{r-p}^{eq}), the forward KFF ($\alpha_{r\to p}^{\text{kin}}$) and the ratio of the backward and forward mass fluxes of the reaction ($f_{p,r}$):

$$\alpha_{r-p}^{\text{net}} = \left(\alpha_{r-p}^{\text{eq}} - \alpha_{r \to p}^{\text{kin}}\right) f_{p,r} + \alpha_{r \to p}^{\text{kin}}.$$
(8)

The thermodynamic end-member is expressed when the reaction is fully reversible $(f_{p,r} = 1)$ and Eq. 8 reduces to $\alpha_{r-p}^{\text{net}} = \alpha_{r-p}^{\text{eq}}$. The kinetic end-member is expressed when the reaction is unidirectional $(f_{p,r} = 0)$ and Eq. 8 reduces to $\alpha_{r-p}^{\text{net}} = \alpha_{r\to p}^{\text{kin}}$. In a linear reaction network with metabolite pools *s*, *r* and *p* such that $s \rightleftharpoons r \rightleftharpoons p$, different steps have fractionations that differentially depart from their individual thermodynamic equilibrium fractionation end-members to give a range of disequilibrium fractionations of the total reaction network (Wing & Halevy, 2014). The net isotopic fractionation between *s* and *p* at a steady state can be calculated from the recursive expression:

$$\boldsymbol{\alpha}_{s-p}^{\text{net}} = \left(\boldsymbol{\alpha}_{r-p}^{net} \times \boldsymbol{\alpha}_{s-r}^{eq} - \boldsymbol{\alpha}_{s \to r}^{\text{kin}}\right) f_{r,s} + \boldsymbol{\alpha}_{s \to r}^{\text{kin}}$$
(9)

(See Appendix A and Wing & Halevy (2014) for details). In this case, the thermodynamic end-406 member is expressed when both reactions are fully reversible ($f_{r,s} = f_{p,r} = 1$) and Eq. 9 reduces 407 to $\alpha_{s-p}^{\text{net}} = \alpha_{r-p}^{\text{eq}} \times \alpha_{s-r}^{\text{eq}}$. The kinetic end-member is expressed when the most upstream reaction is 408 unidirectional $(f_{r,s} = 0)$ and Eq. 9 reduces to $\alpha_{s-p}^{\text{net}} = \alpha_{s \to r}^{\text{kin}}$. A range of disequilibrium net isotopic 409 fractionations between these values is expressed upon progressive departure from equilibrium (e.g., 410 with increasingly negative ΔG_r), and the transition may not be monotonic due to the dependence 411 on the reversibilities and KFFs of individual reactions. This approach is only applicable to linear 412 metabolic networks, and we use it here to explore the possible effect of the ΔG_r (and rate) of 413 hydrogenotrophic and acetoclastic methanogenesis and anaerobic methanotrophy on the carbon 414 isotopic fractionation (Sections 4.4.1, 4.4.4 and 4.4.5). 415

In some metabolic networks, the isotope exchange reaction involves three compounds rather than two, such as for hydrogen atoms in the hydrogenotrophic pathway. For example, in the reaction $aY_n + bY_m \rightleftharpoons cY_{n+m}$, where *a*, *b* and *c* are arbitrary organic moieties, Y is the atom of interest and *n* and *m* are the stoichiometric coefficients of Y. For brevity, we will denote this reaction as $r_1 + r_2 \rightleftharpoons p$, where r_1 is aY_n , r_2 is bY_m and p is cY_{n+m} . The change in the isotopic composition of compound *p* with time can be expressed as:

$$\frac{dR_p}{dt} = \frac{1}{[p]} \left[\phi_{rp} \left(n \cdot \alpha_{r_1 \to p}^{\text{kin}} R_{r_1} + m \cdot \alpha_{r_2 \to p}^{\text{kin}} R_{r_2} \right) - \phi_{pr} \cdot R_p \left(n \cdot \alpha_{p \to r_1}^{\text{kin}} + m \cdot \alpha_{p \to r_2}^{\text{kin}} \right) - R_p (m+n) \left(\phi_{rp} - \phi_{pr} \right) \right], \quad (10)$$

where ϕ_{rp} and ϕ_{pr} are the net forward and reverse mass fluxes, respectively, and R_{r_1} , R_{r_2} and R_p are the ratios of the rare and abundant isotopes in pools r_1 , r_2 and p, respectively. In the specific case of ⁴²⁴ a chemical and isotopic steady state, the isotopic composition of *p* is constant, and $\frac{d}{dt}([p] \cdot R_p) = 0$. ⁴²⁵ Rearranging Eq. 10 yields an analytical solution for R_p at a steady state:

$$R_{p} = \frac{\phi_{rp} \left(n \cdot \alpha_{r_{1} \rightarrow p}^{\min} R_{r_{1}} + m \cdot \alpha_{r_{2} \rightarrow p}^{\min} R_{r_{2}} \right)}{\phi_{pr} \left(n \cdot \alpha_{p \rightarrow r_{1}}^{\min} + m \cdot \alpha_{p \rightarrow r_{2}}^{\min} \right) + (m+n) \left(\phi_{rp} - \phi_{pr} \right)}$$
(11)

(see full derivation of Eqs. 10 and 11 in Appendix B.1). In a metabolic network with multiple 426 sources of the atom of interest, extending Eq. 11 is impractical unless we impose constraints over 427 the values of the mass fluxes and isotope effects (e.g., Cao et al., 2019). To avoid prior assump-428 tions, the net isotopic fractionations in such a system can be determined numerically by solving 429 an isotopic mass balance, such as in Eq. 10, for each metabolite as a set of ordinary differential 430 equations. The numerical solutions do not provide the same intuition as analytical expressions, but 431 in some cases the systems can be simplified to produce an approximate analytical solution. We 432 will discuss one such simplified analytical solution for the hydrogen isotopic fractionation between 433 CH₄ and H₂O in the hydrogenotrophic pathway (Section 4.4.2) and a numerical solution for carbon 434 isotopic fractionation in the methylotrophic pathway (Section 4.4.3). In both cases we discuss the 435 isotopic fractionations observed in laboratory cultures or environmental samples. These apparent 436 isotopic fractionations between compounds A and B are defined by $r\alpha_{A-B} \equiv rR_A/rR_B$ and pre-437 sented using the $1000 \ln^r \alpha_{A-B}$ notation. These isotopic fractionations represent combinations of 438 the equilibrium and kinetic isotopic fractionations (Section 4.4) and should not be confused with 439 the EFFs (1000ln^{*r*} α_{A-B}^{eq}) or KFFs (1000ln^{*r*} $\alpha_{A\to B}^{kin}$). 440

441 4.4.1 Carbon isotopes in the hydrogenotrophic pathway

Fractionation of carbon isotopes in the hydrogenotrophic methanogenesis pathway ($1000ln^{13}\alpha_{CO_2-CH_4}$) 442 ranges from $\sim 10\%$ to $\sim 90\%$ in laboratory cultures, and correlates with the net ΔG_r and the cell-443 specific rate of methanogenesis (Valentine et al., 2004; Penning et al., 2005; Takai et al., 2008; Oku-444 mura et al., 2016; Topçuoğlu et al., 2019). Cocultures and enrichment experiments of methanogens 445 grown at small negative ΔG_r (e.g., low concentrations of H₂) often have $1000 \ln^{13} \alpha_{CO_2-CH_4}$ values 446 larger than the equilibrium carbon isotopic fractionation (the temperature-dependent EFF) (Valen-447 tine et al., 2004; Penning et al., 2005; Hattori et al., 2012; Topçuoğlu et al., 2019). We compiled 448 the apparent $1000 \ln^{13} \alpha_{CO_2-CH_4}$ values available in the literature for pure culture, coculture and en-449 richment experiments. Comparing these measurements with the calculated temperature-dependent 450 EFFs, we found a bimodal distribution with peaks at +10% and -20% (Fig. S.1). Most of the 451 values larger than the corresponding temperature-dependent EFF are from batch culture experi-452 ments. However, we only considered data that was not affected by Rayleigh distillation, that is, 453 experiments where the isotopic composition of the substrates was similar to the initial isotopic 454 composition throughout the experiment. 455

Previous models of microbial methanogenesis suggested various scenarios in which the reversibility of the metabolic pathway shapes the relationship between $1000 \ln^{13} \alpha_{CO_2-CH_4}$ and ΔG_r or the cell-specific methanogenesis rate. In these models, the EFFs and fs for the various steps in the reaction network were treated as free parameters. We used our calculated EFFs at 25 °C and the mathematical framework for linear metabolic networks outlined in Section 4.4 to explore some of the previously suggested scenarios:

- (*i*) gradual and uniform departure from equilibrium of all steps in the pathway (Wang et al.,
 2015).
- $_{464}$ (*ii*) isotopic equilibrium between CO₂ and CH₃-H₄MPT or CH₃-SCoM, and variable reversibil-
- ity of the Mtr- or Mcr-catalyzed reactions (Alperin & Hoehler, 2009; Stolper et al., 2015).

(*iii*) differential reversibility of the different reactions in the pathway (Cao et al., 2019).

For each scenario, we used some combination of *f* values in the recursive term in Eq. 9 to estimate 1000ln¹³ $\alpha_{CO_2-CH_4}$ (Table 10). We assigned 1000ln¹³ α^{kin} of -20‰ for all the reactions in the pathway, except for 1000ln¹³ $\alpha^{kin}_{CH_3-SCoM\rightarrow CH_4}$, which has been experimentally measured to be ~-40‰ (Scheller et al., 2013). Though the KFFs other than 1000ln¹³ $\alpha^{kin}_{CH_3-SCoM\rightarrow CH_4}$ are unknown and were treated here as free parameters, the findings and conclusions below are robust within a reasonable range of these KFFs between 0‰ and -50‰. Details of the calculations are in Appendix A.

In scenario (i) of uniform departure from reversibility, the minimal, kinetic end-member $1000 \ln^{13} \alpha_{CO_2-CH_4}$ 474 value (i.e., when f = 0) is -20%, consistent with fractionations measured at large negative ΔG_r . In 475 this case, only the KFF of the most upstream, Fmd-catalyzed reaction $(\ln^{13}\alpha_{CO_2 \rightarrow CHO-MFR}^{kin})$ is ex-476 pressed, and the net fractionations of the other reactions in the network (in this case, all $^{13}\alpha^{kin}$ 477 values, as f = 0) are not expressed (Eq. 9). The maximal $1000 \ln^{13} \alpha_{CO_2 - CH_4}$ depends on the $^{13} \alpha^{kin}$ 478 values assigned to the different reactions. For ${}^{13}\alpha^{kin}$ values more positive than -60%, the max-479 imal $1000 \ln^{13} \alpha_{CO_2 - CH_4}$ is the thermodynamic equilibrium carbon isotopic fractionation of 69‰. 480 Larger-than-equilibrium $1000 \ln^{13} \alpha_{CO_2-CH_4}$ values require $^{13} \alpha^{kin}$ values more negative than -60%. 481 For example, a $1000 \ln^{13} \alpha_{CO_2-CH_4}$ value of 75% at 25 °C would require $^{13}\alpha^{kin}$ values of $\sim -80\%$ 482 for the reactions catalyzed by Mtd, Mer and Mtr. Though we cannot rule them out, to the best of 483 our knowledge carbon isotope KFFs of such magnitude have not been measured. Within the limits 484 of observed carbon isotope KFFs, the assumption of a uniform departure from equilibrium places 485 a hard limit on the maximum value of $1000 \ln^{13} \alpha_{CO_2 - CH_4}$, which is smaller than the observed net 486 carbon isotopic fractionation. 487

In scenario (*ii*), the reactions from CO₂ to CH₃-SCoM are fully reversible (i.e., f = 1), and only the most downstream, Mcr-catalyzed reaction departs from reversibility. When implemented in the framework described above, the range of possible 1000ln¹³ $\alpha_{CO_2-CH_4}$ is 69-106‰. The maximal 1000ln¹³ $\alpha_{CO_2-CH_4}$ value is due to substitution of the small CH₃-SCoM–CH₄ EFF (we calculated 1.6‰ at 25 °C) by the much larger KFF of the Mcr-catalyzed step (-40‰; Scheller et al., 2013). In ⁴⁹³ this scenario, $1000\ln^{13}\alpha_{CO_2-CH_4}$ cannot be smaller than 69‰, which is inconsistent with the large ⁴⁹⁴ number of $1000\ln^{13}\alpha_{CO_2-CH_4}$ measurements that are smaller than this value, suggesting that the ⁴⁹⁵ departure from equilibrium of the last steps in the pathway cannot be the sole process responsible ⁴⁹⁶ for the observed range of CO₂–CH₄ carbon isotopic fractionation.

In scenario (iii), Cao et al. (2019) explored combinations of differential reversibility in methano-497 genesis, focusing on clumped isotopologues. They suggested binary f values (either 0 or 1) for the 498 reactions catalyzed by Fmd, Mtd, Mer and Mcr. Using our calculated EFFs, we find that the bi-499 nary scenarios yield $1000 \ln^{13} \alpha_{CO_2-CH_4}$ covering the range of observed values (20-106%). The 500 largest $1000 \ln^{13} \alpha_{\text{CO}_2-\text{CH}_4}$ value is obtained, as in scenario (*ii*), when f = 0 for the Mcr-catalyzed 501 reaction and f = 1 for all other reactions in the pathway. In this case, a combination of the KFF 502 of the Mcr-catalyzed reaction (-40%) with the equilibrium CO₂-CH₃-SCoM carbon isotopic frac-503 tionation (~69\%) leads to a net $1000 \ln^{13} \alpha_{CO_2-CH_4}$ of 109%. The smallest $1000 \ln^{13} \alpha_{CO_2-CH_4}$ is 504 obtained, as in scenario (i), when f = 0 for the Fmd-catalyzed reaction, leading to expression of 505 only the KFF of that reaction (prescribed to be -20%). 506

⁵⁰⁷ We conclude that both scenarios (*i*) and (*iii*) are capable of covering the entire range of observed ⁵⁰⁸ 1000ln¹³ $\alpha_{CO_2-CH_4}$. However, both scenarios invoke arbitrary combinations of the reversibility of ⁵⁰⁹ the steps in the pathway, and scenario (*i*) also requires unrealistic carbon isotope KFFs. We note that ⁵¹⁰ in all models suggested to date, the reaction reversibilities were assigned rather than calculated, and ⁵¹¹ it seems that a more detailed metabolic model is required to explain the nuances in the dependence ⁵¹² of 1000ln¹³ $\alpha_{CO_2-CH_4}$ on ΔG_r .

4.4.2 Hydrogen isotopes in the hydrogenotrophic pathway

Fractionation of hydrogen isotopes during hydrogenotrophic methanogenesis in laboratory cul-514 tures ranges from $\sim -100\%$ to -600% and displays a weaker dependence on ΔG_r than the carbon 515 isotopic fractionation (Valentine et al., 2004; Stolper et al., 2015; Okumura et al., 2016). Ob-516 served $1000 \ln^2 \alpha_{CH_4-H_2O}$ values deviate significantly from the expected CH₄-H₂O hydrogen iso-517 tope EFF (Fig. 7). For example, in two different experiments grown at 55°C and low H₂ con-518 centrations ($<10 \ \mu$ M), one a coculture and the other a deep aquifer groundwater incubation, the 519 $1000 \ln^2 \alpha_{CH_4-H_2O}$ values of $-320 \pm 12\%$ and $-393 \pm 43\%$, respectively, are significantly more neg-520 ative than the temperature-dependent equilibrium fractionation of -175% (Yoshioka et al., 2008; 521 Hattori et al., 2012). Similar to carbon isotopes, such deviations of $1000 \ln^2 \alpha_{CH_4-H_2O}$ from the 522 temperature-dependent hydrogen isotope EFF may arise from variations in the reversibility of the 523 metabolic pathway, depending on the ΔG_r . In contrast to carbon isotopes, hydrogen isotope de-524 viations from the EFF may also arise from mixing of hydrogen atom sources through direct in-525 corporation of hydrogen atoms from H₂ in the Hmd-catalyzed reaction. There is ample evidence 526 that this only occurs at high H₂ pressure or during exponential cell growth (e.g., Kawagucci et al., 527 2014; Okumura et al., 2016). Thus, it seems likely that the large, negative $1000 \ln^2 \alpha_{CH_4-H_2O}$ values 528

⁵²⁹ observed in cultures grown at low H₂ concentrations are due to departure from equilibrium and ⁵³⁰ expression of KFFs, not incorporation of hydrogen from H₂.

Hydrogenotrophic methanogenesis involves the stepwise addition of four hydrogen atoms in 531 four individual reactions (Fig. 1). Each of these additions is characterized by an individual net 532 CH₄-H₂O hydrogen isotopic fractionation, which depends on the reaction reversibility and the 533 equilibrium and kinetic end-member fractionations. The overall $1000 \ln^2 \alpha_{CH_4-H_2O}$ value depends 534 on these individual fractionations in ways that may not be intuitive. In the extreme case that all 535 hydrogen addition reactions are unidirectional (i.e., f = 0), for example at very large negative ΔG_r 536 of the methanogenesis reaction, the overall $1000 \ln^2 \alpha_{CH_4-H_2O}$ value will be the average of the 537 four KFFs associated with these reactions. As primary hydrogen isotope KFFs are generally large 538 (e.g., $1000^2 \alpha_{CH_3-SCoM \rightarrow CH_4}^{kin}$ is ~-890% at 60 °C; Scheller et al., 2013), the expectation in this 539 case is a substantially larger-than-equilibrium net $1000 \ln^2 \alpha_{CH_4-H_2O}$, as found in the majority of 540 laboratory culture experiments (Fig. S.1). This phenomenon is also apparent in non canonical 541 methanogenic pathways, such as the nitrogenase-catalyzed formation of methane by nitrogen fixers, 542 where $1000 \ln^2 \alpha_{CH_4-H_2O}$ reaches -730% at ambient temperatures (Luxem et al., 2020). 543

Unlike carbon isotopes, for which the reaction network is linear, there are four distinct steps in 544 which exchange of hydrogen isotopes between methane and water may occur. The exchange does 545 not occur directly with intracellular water but through various intracellular metabolites with isotopic 546 compositions that are related to that of the intracellular water. For example, in the Mcr-catalyzed 547 reaction, one hydrogen atom is transferred from HS-CoB to CH₃-SCoM yielding methane with 548 a net CH_4 – H_2O hydrogen isotopic fractionation that depends on the reversibility of this reaction. 549 If the Mcr-catalyzed reaction fully departs from equilibrium (f = 0) to express its KFF, the total 550 $1000 ln^2 \alpha_{CH_4-H_2O}$ will deviate from the calculated EFF, even if the other three hydrogen addition 551 reactions result only in equilibrium isotope effects. In this case (See Appendix B.1 for full deriva-552 tion), the net CH₄-H₂O hydrogen isotope fractionation at a steady state between HS-CoB and 553 methane is: 554

$${}^{2}\alpha_{CH_{4}-H_{2}O}^{net} = \frac{3}{4} \left({}^{2}\alpha_{CH_{3}-SCoM \to CH_{4}}^{kin} / {}^{2}\alpha_{H_{2}O-CH_{3}-SCoM}^{eq} \right) + \frac{1}{4} \left({}^{2}\alpha_{HS-CoB \to CH_{4}}^{kin} / {}^{2}\alpha_{H_{2}O-HS-CoB}^{eq} \right).$$
(12)

In other words, even if three of the four hydrogen atoms in CH₄ reflect equilibrium between H₂O 555 and an intracellular CH3-S-CoM intermediate, departure of the last hydrogen addition reaction from 556 equilibrium will result in a disequilibrium net $1000 \ln^2 \alpha_{CH_4-H_2O}$. Using our calculated EFFs at 25 557 °C and literature KFFs for this reaction ($^{2}\alpha_{CH_{3}-SCoM\rightarrow CH_{4}}^{kin} = 0.85$ and $^{2}\alpha_{HSCoB\rightarrow CH_{4}}^{kin} = 0.41$; Scheller et al., 2013), Eq. 12 yields a $1000\ln^{2}\alpha_{CH_{4}-H_{2}O}$ value of -507%, compared to the calculated EFF of 558 559 -195%. The standard ΔG_r (ΔG_r^0) of Mcr is ~ -30 kJ mol⁻¹, and it has been suggested that during 560 methanogenesis the last hydrogen addition reaction is effectively irreversible (Thauer, 2011). Eq. 561 12 demonstrates how the KFFs that are associated with Mcr are sufficient to drive deviations of the 562 net CH₄–H₂O hydrogen isotopic fractionation from equilibrium by more than 300%. 563

564 4.4.3 Methylotrophic pathway

The methylotrophic pathway is underrepresented in the literature compared to the hydrogenotrophic pathway, and thus there is a smaller database with which to compare our results. Most of the data are from laboratory experiments, which are important as they are often used to assess the specific pathway of microbial methane production in the environment (e.g., Zhuang et al., 2018). However, the main controls on carbon and hydrogen isotopic fractionation in these pathways remain unclear, as do their dependencies on ΔG_r . Below, we discuss the implications of our predicted EFFs for the methylotrophic pathway, focusing on carbon isotopes.

Net carbon isotopic fractionation between methanol and methane $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ during 572 methylotrophic methanogenesis in laboratory cultures spans a relatively narrow range of 67-83‰ 573 (Krzycki et al., 1987; Londry et al., 2008; Penger et al., 2012, 2014), and methylotrophic enrich-574 ment cultures have carbon isotopic fractionations of up to 90% (Rosenfeld & Silverman, 1959). 575 It is unclear whether these limited observations cover the entire range of physiologically relevant 576 conditions, but it is clear that the range of $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ values is much larger than our 577 predicted EFFs that are 19.1-20.9‰ at 25-40 °C. Methanol conversion to methane is a dispro-578 portionation pathway, where methanol molecules are either fully oxidized to CO2 or reduced to 579 methane (Fig. 1). Assuming that all methanol is used to produce chemical energy and not to gen-580 erate biomass, a 3:1 ratio of reduction: oxidation $(R_{r/o})$ is expected to account for cycling of the 581 electron carriers. However, $R_{r/o}$ may vary if the cells utilize some of the methanol to generate 582 biomass, which requires reducing equivalents. The reducing equivalents in this case are reduced 583 coenzyme F₄₂₀ and ferredoxin, which are produced in the reverse methanogenesis pathway from 584 CH₃-S-CoM to CO₂. 585

We explored the dependence of $1000 \ln^{13} \alpha_{methanol-CH_4}$ and $1000 \ln^{13} \alpha_{methanol-CO_2}$ on the re-586 versibility of the pathway and on $R_{r/o}$, and to this end developed a simplified isotopic mass balance 587 to find the isotopic fractionation in the methyltrophic pathway at steady state (see Appendix B.2). 588 We reduced the pathway to its three main branches: (1) from methanol to CH_3 -S-CoM, (2) from 589 CH₃-S-CoM to CH₄, and (3) from CH₃-S-CoM to CO₂. We assign KFFs in the range -30% to 590 -50%, assign a value to $R_{r/o}$, and use our calculated EFFs at 25 °C. We assume 75% reversibility 591 between CH₃-SCoM and CO₂ ($f_3 = 0.75$), repeatedly (N = 10,000) pick random reversibility val-592 ues for reactions 1 (f_1) and 2 (f_2) from a uniform distribution between 0 and 1, and calculate the 593 possible range of $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ and $1000 \ln^{13} \alpha_{\text{methanol-CO}_2}$ values (Table 10). 594

⁵⁹⁵ For $R_{r/o} = 3:1$, $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ is 55-70%, covering the lower range of the experi-⁵⁹⁶ mental observations. At $R_{r/o} = 1:1$, the range of $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ shifts to 60-90% (Fig. ⁵⁹⁷ 9, left), closer to the observed range and suggesting that the ratio of methanol reduction to ox-⁵⁹⁸ idation may, in some cases, be appreciably lower than 3:1 due to a biosynthetic shunt. At the ⁵⁹⁹ theoretical extreme case of $R_{r/o} = 20:1$, there is almost no oxidation of methanol to CO₂, and the ⁶⁰⁰ $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ range is 35-55%. These small $1000 \ln^{13} \alpha_{\text{methanol-CH}_4}$ values indicate that the oxidation to CO_2 is required to generate the observed range of carbon isotopic fractionation between methanol and CH₄. There are currently no known available measurements of methanol limitation conditions, and we have no indication whether at very low rates of methylotrophic methanogenesis 1000ln¹³ $\alpha_{methanol-CH_4}$ values approach the EFF.

In this study, we calculated an equilibrium methanol– CO_2 carbon isotopic fractionation (1000ln¹³ $\alpha_{methanol-CO}^{eq}$ 605 of -47.8% at 25 °C, while at $R_{r/o}$ = 3:1 our model predicts a range of net carbon isotopic frac-606 tionations between -25% and 0% (Fig. 9, right). At $R_{r/o} = 1.1$, the range shifts to -20% to 607 20‰. The upper end of this range is similar to the ${\sim}20\%$ fractionations measured in a labora-608 tory cultures (Penger et al., 2012). These values are complemented by the methanol-biomass and 609 methanol-lipid carbon isotopic fractionations, which are also large and positive (>30[%]₀; Londry 610 et al., 2008) and which stem from the same metabolic branch. In our model, the large, positive 611 $1000 \ln^{13} \alpha_{\text{methanol}-\text{CO}_2}$ values required that the reversibility of the CH₃-SCoM to CO₂ branch be 612 lower than 75%, because the calculated EFF is large and negative. At low reversibility of the 613 methanol oxidation reaction, the net methanol-CO₂ fractionation shifts from the large, negative 614 EFF to the large, positive KFF. Overall, this suggests a dominance of kinetic isotope effects in 615 methylotrophic methanogenesis, at least under the conditions explored in laboratory culture exper-616 iments. 617

618 4.4.4 Acetoclastic pathway

The isotope effects in the acetoclastic pathway, similar to the methylotrophic pathway, are not well 619 studied. During acetoclastic methanogenesis, acetate dissociates to a methyl group (C1), which 620 is reduced to CH₃-H₄MPT and later released as CH₄, and to a carboxyl group (C₂), which is 621 released as CO₂. The acetoclastic pathway has a smaller carbon isotopic fractionation between 622 the substrate and CH₄ (1000ln¹³ $\alpha_{acetate(C_1)-CH_4}$) than the hydrogenotrophic and methylotrophic 623 pathways, with a range of 7-35‰ (Krzycki et al., 1987; Gelwicks et al., 1994; Penning et al., 624 2006; Londry et al., 2008; Goevert & Conrad, 2009). Published measurements of the fractionation 625 between the carboxyl group of acetate and CO_2 (1000ln¹³ $\alpha_{acetate(C_2)-CO_2}$) are in the range of 35-626 47% in laboratory experiments and as low as 9% in a rice field soil incubation (Goevert & Conrad, 627 2009). We calculated the acetate–CH₄ and acetate–CO₂ carbon isotope EFFs of 16.3% and – 628 13.3‰, respectively, at 25 °C. The equilibrium carbon isotopic fractionations between the C_1 629 atoms in acetate and those in acetyl-CoA and CH₃-H₄MPT are -0.4‰ and -3.3‰, respectively. 630 The largest equilibrium carbon isotopic fractionation in this pathway is associated with the methyl 631 group transfer between CH₃-H₄MPT and CH₃-S-CoM (17.9‰). 632

⁶³³ We explored the dependence of $1000\ln^{13}\alpha_{acetate(C_1)-CH_4}$ and $1000\ln^{13}\alpha_{acetate(C_2)-CO_2}$ on the ⁶³⁴ reversibility of reactions in the pathway using the recursive expression in Eq. 9 for linear metabolic ⁶³⁵ networks (details in Appendix A). A scenario of full reversibility (i.e., isotopic equilibrium) in ⁶³⁶ the steps before the Mcr-catalyzed reaction and variable expression of ${}^{13}\alpha_{CH_3-SCoM\rightarrow CH_4}^{kin}$ yields a ⁶³⁷ 1000ln¹³ $\alpha_{acetate(C_1)-CH_4}$ value between 16‰ and 53‰ at 25 °C depending on the reversibility of ⁶³⁸ the Mcr-catalyzed reaction (Table 10). This calculated range covers most of the range observed in ⁶³⁹ laboratory experiments, but it also dictates that 1000ln¹³ $\alpha_{acetate(C_2)-CO_2}$ is equal to the acetate–CO₂ ⁶⁴⁰ carbon isotope EFF (–13‰), much lower than the observed range. This suggests that the observed ⁶⁴¹ ranges of carbon isotopic fractionations between acetate and CO₂ or CH₄ are due to expression of ⁶⁴² kinetic isotope effects not only in the Mcr-catalyzed reaction but also in the first two reactions in ⁶⁴³ the acetoclastic pathway (catalyzed by Ack/Pta and Cdh, Table 1).

644 4.4.5 Anaerobic methane oxidation

In reverse-methanogenesis AOM, the EFFs are the inverse of those in hydrogenotrophic methano-645 genesis, with the expected $1000 \ln^{13} \alpha_{CH_4-CO_2}^{eq}$ in the range of -50% to -70% depending on tem-646 perature. To date, there are only a few measured $1000 \ln^{13} \alpha_{CH_4-CO_2}$ and $1000 \ln^2 \alpha_{CH_4-H_2O}$ values 647 of AOM in laboratory cultures, with ranges of 12-38% and 103-274%, respectively (Holler et al., 648 2009). This enrichment of methane in ¹³C and D contradicts the trends predicted by the EFFs 649 for these reactions, suggesting that under the conditions of the available experimental results, the 650 kinetic fractionation of carbon and hydrogen isotopes of steps in the pathway contributed to the 651 observed net fractionations. There are limited observations at low sulfate availability (< 0.5 mM), 652 in which methane is depleted in ¹³C during AOM activity (Yoshinaga et al., 2014; Chuang et al., 653 2018). More specifically, Chuang et al. (2018) observed an apparent CH₄-CO₂ fractionation of 654 -54.3% in the sulfate-methane transition zone (SMTZ), compared to the expected temperature-655 dependent EFF of -76.1% at 5 °C. In the case of AOM, a positive apparent $1000 \ln^{13} \alpha_{CH_4-CO_2}$ is 656 indicative of strong kinetic control over the system, whereas negative values, though not as negative 657 as the EFFs, are indicative of joint expression of equilibrium and kinetic isotope effects. 658

To explore the possible control of the reversibility on $1000 \ln^{13} \alpha_{CH_4-CO_2}$ during reverse-methanogenesis 659 AOM, we used the recursive expression in Eq. 9 for linear metabolic networks (details in Appendix 660 A). We applied the approach of Cao et al. (2019) for methanogenesis, where we followed the car-661 bon isotope reservoir effect of the seven reactions in the pathway (Table 10). We used the EFFs 662 calculated in the present study at 25 °C, and calculated a $1000 \ln^{13} \alpha_{CH_4 \rightarrow CH_3-SCoM}^{kin}$ value of -38%663 based on the measured $1000 \ln^{13} \alpha_{CH_3-SCoM \rightarrow CH_4}^{kin}$ value (-40%, Scheller et al., 2013) and our cal-664 culated $1000 \ln^{13} \alpha_{CH_4-CH_3-SCoM}^{eq}$ (-2‰). For the rest of the pathway, we assumed arbitrary but 665 reasonable $1000 \ln^{13} \alpha^{\text{kin}}$ values of -5% or -40% (Table 10). 666

⁶⁶⁷ We find that at steady state, a gradual expression of $1000\ln^{13}\alpha_{CH_4\rightarrow CH_3-SCoM}^{kin}$ (moving from f⁶⁶⁸ = 1 to 0) yields the largest $1000\ln^{13}\alpha_{CH_4-CO_2}$ range of -69% to 37%. The minimum value in this ⁶⁶⁹ case is the calculated EFF, and the maximum value is the complete expression of $1000\ln^{13}\alpha_{CH_4\rightarrow CH_3-SCoM}^{kin}$ ⁶⁷⁰ blocking any expression of isotope effects downstream of the reaction catalyzed by Mcr (Table 11). ⁶⁷¹ This covers the entire observed range of AOM $1000\ln^{13}\alpha_{CH_4-CO_2}$ in laboratory cultures (12-38‰). ⁶⁷² However, it is not clear whether this reaction can actually be fully irreversible due to its large-

positive ΔG_r^0 (+30 kJ mol⁻¹) (Thauer, 2011). Net forward reaction would likely require substantial 673 adjustment of the intracellular metabolite concentrations so that the actual ΔG_r is a small negative 674 number (i.e., relatively close to equilibrium). The observed range of AOM $1000 \ln^{13} \alpha_{CH_4-CO_2}$ can 675 also be obtained if the next downstream step, between CH3-SCoM and CH3-H4MPT, imposes a 676 reservoir effect and assuming a $1000 \ln^{13} \alpha_{CH_3-SCoM \rightarrow CH_3-H_4MPT}^{kin}$ of -40%, similar to the approach 677 taken by Alperin & Hoehler (2009). As the isotope reservoir effect occurs further downstream 678 in the AOM pathway, the range of net carbon isotopic fractionation becomes smaller, until fi-679 nally the maximal $1000 \ln^{13} \alpha_{CH_4-CO_2}$ is between -50% and -15%, depending on the magnitude 680 of ${}^{13}\alpha^{kin}_{CHO-MFR \rightarrow CO_2}$. 681

4.4.6 Mixing and combinatorial effects in clumped isotopologues

Recent years have seen a surge in measurements of the abundances of the clumped methane isotopo-683 logues Δ^{13} CH₃D and Δ^{12} CH₂D₂ from natural environments and laboratory cultures (e.g., Stolper 684 et al., 2014a; Wang et al., 2015; Douglas et al., 2016; Shuai et al., 2018; Ash et al., 2019; Giunta 685 et al., 2019). Further analytical advances have allowed measurements of clumped-isotopologue 686 abundances of other hydrocarbons (e.g., ethane; Clog et al., 2018), but the application to other 687 organic molecules has so far been limited. Natural samples of methane from marine sediments, 688 natural gas and methane hydrates often have equilibrium Δ^{13} CH₃D and Δ^{12} CH₂D₂ compositions 689 (Stolper et al., 2014a; Giunta et al., 2019; Ash et al., 2019). However, methane from laboratory cul-690 tures and some natural environments is mostly at Δ^{13} CH₃D and Δ^{12} CH₂D₂ disequilibrium (Stolper 691 et al., 2015; Wang et al., 2015, 2016; Douglas et al., 2016; Young et al., 2016, 2017; Giunta et al., 692 2019; Gruen et al., 2018; Douglas et al., 2020). There is an ongoing effort to explain the mecha-693 nisms responsible for these disequilibrium clumped-isotope compositions, and the current models 694 invoke a dependence on the rate of methanogeneis through expression of KIEs (Stolper et al., 695 2014b; Wang et al., 2015; Douglas et al., 2020; Cao et al., 2019; Douglas et al., 2020), quan-696 tum tunneling (Young et al., 2017; Young, 2019), mixing of methane sources (Young et al., 2016; 697 Douglas et al., 2016), and combinatorial effects, which are a specific case of mixing of hydrogen 698 sources, relevant mainly for D-D clumps (Yeung, 2016; Röckmann et al., 2016; Young et al., 2017; 699 Taenzer et al., 2020). Most of the modeling efforts require parameters such as the EFFs and KFFs 700 of the reactions in the methanogenesis and AOM pathways, and so far, there have been only a few 701 reports of these values (e.g., Wang et al., 2016; Whitehill et al., 2017; Gruen et al., 2018; Ono 702 et al., 2020). Furthermore, the available reports usually reflect the net isotopic fractionation (i.e., a 703 combination of EFFs and KFFs associated with the reaction network) rather than reaction-specific 704 EFFs or KFFs, and in most cases they lump together the primary and secondary KFFs. Our cal-705 culations of the EFFs may be useful when implementing such models to explain disequilibrium 706 methane clumped-isotope compositions. 707

708

Cao et al. (2019) explored the effects of the reversibility of the enzymatically-catalyzed re-

actions in hydrogenotrophic methanogenesis on the Δ^{13} CH₃D- Δ^{12} CH₂D₂ space (Section 4.4.1). 709 They defined scenarios, denoted by binary reversibility (i.e., f = 0 or 1) vectors of the four hydro-710 gen addition reactions (e.g., [1,1,1,1] when all reactions are reversible, [0,0,0,0] when all reactions 711 are irreversible). They assumed an identical hydrogen isotope KFF for each of the four reactions, 712 an identical EFF for all four reactions, and hydrogen isotopic equilibrium between the intracel-713 lular hydrogen pools (F₄₂₀H₂, HS-CoB and H₂O). Drawing from a wide distribution of KFF and 714 EFF values, Cao et al. (2019) showed that the predicted range of Δ^{13} CH₃D and Δ^{12} CH₂D₂ covers 715 the entire range of laboratory and natural observations of microbial methane. Using a compara-716 ble conceptual framework and EFFs calculated for metal-catalyzed abiotic formation of methane, 717 Young (2019) similarly found that the entire laboratory and environmental ranges of $\Delta^{13}CH_3D$ 718 and Δ^{12} CH₂D₂ could be reproduced. However, in the absence of EFFs relevant to the large organic 719 molecules involved in hydrogenotrophic methanogenesis, both studies made assumptions (identical 720 EFFs and KFFs), allowances (wide distributions of EFF and KFF values), and analogies (microbial 721 methanogenesis versus metal-catalyzed radical reactions) that may not be appropriate. 722

We used the framework presented in Table 1 in Cao et al. (2019) to recalculate the Δ^{13} CH₃D-723 Δ^{12} CH₂D₂ ranges using our calculated EFFs and Δ_i^{eq} values together with the forward and reverse 724 KFFs of the Mcr-catalyzed reaction as measured by Scheller et al. (2013). As we currently do not 725 have good estimates for the KFFs other than that of the Mcr-catalyzed reaction, we adopted the dis-726 tributions used by Cao et al. (2019) for these KFFs. Under these conditions, the range of Δ^{13} CH₃D 727 and Δ^{12} CH₂D₂ values were significantly offset from those calculated by Cao et al. (2019) under 728 all three reversibility scenarios (Fig. 10). Our calculated $\Delta^{12}CH_2D_2$ values in all three scenarios 729 are more negative by $\sim 20-100\%$ than values typical of hydrogenotrophic methanogenesis, which 730 are not lower than -20% (Giunta et al., 2019; Young et al., 2017). It is unlikely that the binary 731 reversibility vectors are responsible for this significant Δ^{12} CH₂D₂ 'anti-clumping', as these arbi-732 trary, end-member scenarios should cover the possible range of $\Delta^{12}CH_2D_2$ values. Instead, these 733 results may implicate the assumption of an equilibrium between the intracellular hydrogen pools 734 as the cause of the mismatch between observed and calculated Δ^{12} CH₂D₂ values. This theoretical 735 exercise clearly highlights the importance of using robust EFFs and a more realistic description 736 of the metabolic pathway to shed light on the possible determinants of methane clumped-isotope 737 signatures. 738

739 5 CONCLUSIONS

This study provides a set of equilibrium carbon, hydrogen and clumped isotope fractionation fac-740 tors associated with methanogenesis and anaerobic oxidation of methane, calculated by DFT at 741 the M06-L/def2 TZVP level of theory with the SMD implicit solvation model. We compared our 742 calculations to previous experimentally measured carbon and hydrogen isotope EFFs of the small, 743 volatile end-members of these metabolic pathways (CO₂, CH₄, H₂O, H₂). Notably, we suggest that 744 the CH₄-H₂O hydrogen isotope EFF at low (biologically-relevant) temperatures is probably more 745 positive than the values obtained from extrapolation from high-temperature (>200 °C) experimen-746 tal results. Experimental results with which one would normally compare our calculated EFFs are 747 mostly absent, and we based our computational pipeline on a previous exploration of the optimal 748 method of calculating of EFFs for large organic molecules. 749

We used our calculated EFFs to probe the isotopic fractionation among molecules in the most 750 important metabolic pathways of anaerobic production and oxidation of methane-hydrogenotrophic, 751 methylotrophic and acetoclastic methanogenesis-and anaerobic oxidation of methane. In these 752 pathways, the net isotopic fractionation between the reactants and products are determined by a 753 combination of EFFs and KFFs, and the degree of expression of each depends on the metabolic 754 state of the organisms. In extremely energy-limited environments, the extracellular reactants and 755 products may be in isotopic equilibrium. In this case, the intracellular reactions will also be at or 756 close to equilibrium, each expressing its respective EFF. If more energy is available, departure from 757 equilibrium of some (but not necessarily all) of the intracellular reactions in the pathway results in 758 net fractionations that reflect a combination of their respective EFF and KFF, the contribution of 759 which depends on the degree of departure of the reactions from equilibrium. 760

In the hydrogenotrophic methanogenesis pathway, we suggest that the large range of CO₂-761 CH₄ carbon isotope fractionations is a product of differential departure from reversibility along 762 the metabolic pathway rather than a uniform departure of all reactions or a departure of only one 763 of the reactions from equilibrium. In the methylotrophic pathway, the calculated CH₃OH-CH₄ 764 carbon isotope fractionation is smaller than the apparent fractionations observed in environmental 765 and laboratory culture samples by at least 50%. Using a numerical solution to a simplified model 766 of the methylotrophic pathway, we suggest that the large observed carbon isotope fractionations 767 are due to utilization of some of the electrons from methanol to fix biomass rather than to produce 768 methane, resulting in a higher proportion of methanol oxidation to CO₂ than reaction stoichiometry 769 would dictate in the absence of biomass fixation. 770

⁷⁷¹ We also used our calculated EFFs to probe the clumped-isotope compositions of methane in ⁷⁷² the hydrogenotrophic pathway based on several scenarios for reaction reversibility. Using a com-⁷⁷³ mon assumption of isotopic equilibrium between H₂O and the intracellular hydrogen donors, we ⁷⁷⁴ found that the abundance of the ¹²CH₂D₂ clumped isotopogue of methane is lower than observed ⁷⁷⁵ in laboratory cultures. Mixing (combinatorial) effects of hydrogen transferred to methane from in-⁷⁷⁶ tracellular hydrogen pools ($F_{420}H_2$ and HS-CoB) that are out of equilibrium with the intracellular ⁷⁷⁷ water is a possible explanation for this mismatch. We suggest that incorporating realistic EFFs ⁷⁷⁸ and KFFs in future models and using more accurate descriptions of the metabolic pathway will be ⁷⁷⁹ critical in gaining a better understanding of the biochemical mechanisms that govern the clumped ⁷⁸⁰ isotopic compositions of methane and other organic molecules.

The EFF values we discussed in this work are universal among all organisms that utilize similar 781 organic compounds, irrespective of possible inter-species differences in the enzymes that catalyze 782 reactions among these compounds. In contrast, KFFs may often be strain-specific, due to differ-783 ences in the transition state of the reaction enforced by the enzyme active site (Bradley et al., 2016). 784 Moreover, theoretical predictions of KFFs are currently considered harder to obtain than EFFs, and 785 also often less accurate. To date, there is an experimental estimate of only a single KFF in the 786 methanogenesis pathway (for Mcr; Scheller et al. 2013), from a single organism. Further studies of 787 KFFs for the other enzymes in the pathway, preferably from several organisms, are sorely needed 788 to complement the EFFs provided here. 789

The simplified examples discussed in this work provide a glimpse of the insights into complex biological systems, made available by accurate determination of equilibrium isotope fractionation factors. In the future, the comprehensive set of EFFs calculated here can be used in investigations of biologically-induced isotope effects in methanogenesis and AOM, to expand our understanding of the interaction between microorganisms and their environment, and the way in which these interactions are recorded in the stable isotope composition of natural materials.

796 **RESEARCH DATA**

⁷⁹⁷ All code and data for the models presented here are posted in a GitHub repository (https://github.com/jagropp/EFFs

798 ACKNOWLEDGMENTS

799 We would like to thank Shuhei Ono, Wil Leavitt and an anonymous reviewer for suggestions and

⁸⁰⁰ comments that helped to improve this manuscript. I.H. acknowledges support from a European

⁸⁰¹ Research Council Starting Grant No. 337183. J.G. acknowledges support from the Weizmann

⁸⁰² Institute Sustainability and Energy Research Initiative.

#	Enzyme	Reactant		Product
1	Fmd*	$CO_2 + Fd_{red} + MFR + 2H^+$	\rightleftharpoons	CHO- MFR + Fd_{ox} + H_2O
2	Ftr	CH O-MFR + H_4 MPT	\rightleftharpoons	$CHO-H_4MPT + MFR$
3	Mch	CH O-H ₄ MPT + H ⁺	\rightleftharpoons	$\mathbf{CH} \equiv \mathbf{H}_4 \mathbf{MPT}^+ + \mathbf{H}_2 \mathbf{O}$
4	Mtd	$\mathbf{CH} \equiv \mathbf{H}_{4}\mathbf{MPT}^{+} + \mathbf{F}_{420}\mathbf{H}_{2}$	\rightleftharpoons	$CH_2 = H_4MPT + F_{420} + H^+$
5	Hmd	$\mathbf{CH} \equiv \mathbf{H}_4 \mathbf{MPT}^+ + \mathbf{H}_2$	$\stackrel{\longrightarrow}{\leftarrow}$	$CH_2 = H_4MPT$
6	Mer	$\mathbf{CH}_2 = \mathbf{H}_4 \mathbf{MPT} + \mathbf{F}_{420} \mathbf{H}_2$	\rightleftharpoons	CH_3 - H_4MPT + F_{420}
7	Mtr	CH ₃ -H ₄ MPT + HS-CoM	$\stackrel{\longrightarrow}{\leftarrow}$	CH_3 -SCoM + H ₄ MPT
8	Mcr	CH ₃ -SCoM + H S-CoB	$\stackrel{\longrightarrow}{\leftarrow}$	CH ₄ + CoM-S-S-CoB
9	Frh*	$H_2 + F_{420}$	$\stackrel{\longrightarrow}{\leftarrow}$	$F_{420}\mathbf{H}_2$
10	Hdr*	$H_2 + CoM-S-S-CoB + Fd_{ox}$	$\stackrel{\longrightarrow}{\leftarrow}$	H S-CoB + HS-CoM + Fd_{red} + 2H ⁺
11	Mta	CH ₃ OH + HS-CoM	$\stackrel{\longrightarrow}{\leftarrow}$	CH_3 -SCoM + H ₂ O
12	Ack/Pta	CH_3 - COO^- + ATP + CoA-SH	$\stackrel{\longrightarrow}{\leftarrow}$	CH_3 - $COSCoA + ADP + HPO_4^{2-}$
13	Cdh	CH_3 - $COSCoA + H_4MPT + Fd_{ox}$	$\stackrel{\longrightarrow}{\leftarrow}$	$\mathbf{CH}_{3}\text{-}\mathbf{H}_{4}\mathbf{MPT} + \mathbf{CO}_{2} + \mathbf{CoA}\text{-}\mathbf{SH} + \mathbf{Fd}_{red}$

Table 1: Enzymes that are included in this report and the reactions they catalyze. The hydrogen and carbon atoms of interest are shown in bold. Note that we include only the reactions that participate in carbon and hydrogen isotope exchange during methanogenesis and AOM.

* In these reactions, the source of the hydrogen atom is a proton from H_2O , while H_2 is the electron donor of the reaction.

Abbreviations: Fmd - formyl-methanofuran dehydrogenase; Ftr - formyl transferase; Mch - methylene-H₄MPT cyclohydrolase; Mtd - F_{420} -dependent methylene-H₄MPT dehydrogenase; Hmd - H₂-forming methylene dehydrogenase; Mer - methylene-H₄MPT reductase; Mtr - methyl transferase; Mcr - methyl-CoM reductase; Frh - F_{420} -reducing hydrogenase; Hdr - heterodisulfide reductase; Mta - methanol:coenzyme M methyltransferase; Ack - acetate kinase; Pta - phosphotransacetylase; Cdh - CO-dehydrogenase/acetyl-CoA synthase; MFR - methanofuran; H₄MPT - tetrahydromethanopterin; F_{420} - oxidized coenzyme F_{420} ; $F_{420}H_2$ - reduced coenzyme F_{420} ; Fd - ferredoxin; HS-CoM - Coenzyme M; HS-CoB - Coenzyme B; CoM-S-S-CoB - heterodisulfide; CoA-SH - coenzyme A.

Table 2: Coefficients for the fourth-order polynomial fits to ${}^{2}\beta$ values. Computed at the M06-L/def2-TZVP level of theory, between 273.15 and 973.15 K (0-700 °C). The fit to all values is of the form $A \times 10^{12}/T^{4} + B \times 10^{9}/T^{3} + C \times 10^{6}/T^{2} + D \times 10^{3}/T + E$. For compounds with two or more inequivalent hydrogen atoms, the position-specific isotope substitutions are marked in bold font. For compounds with steric centers, we present the relevant stereoisomers (pro-R or pro-S). For a full list of the RPFR values see Tables S.1 and S.2.

Compound	$A \times 10^{-3}$	$B \times 10^{-2}$	$C \times 10^{-2}$	$D \times 10^{-2}$	Е	$^{2}\beta$ (25 °C)	C valence
CHO-MFR	167.555	-84.343	246.766	-219.067	1.879	11.6617	+2
$CHO-H_4MPT$	168.547	-85.518	249.729	-222.961	1.89616	11.5740	+2
$CH \equiv H_4MPT^+$	195.478	-101.046	288.642	-259.554	2.04363	12.4210	+2
CH ₂ =H ₄ MPT (pro-S)	230.033	-120.302	338.561	-317.557	2.27702	13.4320	0
CH ₂ =H ₄ MPT (pro-R)	230.714	-121.129	341.502	-322.530	2.30194	13.3951	0
СН ₃ -ОН	182.591	-91.671	267.380	-238.241	1.95795	12.5648	-2
CH ₃ -H ₄ MPT	180.957	-91.660	267.497	-239.266	1.96388	12.3466	-2
CH ₃ -SCoM	164.319	-82.161	242.168	-210.262	1.84204	11.8269	-2
CH_3 - COO^-	155.320	-77.350	230.683	-198.767	1.79846	11.5532	-3
CH ₃ -COSCoA	157.643	-78.365	232.909	-200.537	1.80484	11.6615	-3
CH ₄ (g)	130.627	-62.458	194.656	-158.370	1.63645	11.1873	-4
$H_2O(g)$	137.421	-64.383	204.176	-151.087	1.61410	12.6136	-
$H_{2}(g)$	4.783	-1.839	16.090	23.524	0.92746	3.4378	_
$F_{420}\mathbf{H}_2 \text{ (pro-S)}$	184.583	-94.693	273.108	-247.161	1.99267	12.0564	_
HS-CoB	34.348	-14.865	63.062	-30.632	1.11648	5.9213	_

Table 3: Coefficients for the fourth-order polynomial fits to ${}^{13}\beta$ values. Computed at the M06-L/def2-TZVP level of theory, between 273.15 and 973.15 K (0-700 °C). The fit to all values is of the form A × $10^{12}/T^4 + B \times 10^9/T^3 + C \times 10^6/T^2 + D \times 10^3/T + E$. For compounds with two or more inequivalent carbon atoms, the position-specific isotope substitutions are marked in bold font. For a full list of the RPFR values see Tables S.1 and S.2.

Compound	A×10 ⁻⁶	$B \times 10^{-5}$	C×10 ⁻⁴	D×10 ⁻⁴	Е	¹³ β (25 °C)	C valence
CO ₂ (g)	337.660	-380.158	215.297	194.858	0.99085	1.1977	+4
CH_3 - COO^-	376.418	-496.601	301.421	-55.714	1.00117	1.1818	+3
CH ₃ -COSCoA	220.645	-331.492	228.555	-3.505	0.99906	1.1578	+3
CHO-MFR	342.806	-451.468	266.672	16.754	0.998	1.1769	+2
CHO-H ₄ MPT	365.873	-466.108	272.013	-3.047	0.99925	1.1747	+2
$CH \equiv H_4 MPT^+$	284.386	-389.139	249.574	32.095	0.99791	1.1786	+2
CH ₂ =H ₄ MPT	277.203	-354.319	223.792	20.167	0.99867	1.1586	0
CH ₃ -OH	234.470	-310.213	180.119	90.771	0.99613	1.1418	-2
CH ₃ -H ₄ MPT	243.089	-301.290	177.597	80.947	0.99658	1.1406	-2
CH ₃ -SCoM	152.839	-197.916	126.247	114.374	0.99526	1.1203	-2
CH ₃ -COOH	100.086	-177.146	136.586	125.940	0.99473	1.1364	-3
CH ₃ -COSCoA	202.747	-257.052	158.118	103.706	0.99558	1.1369	-3
CH ₄ (g)	96.945	-144.788	91.262	196.812	0.99193	1.1182	-4

Table 4: **Coefficients for the fourth-order polynomial fits to** ^{13,2}**RPFR values.** Computed at the M06-L/def2-TZVP level of theory, between 273.15 and 973.15 K (0-700 °C). The fit to all values is of the form $A \times 10^{12}/T^4 + B \times 10^9/T^3 + C \times 10^6/T^2 + D \times 10^3/T + E$. For compounds with prochiral centers, we present the relevant stereoisomers (pro-R or pro-S). For a full list of the RPFR values see Tables S.1 and S.2.

Compound	$A \times 10^{-3}$	$B \times 10^{-2}$	$C \times 10^{-2}$	D×10 ⁻²	Е	^{13,2} RPFR (25 °C)	C valence
¹³ CDO-MFR	243.909	-128.453	359.899	-341.736	2.37839	13.786	+2
¹³ CDO-H ₄ MPT	244.502	-129.601	362.748	-345.432	2.39398	13.658	+2
$^{13}CD \equiv H_4MPT^+$	284.794	-153.837	424.386	-407.709	2.64816	14.711	+2
¹³ CHD=H ₄ MPT (pro-S)	324.191	-176.815	483.570	-477.038	2.93127	15.643	0
¹³ CHD=H ₄ MPT (pro-R)	324.277	-177.147	484.820	-479.472	2.94235	15.599	0
¹³ CH ₂ D-OH	249.049	-130.131	366.133	-344.898	2.39117	14.429	-2
¹³ CH ₂ D-H ₄ MPT	246.024	-129.336	364.234	-344.048	2.39097	14.161	-2
¹³ CH ₂ D-SCoM	216.035	-111.966	319.046	-293.357	2.18153	13.327	-2
$^{13}CH_2D$ -COO $^-$	209.806	-108.220	309.711	-283.216	2.14019	13.201	-3
¹³ CH ₂ D-COSCoA	214.231	-110.773	316.256	-290.118	2.16833	13.330	-3
¹³ CH ₃ D (g)	168.779	-83.028	247.554	-213.261	1.85576	12.583	-4

Table 5: Coefficients for the fourth-order polynomial fits to ^{2,2}RPFR values. Computed at the M06-L/def2-TZVP level of theory, between 273.15 and 973.15 K (0-700 °C). The fit to all values is of the form $A \times 10^{12}/T^4 + B \times 10^9/T^3 + C \times 10^6/T^2 + D \times 10^3/T + E$. For a full list of the RPFR values see Tables S.1 and S.2.

Compound	$A \times 10^{-1}$	В	С	D	Е	^{2,2} RPFR (25 °C)	C valence
¹² CD ₂ =H ₄ MPT	205.153	-143.588	381.662	-438.791	184.900	185.1934	0
¹² CHD ₂ -OH	160.503	-110.846	293.114	-335.342	141.135	160.2113	-2
¹² CHD ₂ -H ₄ MPT	156.170	-107.879	285.365	-326.515	137.466	158.4884	-2
¹² CHD ₂ -SCoM	135.033	-92.796	245.092	-279.893	117.863	143.8200	-2
$^{12}\text{CHD}_2\text{-}\text{COO}^-$	125.327	-85.838	226.473	-258.318	108.785	135.5578	-3
¹² CHD ₂ -COSCoA	128.799	-88.306	233.059	-265.928	111.982	138.0637	-3
$^{12}CH_2D_2(g)$	106.778	-72.203	189.641	-215.319	90.609	128.7908	-4

Table 6: Equilibrium carbon and hydrogen isotope fractionation factors at 25 °C, 50 °C and 75 °C. Notations: (g) gas phase, (l) liquid phase, (S) is a D substitution in the pro-S face, and (R) is a D substitution in the pro-R face of molecules with a prochiral center. In the acetoclastic pathway, C_1 is the methyl-bound carbon atom, and C_2 is the carboxyl or CoA-bound carbon atom. The full reactions are listed in Table 1.

Enzyme	Reactant	Product	100	$\partial \ln^{13} \alpha^{eq}$	(‰)	$1000 \ln^2 \alpha^{eq} (\%)$			
			25 °C	50 °C	75 °C	25 °C	50 °C	75 °C	
		Hydrogenoti	rophic p	athway					
Net	$CO_{2(g)}$ / $H_2O_{(l)}$	$CH_{4(g)}$	69.4	61.0	56.9	195.3	177.9	165.6	
Fmd	$CO_{2(g)}$ / $H_2O_{(l)}$	CHO-MFR	17.5	16.4	15.6	153.2	149.7	148.2	
Ftr	CHO-MFR	CHO-H ₄ MPT	1.9	1.9	1.9	8.5	8.5	8.3	
Mch	CHO-H ₄ MPT	$CH\!\equiv\!H_4MPT^+$	-3.3	-2.9	-2.7	-70.5	-65.2	-61.1	
Mtd	$F_{420}H_{2}(S)$	CH ₂ =H ₄ MPT (R)	_	-	-	-105.2	-94.0	-84.3	
Mtd	$CH \equiv H_4 MPT^+$	CH ₂ =H ₄ MPT (S)	16.9	15.6	14.8	-78.2	-68.3	-59.5	
Hmd	H ₂	CH ₂ =H ₄ MPT (R)	_	-	-	-1359.0	-1202.1	-1069.6	
Mer	$F_{420}H_{2}(S)$	CH ₃ -H ₄ MPT	-	-	-	-23.9	-25.8	-27.0	
Mer (s)	CH ₂ =H ₄ MPT (R)	CH ₃ -H ₄ MPT	15.8	13.2	12.0	81.3	68.2	57.3	
Mer	CH ₂ =H ₄ MPT (S)	CH ₃ -H ₄ MPT	_	_	_	84.0	71.0	60.2	
Mtr	CH ₃ -H ₄ MPT	CH ₃ -SCoM	18.1	15.9	14.9	42.9	38.2	34.1	
Mcr	HS-CoB	$CH_{4(g)}$	_	_	_	-635.8	-580.0	-531.6	
Mcr	CH ₃ -SCoM	CH _{4(g)}	2.1	0.8	0.2	55.4	44.2	35.3	
		Acetoclas	stic path	way					
Net	$CH_{3}\text{-}COO^{-}(C_{1})$	$CH_{4(g)}$	15.7	13.5	12.1	31.9	23.6	17.2	
Net	$CH_{3}-COO^{-}(C_{2})$	CO _{2(g)} / H ₂ O _(l)	-13.3	-13.4	-13.5	-162.1	-153.7	-147.4	
Ack/Pta	CH_{3} - $COO^{-}(C_{1})$	CH ₃ -COSCoA (C ₁)	-0.4	-0.4	-0.3	-9.4	-8.5	-7.7	
Cdh	CH ₃ -COSCoA (C ₁)	CH ₃ -H ₄ MPT	-3.2	-2.8	-2.6	-57.0	-50.2	-44.5	
		Methylotro	phic pat	hway					
Net	CH ₃ OH	$CH_{4(g)}$	20.3	18.0	16.5	115.8	98.9	85.0	
Net	CH ₃ OH	$CO_{2(g)} / H_2O_{(l)}$	-46.7	-42.9	-40.4	-79.3	-79.1	-81.0	
Mta	CH ₃ OH	CH ₃ -SCoM	18.6	17.2	16.3	60.4	54.8	49.7	
		Electro	on cyclin	g					
Frh	$H_2O_{\left(l\right)}$	$F_{420}H_2(S)$	_	_	_	120.9	121.4	123.2	
Hdr	$H_2O_{(1)}$	HS-CoB	_	_	_	831.1	757.9	697.2	

Table 7: Doubly-substituted ("clumped") isotopologue compositions in methanogenesis at 0 °C, 25 °C, 50 °C, 75 °C and 100 °C. Computed at the M06-L/def2-TZVP level of theory. The deviation of the abundance of the ¹³C–D and D–D clumped isotopologue from the stochastic distribution is expressed as $\Delta_i^{\text{eq}} = (R_i/R_i^*) - 1$, where R_i is the calculated ratio of the doubly-substituted isotopologue to the unsubstituted isotopologue, and R_i^* is this ratio at a stochastic distribution of the rare isotopes.

Compound			$\Delta_i^{ m eq}$ (‰)						
	0 °C	25 °C	50 °C	75 °C	100 °C				
¹³ C–D									
¹³ CDO-MFR	5.197	4.482	3.898	3.412	3.002				
¹³ CDO-H ₄ MPT	4.850	4.211	3.686	3.248	2.872				
$^{13}CD \equiv H_4MPT^+$	5.159	4.560	4.060	3.644	3.286				
¹³ CHD=H ₄ MPT (pro-S)	5.382	4.692	4.119	3.636	3.217				
¹³ CHD=H ₄ MPT (pro-R)	5.533	4.826	4.239	3.745	3.316				
¹³ CH ₂ D-OH	6.350	5.499	4.796	4.212	3.718				
¹³ CH ₂ D-H ₄ MPT	5.989	5.219	4.582	4.039	3.581				
¹³ CH ₂ D-SCoM	6.302	5.491	4.819	4.253	3.770				
$^{13}CH_2D$ -COO ⁻	5.959	5.206	4.581	4.052	3.599				
¹³ CH ₂ D-COSCoA	5.971	5.218	4.589	4.065	3.615				
¹³ CH ₃ D (g)	6.606	5.738	5.017	4.413	3.896				
	D)-D							
$^{12}\text{CD}_2=H_4\text{MPT}$	15.694	13.287	11.281	9.604	8.198				
¹² CHD ₂ -OH	19.577	16.141	13.372	11.128	9.303				
¹² CHD ₂ -H ₄ MPT	18.865	15.608	12.968	10.819	9.062				
¹² CHD ₂ -SCoM	18.876	15.606	12.958	10.804	9.043				
¹² CHD ₂ -COO ⁻	20.334	16.756	13.872	11.535	9.631				
¹² CHD ₂ -COSCoA	19.591	16.132	13.345	11.089	9.253				
$^{12}CH_2D_2(g)$	22.621	18.497	15.209	12.571	10.442				

Table 8: Equilibrium ¹³C–D clumped isotopologue fractionation factors at 25 °C, 50 °C and 75 °C. The deviation of the clumped isotopologue equilibrium fractionation factors (EFFs) from the product of the hydrogen and carbon EFFs is denoted by ^{13,2} γ^{eq} where ^{13,2} $\gamma^{eq} = \frac{13,2}{\alpha^{eq}} / (\frac{13\alpha^{eq} \times 2\alpha^{eq}}{\alpha^{eq}})$. Notation: (g) gas phase. The full reactions are listed in Table 1.

Enzyme	Reactant/s	Product	100	$0\ln^{13,2}\alpha^{eq}$	(‰)	$^{13,2}\gamma^{\mathrm{eq}}$							
			25 °C	50 °C	75 °C	25 °C	50 °C	75 °C					
	Hydrogenotrophic pathway												
Fmd	$^{13}\text{CO}_2$ + HDO	¹³ CDO-MFR	166.2	162.2	160.4	0.9955	0.9961	0.9966					
Ftr	¹³ CDO-MFR	¹³ CDO-H ₄ MPT	10.6	10.6	10.4	1.0003	1.0002	1.0002					
Mch	¹³ CDO-H ₄ MPT	¹³ CD-H ₄ MPT	-74.2	-68.5	-64.0	0.9997	0.9996	0.9996					
Mtd	13 CH-H ₄ MPT + F ₄₂₀ HD	13 CHD-H ₄ MPT [†]	-92.6	-82.5	-73.7	0.9953	0.9959	0.9964					
Mtd	13 CD-H ₄ MPT + F ₄₂₀ H ₂	¹³ CHD-H ₄ MPT [‡]	-61.2	-52.9	-45.4	0.9997	0.9998	0.9999					
Hmd	13 CH-H ₄ MPT + HD	$^{13}\text{CHD-H}_4\text{MPT}^\dagger$	-1346.4	-1190.6	-1059.0	0.9953	0.9959	0.9964					
Mer	13 CH ₂ -H ₄ MPT + F ₄₂₀ HD	¹³ CH ₂ D-H ₄ MPT	-13.9	-17.6	-20.2	0.9948	0.9954	0.9960					
Mer	$^{13}\text{CHD-H}_4\text{MPT}^\dagger + \text{F}_{420}\text{H}_2$	¹³ CH ₂ D-H ₄ MPT	96.0	80.5	67.8	0.9995	0.9995	0.9996					
Mer	13 CHD-H ₄ MPT [‡] + F ₄₂₀ H ₂	¹³ CH ₂ D-H ₄ MPT	98.8	83.5	70.8	0.9996	0.9997	0.9997					
Mtr	¹³ CH ₂ D-H ₄ MPT	¹³ CH ₂ D-SCoM	61.0	54.2	48.4	0.9997	0.9998	0.9998					
Mcr	¹³ CH ₃ -SCoM + DS-CoB	$^{13}CH_{3}D(g)$	-639.5	-584.2	-536.2	0.9943	0.9950	0.9956					
Mcr	13 CH ₂ D-SCoM + HS-CoB	$^{13}CH_3D(g)$	57.1	44.7	35.0	0.9998	0.9998	0.9998					
		Acetoclast	ic pathway	7									
Ack/Pta	$^{13}\text{CH}_2\text{D-COO}^-$	¹³ CH ₂ D-COSCoA	-10.0	-9.0	-8.2	1.0000	1.0000	1.0000					
Cdh	¹³ CH ₂ D-COSCoA	¹³ CH ₂ D-H ₄ MPT	-60.1	-52.9	-46.9	1.0000	1.0000	1.0000					
	Methylotrophic pathway												
Mta	¹³ CH ₂ D-OH	¹³ CH ₂ D-SCoM	79.6	72.2	65.6	1.0000	1.0000	1.0000					

Notes: (†) ¹³CHD-H₄MPT with D in the pro-R face. (‡) ¹³CHD-H₄MPT with D in the pro-S face.

Table 9: Equilibrium D–D clumped isotopologue fractionation factors at 25 °C, 50 °C and 75 °C. The deviation of the clumped isotopologue equilibrium fractionation factors (EFFs) from the product of the hydrogen EFFs is denoted by ${}^{2,2}\gamma^{eq}$ where ${}^{2,2}\gamma^{eq} = {}^{2,2}\alpha^{eq}/({}^{2}\alpha^{eq} \times {}^{2}\alpha^{eq})$. Notation: (g) gas phase. The full reactions are listed in Table 1.

Enzyme	Reactant/s	Product	$1000 \ln^{2,2} \alpha^{eq}$ (%)			$^{2,2}\gamma^{\mathrm{eq}}$		
			25 °C	50 °C	75 °C	25 °C	50 °C	75 °C
		Hydrogenotro	phic pathy	way				
Mtd	12 CD-H ₄ MPT + F ₄₂₀ HD	¹² CD ₂ -H ₄ MPT	-196.7	-173.6	-153.4	0.9868	0.9888	0.9904
Hmd	12 CD-H ₄ MPT + HD	¹² CD ₂ -H ₄ MPT	-1450.5	-1281.7	-1138.8	0.9868	0.9888	0.9904
Mer	12 CHD-H ₄ MPT [†] + F ₄₂₀ HD	¹² CHD ₂ -H ₄ MPT	44.7	32.3	22.4	0.9846	0.9872	0.9893
Mer	12 CD ₂ -H ₄ MPT + F ₄₂₀ H ₂	¹² CHD ₂ -H ₄ MPT	163.2	137.5	116.4	0.9978	0.9984	0.9988
Mtr	¹² CHD ₂ -H ₄ MPT	¹² CHD ₂ -SCoM	85.8	76.4	68.2	1.0000	1.0000	1.0000
Mcr	¹² CH ₂ D-SCoM + DS-CoB	$^{12}CH_2D_2(g)$	-598.7	-550.9	-508.8	0.9818	0.9850	0.9876
Mcr	¹² CHD ₂ -SCoM + HS-CoB	$^{12}CH_2D_2(g)$	107.9	86.1	68.9	0.9972	0.9978	0.9983
		Acetoclasti	c pathway	r				
Ack/Pta	¹² CH ₂ D-COO ⁻	¹³ CH ₂ D-COSCoA	-18.1	-16.4	-14.9	1.0006	1.0005	1.0004
Cdh	¹² CH ₂ D-COSCoA	¹³ CH ₂ D-H ₄ MPT	-113.5	-100.1	-88.7	1.0005	1.0004	1.0003
		Methylotrop	hic pathwa	ay				
Mta	¹² CH ₂ D-OH	¹³ CH ₂ D-SCoM	121.4	110.0	99.7	1.0005	1.0004	1.0003

Notes: (†) 13 CHD-H₄MPT with D in the pro-S face.

Table 10: Scenarios of reversibility control over the net carbon isotopic fractionation in the considered **pathways.** In all scenarios, the reversibility f (defined as the ratio of the backward and forward fluxes) of each enzymatically catalyzed reaction ranges from 1 (i.e., fully reversible) to 0 (i.e., irreversible). References are to previous reports that used the scenario.

Scenario description	Ref.	1000ln ¹³ α
Hydrogenotrophic pathway (Section 4.4.1)		
(<i>i</i>) Uniform departure from equilibrium of all reactions ($f = 1 \rightarrow 0$).	1	20% to $69%$
(<i>ii</i>) Equilibrium between CO ₂ and CH ₃ -SCoM ($f = 1$), gradual departure from equilibrium of the Mcr-catalyzed reaction ($f = 1 \rightarrow 0$).	2, 3	69% to $106%$
(<i>iii</i>) Pathway reduced to four carbon reduction steps (Fmd, Mtd, Mer, Mcr), with f of either 0 or 1 for each.	4	20‰ to 106‰
Methylotrophic pathway (Section 4.4.3)		
Variable reversibility between CH_3OH and CH_3 -SCoM, and between CH_3 -SCoM and CH_4 (<i>f</i> drawn from a uniform distribution between 0 and 1). Between CH_3 -SCoM and $CO_2 f$ is set to 0.75.	_	Depends on $R_{r/o}$, the reduction:oxidation ratio of methanol
Acetoclastic pathway (Section 4.4.4)		
Equilibrium between CH ₃ -COO ⁻ and CH ₃ -SCoM ($f = 1$), gradual departure from equilibrium of the Mcr-catalyzed reaction ($f = 1 \rightarrow 0$).	_	16% to $53%$
AOM (Section 4.4.5)		
All reactions are fully reversible ($f = 1$), with the exception of a single reaction that is irreversible ($f = 0$). The identity of the irreversible reaction is varied to produce the range.	2	-69‰ to 37‰

(1) Wang et al. (2015); (2) Alperin & Hoehler (2009); (3) Stolper et al. (2015); (4) Cao et al. (2019).

Table 11: **Carbon isotopic fractionation during AOM.** The maximum net CH_4-CO_2 carbon isotope fractionation (1000ln¹³ $\alpha_{CH_4-CO_2}$) that can be obtained at a steady state when a single reaction is irreversible (f = 0) and all other reactions remain completely reversible (f = 1), using the framework outlined in Appendix A. We used the experimentally-determined KFF of Mcr (1000ln¹³ $\alpha_{CH_4\to CH_3-SCoM}^{kin} = -38\%$; Scheller et al., 2013). The KFFs of the other enzymes were uniformly assigned values of -5% or -40%.

	$1000 \ln^{13} \alpha_{CH_4-CO_2}$	
Irreversible reaction	$1000 \ln^{13} \alpha^{\rm kin} = -5\%$	$1000 \ln^{13} \alpha^{\rm kin} = -40\%$
Mcr	37.9	37.9
Mtr	3.0	37.9
Mer	-14.0	20.0
Mtd	-30.6	4.4
Mch	-47.8	-12.7
Ftr	-44.4	-9.3
Fmd	-49.9	-14.8

FIGURES

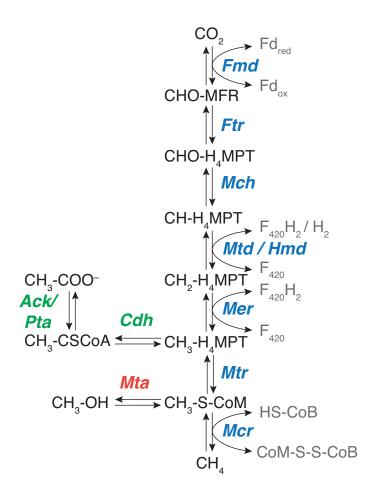


Figure 1: Metabolic pathways of methanogenesis and anaerobic oxidation of methane (AOM). The metabolite names are in black, electron carriers in gray, and enzymes in bold-italicized colored fonts. The reactions that are unique to the acetoclastic and methylotrophic pathways are in green and red, respectively. The reactions in blue are the hydrogenotrophic and AOM pathways, and are common also with the acetoclastic and methylotrophic pathways. All the reactions are assumed to have the potential for full reversibility.

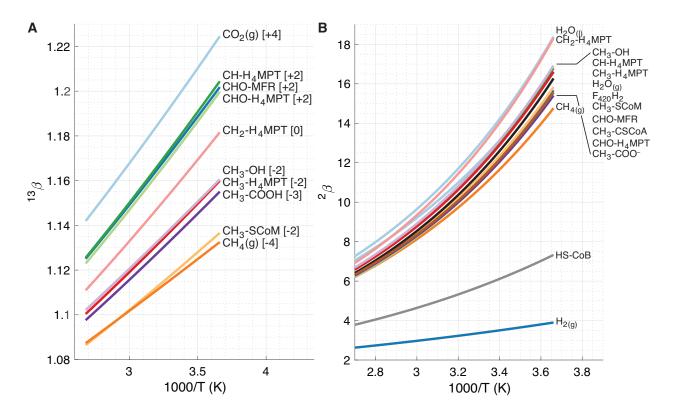


Figure 2: Calculated carbon (A) and hydrogen (B) β values. The carbon oxidation state is given in square brackets. The β values, including the clumped isotopologues (not plotted here), are listed in Tables 2-4.

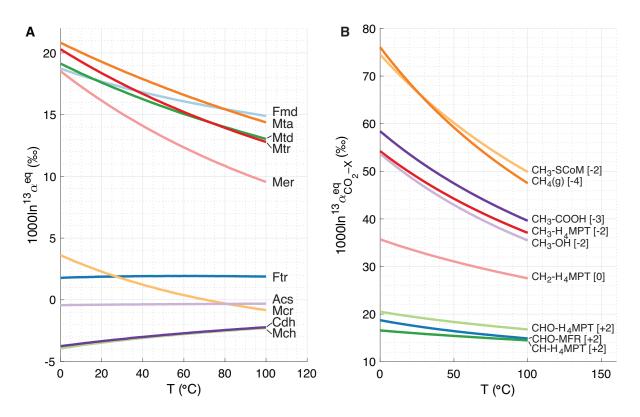


Figure 3: Temperature dependence of the calculated equilibrium carbon isotope fractionation factors (EFFs) for the organic compounds involved in methanogenesis. (A) The EFFs of the reactions catalyzed by the enzymes shown next to the corresponding lines and listed in Table 1. (B) The carbon isotopic EFFs between gas-phase CO₂ and the compounds in the methanogenesis pathways ($1000\ln^{13}\alpha_{CO_2-X}^{eq}$, where 'X' denotes the intracellular compounds). The carbon oxidation state is given in square brackets.

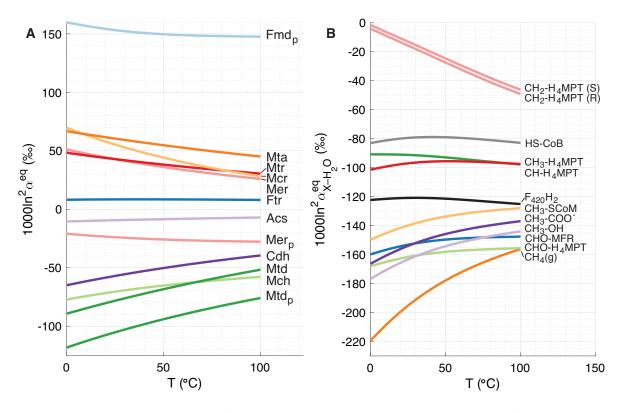


Figure 4: Temperature dependence of the calculated equilibrium hydrogen isotope fractionation factors (EFFs) for the organic compounds involved in methanogenesis. (A) The EFFs of the reactions catalyzed by the enzymes shown next to the corresponding lines and listed in Table 1. A subscripted 'p' next to the enzyme abbreviation denotes a primary EFF. (B) The hydrogen isotopic EFFs between H₂O(1) and the compounds in the methanogenesis pathways $(1000\ln^2 \alpha_{H_2O-X}^{eq}, where 'X' denotes the intracellular$ compounds).

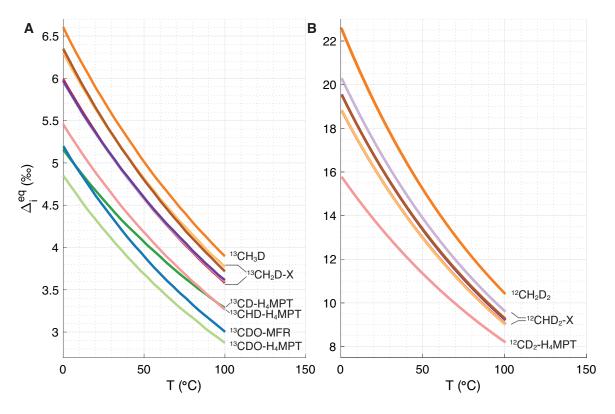


Figure 5: **Doubly-substituted ("clumped") isotopologue compositions in methanogenesis.** The deviation of the abundance of the clumped isotopologues containing (**A**) a single ¹³C–D bond and (**B**) two ¹²C–D bonds from the stochastic distribution is expressed as $\Delta_i^{eq} = (R_i/R_i^*) - 1$, where R_i is the calculated ratio of the doubly-substituted isotopologue to the unsubstituted isotopologue and R_i^* is this ratio at a stochastic distribution of the rare isotopes. The clumped isotopologues of CH₃-SCoM, CH₃-CSCoA, CH₃-COO⁻, CH₃-OH and CH₃-H₄MPT have similar Δ_i^{eq} values at 100 °C and are all denoted by '¹³CH₂D-X' or '¹²CHD₂-X'. The Δ_i^{eq} values are listed in Table 7.

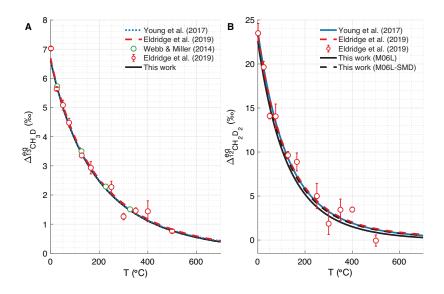


Figure 6: Comparisons of doubly-substituted isotopologue abundances calculated in this study with theoretical (lines) and experimental (circles) estimates. (A) $\Delta_{^{13}CH_3D}^{eq}$ (B) $\Delta_{^{12}CH_2D_2}^{eq}$. The error bars are 1 standard error. In panel B, the results from Webb & Miller (2014) are of Path-Integral Monte Carlo calculations.

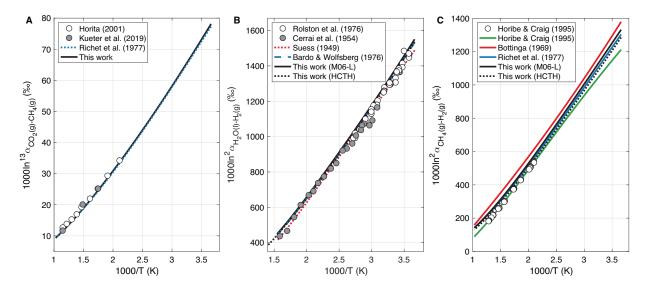


Figure 7: Comparisons of isotope fractionations calculated in this study with theoretical (lines) and experimental (circles) estimates. (A) $CO_{2(g)}$ -CH_{4(g)} carbon isotope fractionations. (B) $H_2O_{(l)}$ -H_{2(g)} hydrogen isotope fractionations. (B) $H_2O_{(l)}$ -H_{2(g)} hydrogen isotope fractionations. The green line was derived from a linear regression of ${}^2\alpha_{CH_4-H_2O}$ on $10^6/T^2$.

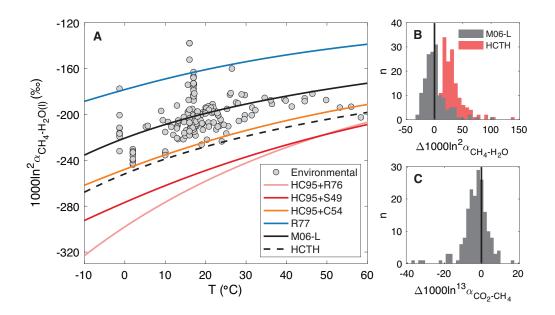


Figure 8: Comparison of $CH_{4(1)}-H_2O_{(1)}$ carbon and hydrogen isotope fractionations calculated in this and previous studies with environmental estimates. (A) $1000\ln^2\alpha_{CH_4-H_2O}$ from theoretical studies and biogenic environmental samples. The lines were generated from different combinations of fits to experimental and theoretical work (Suess, 1949 (S49); Cerrai et al., 1954 (C54); Bottinga, 1969 (B69); Rolston et al., 1976 (R76); Richet et al., 1977 (R77); Horibe and Craig, 1995 (HC95) and this work using the M06-L and HCTH functionals). The $H_2O_{(1)}-H_2O_{(g)}$ hydrogen isotope fractionations were based on Horita & Wesolowski (1994), except for the results of Rolston et al. (1976), in which case this is noted in the figure legend. (B) The deviation of environmental $1000\ln^2\alpha_{CH_4-H_2O}$ from the temperature-dependent EFFs calculated in this study with the M06-L and HCTH functionals. (C) The deviation of environmental $1000\ln^{13}\alpha_{CO_2-CH_4}$ from the temperature-dependent EFFs calculated in this study with the M06-L functional. A full list of the environmental samples presented in this figure is available in Table S.3 with the corresponding references.

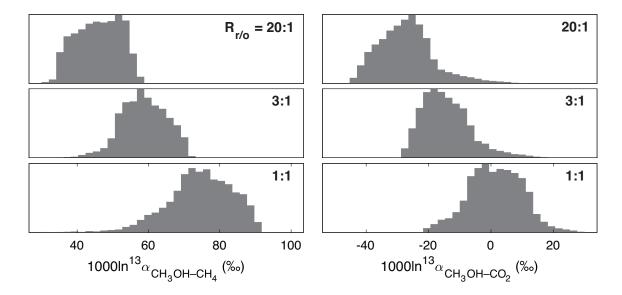


Figure 9: **Carbon isotope fractionation between methanol,** $CH_{4(g)}$ and $CO_{2(g)}$. *Left:* Methanol– $CH_{4(g)}$ carbon isotope fractionation; *Right:* Methanol– $CO_{2(g)}$ carbon isotope fractionation. Each histogram represents 10,000 simulations of methylotrophic methanogenesis with KFFs $1000ln^{13}\alpha_{methanol\rightarrow CH_3-SCoM}^{kin}$ and $1000^{13}\alpha_{CH_3-SCoM\rightarrow CO_2}^{kin}$ in the range -30% to -50% and the reversibilities between methanol and CH_3 -SCoM and between CH_3-SCoM and CH₄ in the range 10^{-3} to 1, each drawn randomly from uniform distributions. The reversibility between CH₃-SCoM and CO₂ was held constant at 0.75, and the KFF $1000ln^{13}\alpha_{CH_3-SCoM\rightarrow CH_4}^{kin}$ was set to -40% (Scheller et al., 2013). The methanol reduction:oxidation ratio, $R_{r/o}$, used for each set of simulations is indicated.

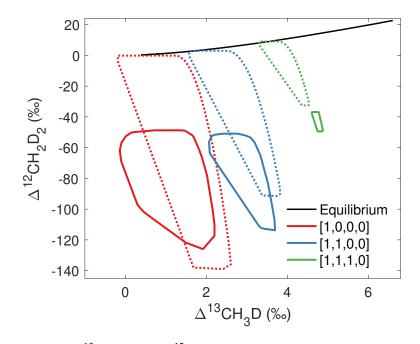


Figure 10: Prediction of the Δ^{13} CH₃D and Δ^{12} CH₂D₂ values based on three reversibility scenarios of hydrogenotrophic methanogenesis. A comparison between results obtained with the parameters used in the study of Cao et al. (2019) (dotted lines) and the results based on the EFFs calculated in this study (solid lines). The scenarios refer to combinations of the reversibilities of the four hydrogen addition reactions in the hydrogenotrophic methanogenesis pathway, for fully reversible reactions (1) or irreversible reactions (0). The black line shows the equilibrium covariation of Δ^{13} CH₃D and Δ^{12} CH₂D₂ values, calculated at the M06-L/TZVP level of theory.

304 7 SUPPLEMENTARY FIGURE

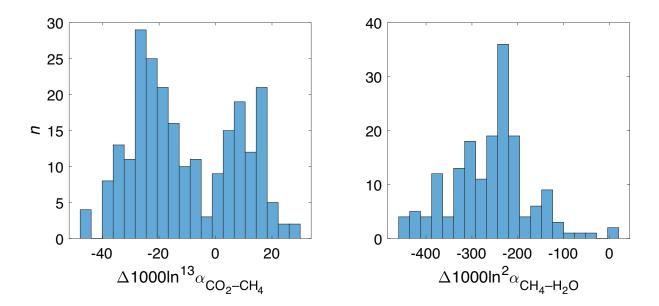


Figure S.1: Deviations from the expected temperature-dependent EFFs in laboratory culture experiments. *Left:* carbon isotopes (N = 213); *Right:* hydrogen isotopes (N = 172). The *n* on the y-axis label represents the number of samples in each bin. Laboratory data is from Valentine et al. (2004); Penning et al. (2005); Hattori et al. (2012); Okumura et al. (2016); Topçuoğlu et al. (2019). The complete list of samples is available in Table S.12.

A Isotope fractionation in linear metabolic reaction networks

A.1 General derivation

The net isotopic fractionation of any linear metabolic pathway at steady state can be described by a recursive mass balance expression, which requires knowledge of the intermediate reactions' EFFs, forward KFFs and reversibilities, where the reversibility f is defined as the ratio of the reverse and forward mass fluxes (Wing & Halevy, 2014). We implement here this recursive term for carbon isotopes in the hydrogenotrophic and AOM pathways. Under steady-state conditions, the net fractionation of the general reaction $r \rightleftharpoons p$ can be described by:

$$\boldsymbol{\alpha}_{r-p}^{\text{net}} = \left(\boldsymbol{\alpha}_{r-p}^{\text{eq}} - \boldsymbol{\alpha}_{r \to p}^{\text{kin}}\right) f_{p,r} + \boldsymbol{\alpha}_{r \to p}^{\text{kin}},\tag{A.1}$$

where α_{r-p}^{eq} , $\alpha_{r\to p}^{\text{kin}}$ and $\alpha_{r-p}^{\text{net}}$ are, respectively, the EFF between *r* and *p*, the KFF between *r* and the flux of *r* to *p*, and the net isotope fractionation between *r* and *p*. This treatment can be applied to linear pathways, such as $s \rightleftharpoons r \rightleftharpoons p$, by extending Eq. A.1:

$$\boldsymbol{\alpha}_{s-p}^{\text{net}} = \left(\boldsymbol{\alpha}_{r-p}^{\text{net}} \times \boldsymbol{\alpha}_{s-r}^{\text{eq}} - \boldsymbol{\alpha}_{s \to r}^{\text{kin}}\right) f_{r,s} + \boldsymbol{\alpha}_{s \to r}^{\text{kin}}$$
(A.2)

(full derivation in Wing and Halevy (2014)). Eq. A.2 can be further extended by recursion to any number of reactions in a linear metabolic network at steady state. We use this type of recursive expression to explore carbon isotope fractionation in the hydrogenotrophic (Section 4.4.1) and acetoclastic (Section 4.4.4) methanogenesis, and anaerobic methane oxidation (Section 4.4.5) pathways.

A.2 Equations for hydrogenotrophic methanogenesis and AOM

We used Eqs. A.3–A.9 to calculate the net carbon isotope fractionation at steady state between (*i*) CO₂ and CH₄ (Section 4.4.1) and (*ii*) CH₄ and CO₂ (Section 4.4.5). For brevity, we denote here the molecules in the pathway by the letters A-H, where for case (*i*) A is CO₂ and H is CH₄, with the intracellular carbon-bearing molecules denoted by B-G, and for case (*ii*) we use the reverse $_{\tt 826}$ notation where CH_4 is A and CO_2 is H.

$$\alpha_{\rm G-H}^{\rm net} = \left(\alpha_{\rm G-H}^{\rm eq} - \alpha_{\rm G\to H}^{\rm kin}\right) f_{\rm H,G} + \alpha_{\rm G\to H}^{\rm kin} \tag{A.3}$$

$$\alpha_{\rm F-H}^{\rm net} = \left(\alpha_{\rm G-H}^{\rm net} \times \alpha_{\rm F-G}^{\rm eq} - \alpha_{\rm F\to G}^{\rm kin}\right) f_{\rm G,F} + \alpha_{\rm F\to G}^{\rm kin} \tag{A.4}$$

$$\alpha_{\rm E-H}^{\rm net} = \left(\alpha_{\rm F-H}^{\rm net} \times \alpha_{\rm E-F}^{\rm eq} - \alpha_{\rm E\to F}^{\rm kin}\right) f_{\rm F,E} + \alpha_{\rm E\to F}^{\rm kin} \tag{A.5}$$

$$\alpha_{D-H}^{\text{net}} = \left(\alpha_{E-H}^{\text{net}} \times \alpha_{D-E}^{\text{eq}} - \alpha_{D\to E}^{\text{kin}}\right) f_{E,D} + \alpha_{D\to E}^{\text{kin}}$$
(A.6)

$$\alpha_{C-H}^{net} = \left(\alpha_{D-H}^{net} \times \alpha_{C-D}^{eq} - \alpha_{C \to D}^{kin}\right) f_{D,C} + \alpha_{C \to D}^{kin}$$
(A.7)

$$\alpha_{B-H}^{net} = \left(\alpha_{C-H}^{net} \times \alpha_{B-C}^{eq} - \alpha_{B\to C}^{kin}\right) f_{C,B} + \alpha_{B\to C}^{kin}$$
(A.8)

$$\alpha_{A-H}^{net} = \left(\alpha_{B-H}^{net} \times \alpha_{A-B}^{eq} - \alpha_{A\to B}^{kin}\right) f_{B,A} + \alpha_{A\to B}^{kin}$$
(A.9)

B Isotope fractionation in nonlinear metabolic reaction networks

The analytical expression for the calculation of net isotope fractionation presented in Appendix A is only applicable to reversible, linear networks. However, if some of the reactions in the network have more than one source of the atom of interest, an analytical solution is usually not possible, and a numerical solution is required. Consider the reaction:

$$a\mathbf{Y}_n + b\mathbf{Y}_m \xrightarrow{\phi_{\mathrm{rp}}} c\mathbf{Y}_{(n+m)}$$
 (B.1)

where *a*, *b* and *c* are are arbitrary organic residues, Y is the atom of interest, *n* and *m* are the stoichiometric coefficients of Y, and ϕ is the reaction flux. For brevity, we denote aY_n , bY_m and $cY_{(n+m)}$ as r_1 , r_2 and *p*, respectively. The change of the isotopic composition of compound *p* with time is:

$$\frac{d}{dt}R_{p} = \frac{1}{[p]} \left[\phi_{rp} \left(n \cdot \alpha_{r_{1} \to p}^{\text{kin}} R_{r_{1}} + m \cdot \alpha_{r_{2} \to p}^{\text{kin}} R_{r_{2}} \right) - \phi_{pr} \cdot R_{p} \left(n \cdot \alpha_{p \to r_{1}}^{\text{kin}} + m \cdot \alpha_{p \to r_{2}}^{\text{kin}} \right) - R_{p} (m+n) \left(\phi_{rp} - \phi_{pr} \right) \right], \quad (B.2)$$

where R_{r_1} , R_{r_2} and R_p are the ratios of the rare to abundant isotopes in pools r_1 , r_2 and p, respectively. In the specific case of a chemical and isotopic steady state, the concentration and isotopic composition of p are constant, and $\frac{dR_p}{dt} = \frac{d[p]}{dt} = 0$. Rearranging Eq. B.2 yields an analytical solution for R_p at steady state:

$$R_{p} = \frac{\phi_{rp} \left(n \cdot \alpha_{r_{1} \rightarrow p}^{\text{kin}} R_{r_{1}} + m \cdot \alpha_{r_{2} \rightarrow p}^{\text{kin}} R_{r_{2}} \right)}{\phi_{pr} \left(n \cdot \alpha_{p \rightarrow r_{1}}^{\text{kin}} + m \cdot \alpha_{p \rightarrow r_{2}}^{\text{kin}} \right) + (m+n) \left(\phi_{rp} - \phi_{pr} \right)}$$
(B.3)

(Full derivation in Eq. S5 in Wing and Halevy (2014)). This approach is used here for three specific
cases: hydrogen isotope fractionation in hydrogenotrophic methanogenesis (Section 4.4.2), carbon
isotope fractionation in methylotrophic methanogenesis (Section 4.4.3) and clumped isotopologue
compositions in hydrogenotrophic methanogenesis (Section 4.4.6).

B.1 Hydrogen isotope fractionation in the hydrogenotrophic methanogene sis pathway

The last reaction in the hydrogenotrophic methanogenesis pathway, catalyzed by Mcr, has a large negative ΔG_r^0 (~-30 kJ mol⁻¹ at 25 °C) and is thought to be practically irreversible during methanogenesis (i.e., $\phi_{CH_3-SCoM\rightarrow CH_4} \gg \phi_{CH_4\rightarrow CH_3-SCoM}$) (Thauer, 2011). In this case, the reverse reactions from methane will not affect the net isotope composition, and Eq. B.3 can be simplified to:

$${}^{2}R_{\rm CH_{4}} = \frac{3}{4} \times {}^{2}\alpha_{\rm CH_{3}-SCoM \to CH_{4}}^{\rm kin} {}^{2}R_{\rm CH_{3}-SCoM} + \frac{1}{4} \times {}^{2}\alpha_{\rm HS-CoB \to CH_{4}}^{\rm kin} {}^{2}R_{\rm HS-CoB}.$$
 (B.4)

In the specific case that the reaction between H_2O and CH_3 -SCoM, and coenzyme B reduction to HS-CoB are at chemical and isotopic equilibrium, then:

$${}^{2}R_{\rm CH_{3}-SCoM} = {}^{2}R_{\rm H_{2}O}/{}^{2}\alpha_{\rm H_{2}O-CH_{3}-SCoM}^{\rm eq}$$
(B.5)

852 and

$${}^{2}R_{\text{HS-CoB}} = {}^{2}R_{\text{H}_{2}\text{O}} / {}^{2}\alpha_{\text{H}_{2}\text{O}-\text{HS-CoB}}^{\text{eq}}.$$
 (B.6)

Eq. B.4 is then:

$${}^{2}R_{\rm CH_{4}} = \frac{3}{4} \left(\alpha_{\rm CH_{3}-SCoM \to CH_{4}}^{\rm kin} \cdot {}^{2}R_{\rm H_{2}O} / {}^{2}\alpha_{\rm H_{2}O-CH_{3}-SCoM}^{\rm eq} \right) + \frac{1}{4} \left({}^{2}\alpha_{\rm HS-CoB \to CH_{4}}^{\rm kin} \cdot {}^{2}R_{\rm H_{2}O} / {}^{2}\alpha_{\rm H_{2}O-HS-CoB}^{\rm eq} \right).$$
(B.7)

The net hydrogen isotope fractionation between CH₄ and H₂O, ${}^{2}\alpha_{CH_4-H_2O}$, can be calculated by dividing both sides of Eq. B.7 by ${}^{2}R_{H_2O}$:

$${}^{2}\alpha_{CH_{4}-H_{2}O} = \frac{3}{4} \left({}^{2}\alpha_{CH_{3}-SCoM \to CH_{4}}^{kin} / {}^{2}\alpha_{H_{2}O-CH_{3}-SCoM}^{eq} \right) + \frac{1}{4} \left({}^{2}\alpha_{HS-CoB \to CH_{4}}^{kin} / {}^{2}\alpha_{H_{2}O-HS-CoB}^{eq} \right).$$
(B.8)

B.2 Carbon isotope fractionation in the methylotrophic methanogenesis path way

In the methylotrophic methanogenesis pathway, methanol is converted to CH_3 -SCoM, which is then either oxidized to CO_2 in the reverse methanogenic pathway or reduced to CH_4 by the Mcrcatalyzed reaction (Fig. 1):

$$(n+m) \cdot \operatorname{CH}_3\operatorname{OH} \rightleftharpoons (n+m) \cdot \operatorname{CH}_3\text{-S-CoM} \rightleftharpoons n \cdot \operatorname{CH}_4 + m \cdot \operatorname{CO}_2,$$
 (B.9)

where *n* and *m* are stoichiometric coefficients. This is a simplified view of the pathway, yet it 861 includes the pathway's three main branches. We define $R_{r/o} \equiv n : m$, the ratio of the reduced and 862 oxidized branches. If all methanol molecules are converted to either CO₂ or CH₄, $R_{r/o}$ is expected 863 to be 3:1, as the source of the 2 electrons for CH₃-SCoM reduction to CH₄ is from the full oxidation 864 of CH₃-SCoM to CO₂, which yields 6 electrons. However, if some of the CH₃-SCoM is instead 865 converted to biomass, $R_{r/o}$ may vary. For brevity, we denote the metabolites here as A (CH₃OH), B 866 (CH₃-SCoM), C (CH₄) and D (CO₂). The change in the isotopic composition of B (R_B) with time 867 is: 868

$$\frac{d}{dt}{}^{13}R_{\rm B} = \frac{1}{[{\rm B}]} \left[(n+m) \cdot \phi_{\rm AB}{}^{13} \alpha_{\rm A\to B}{}^{\rm kin}{}^{13}R_{\rm A} + n \cdot \phi_{\rm CB}{}^{13} \alpha_{\rm C\to B}{}^{\rm kin}{}^{13}R_{\rm C} + m \cdot \phi_{\rm DB}{}^{13} \alpha_{\rm D\to B}{}^{\rm kin}{}^{13}R_{\rm D} - {}^{13}R_{\rm B} \left((n+m) \cdot \phi_{\rm BA}{}^{13} \alpha_{\rm B\to A}{}^{\rm kin} + n \cdot \phi_{\rm BC}{}^{13} \alpha_{\rm B\to C}{}^{\rm kin} + m \cdot \phi_{\rm BD}{}^{13} \alpha_{\rm B\to D}{}^{\rm kin} \right) - {}^{13}R_{\rm B} \left((n+m) \left(\phi_{\rm AB} - \phi_{\rm BA} \right) + n \left(\phi_{\rm CB} - \phi_{\rm BC} \right) + m \left(\phi_{\rm DB} - \phi_{\rm BD} \right) \right) \right]. \quad ({\rm B}.10)$$

⁸⁶⁹ We write similar time derivatives for C and D:

$$\frac{d}{dt}{}^{13}R_{\rm C} = \frac{1}{[{\rm C}]} \cdot n \left[\phi_{\rm BC}{}^{13} \alpha_{\rm B\to C}^{\rm kin}{}^{13}R_{\rm B} - \phi_{\rm CB}{}^{13} \alpha_{\rm C\to B}^{\rm kin}{}^{13}R_{\rm C} - {}^{13}R_{\rm C} \left(\phi_{\rm BC} - \phi_{\rm CB}\right) \right], \tag{B.11}$$

870

$$\frac{d}{dt}{}^{13}R_{\rm D} = \frac{1}{[{\rm D}]} \cdot m \left[\phi_{\rm BD}{}^{13} \alpha_{\rm B\to D}^{\rm kin}{}^{13}R_{\rm B} - \phi_{\rm DB}{}^{13} \alpha_{\rm D\to B}^{\rm kin}{}^{13}R_{\rm D} - {}^{13}R_{\rm D} (\phi_{\rm BD} - \phi_{\rm DB}) \right].$$
(B.12)

The metabolic network of the methyltrophic pathway as presnted in Eq. B.9 is non-linear. Thus, 871 the isotope fractionations between A, C and D are not independent of each other, and an analytical 872 solution is nontrivial and provides little intuition. Instead, a numerical solution to this system is 873 possible, by forward integration of Eqs. B.10-B.12 until the steady-state solution is obtained. To 874 solve this systen, we used the ode15s solver in MATLAB[®]. We assigned the reversibility of the 875 reactions (f), the net rate (ϕ_{net}), ${}^{13}R_A$, and the forward KFFs ${}^{13}\alpha^{kin}$. We calculated the backward 876 KFFs by the relation $\alpha_{A-B}^{eq} = \alpha_{B\to A}^{kin} / \alpha_{A\to B}^{kin}$. We assumed that the reaction from CH₃-SCoM to 877 CO₂ is partially reversible, i.e., $\phi_{DB}/\phi_{BD} = 0.75$, to obtain the ideal fit to the observed ranges of 878 methanol-CH₄ and methanol-CO₂ carbon isotope fractionations. The forward and reverse fluxes 879 are related to the net rate and the *f*s: 880

$$\phi_{\rm AB} = \frac{\phi_{net}}{1 - f_{\rm B,A}},\tag{B.13}$$

881

$$\phi_{\mathrm{BA}} = \frac{\phi_{net} \times f_{\mathrm{B,A}}}{1 - f_{\mathrm{B,A}}}.\tag{B.14}$$

B.3 Clumped isotopologue compositions of methane in the hydrogenotrophic pathway

We consider a simplification of the hydrogenotrophic pathway, which includes the four steps of 884 hydrogen addition under three scenarios of reversibility, as presented by Cao et al. (2019). Each 885 scenario is denoted by a vector of ones (fully reversible reaction) and zeros (irreversible reaction), 886 e.g., [1,1,1,0] represents three reversible reactions from CO₂ and H₂O to CH₃-SCoM, and an irre-887 versible reaction from CH₃-SCoM and HS-CoB to CH₄. Notably, Cao et al. (2019) assume that the 888 intracellular hydrogen pools (F₄₂₀H₂ and HS-CoB), which are the source of the hydrogen added to 889 carbon to ultimately form methane, are at equilibrium with H₂O, and that the EFFs and KFFs of the 890 different steps in the pathway are identical, allowing derivation of elegant solutions for $\Delta^{13}CH_3D$ 891 and $\Delta^{12}CH_2D_2$ values. We explored the effect of using our calculated EFFs on the same scenarios, 892 and used similar solutions but without the assumption of identical EFFs along the pathway. The 893 original equations and parameters are presented in Tables 1 and 2 in Cao et al. (2019), we use simi-894 lar distributions of unknown KFFs and the respective kinetic γ values. We show here the equations 895 that we used with our calculated EFFs to find the Δ^{13} CH₃D and Δ^{12} CH₂D₂ values (Fig. 10). 896

897 **B.3.1 Scenario** [1,0,0,0]

⁸⁹⁸ Following equations A.11a–d in Cao et al. (2019) we get:

$$\Delta^{13} \text{CH}_{3} \text{D} = \frac{\begin{pmatrix} 13,2 \gamma^{2} \alpha^{kin} \left(1 + \Delta_{^{13}\text{CDO-MFR}}^{\text{eq}}\right) \cdots \\ + 13,2 \gamma_{p}^{2} \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \cdots \\ + 13,2 \gamma_{p}^{2} \alpha_{p}^{kin2} \alpha_{\text{HS-CoB-CHO-MFR}}^{\text{eq}} \end{pmatrix}}{\begin{pmatrix} 2 \alpha^{kin} + 2 \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \\ + 2 \alpha_{p}^{kin2} \alpha_{\text{HS-CoB-CHO-MFR}}^{\text{eq}} \end{pmatrix}} - 1, \quad (B.15)$$

where the γ and γ_p are for the deviation of the clumped KFF from the bulk KFF, as defined by Wang et al. (2015) for secondary and primary KFFs, respectively, and ${}^2\alpha_p^{kin}$ and ${}^2\alpha_p^{kin}$ are secondary and primary KFFs drawn from uniform distributions, respectively.

$$\Delta^{12} \text{CH}_{2} \text{D}_{2} = \frac{\begin{pmatrix} 2,2 \gamma_{p}^{2} \alpha^{kin2} \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \cdots \\ +2,2 \gamma_{p}^{2} \alpha_{p}^{kin} \left(^{2} \alpha^{kin} +^{2} \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}}\right)^{2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \cdots \\ +2,2 \gamma_{p}^{2} \alpha_{\text{HS-CoB}\rightarrow\text{CH}_{4}}^{kin2} \left(^{2} \alpha^{kin} +^{2} \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}}\right) \cdots \\ +2 \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \alpha_{\text{HS-CoB}-\text{CHO-MFR}}^{\text{eq}} \end{pmatrix} \cdots \\ +2 \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \cdots \\ +2 \alpha_{p}^{kin2} \alpha_{\text{F}_{420}\text{H}_{2}-\text{CHO-MFR}}^{\text{eq}} \alpha_{\text{HS-CoB}-\text{CHO-MFR}}^{\text{eq}} \end{pmatrix}^{2} (\text{B.16})$$

902

903 **B.3.2 Scenario** [1,1,0,0]

⁹⁰⁴ Following equations A.15a–d in Cao et al. (2019) we get:

$$\Delta^{13}\text{CH}_{3}\text{D} = \frac{\begin{pmatrix} 13.2 \gamma^{2} \alpha^{kin} \left(1 + \Delta^{eq}_{13}\text{CHD-H_4MPT}\right) \cdots \\ + 13.2 \gamma_{p}^{2} \alpha^{kin}_{p} \alpha^{eq}_{F_{420}\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \cdots \\ + 13.2 \gamma_{p}^{2} \alpha^{kin}_{\text{HS-COB}\rightarrow\text{CH}_{2}} \alpha^{eq}_{\text{HS-COB}\rightarrow\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}}{\begin{pmatrix} 2^{2} \alpha^{kin}_{s2} + 2 \alpha^{kin}_{p} \alpha^{eq}_{\text{HS-COB}\rightarrow\text{CH}_{2}-\text{H}_4\text{MPT}} \cdots \\ + 2 \alpha^{kin}_{\text{HS-COB}\rightarrow\text{CH}_{4}} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}} - 1 \quad (B.17)$$

$$\Delta^{12}\text{CH}_{2}\text{D}_{2} = \frac{\begin{pmatrix} 2.2 \gamma (^{2} \alpha^{kin})^{2} \left(1 + \Delta^{eq}_{12}\text{CD}_{2}-\text{H}_4\text{MPT}} \right) \cdots \\ + 2^{2.2} \gamma_{p}^{2} \alpha^{kin2} \alpha^{kin2}_{p} \alpha^{eq}_{\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \cdots \\ + 2^{2.2} \gamma_{p}^{2} \alpha^{kin2} \alpha^{kin2}_{p} \alpha^{eq}_{\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}^{2} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}} - 1 \\ \Delta^{12}\text{CH}_{2}\text{D}_{2} = \frac{\begin{pmatrix} 2.2 \gamma (^{2} \alpha^{kin})^{2} \left(1 + \Delta^{eq}_{12}\text{CD}_{2}-\text{H}_4\text{MPT}} \right) \cdots \\ + 2^{2.2} \gamma_{p}^{2} \alpha^{kin2} \alpha^{kin2}_{p} \alpha^{eq}_{\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \cdots \\ + 2^{2.2} \gamma_{p}^{2} \alpha^{kin2} \alpha^{kin2}_{p} \alpha^{eq}_{\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}^{2} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}^{2} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix} - 1 \\ \frac{\Delta^{12}\text{CH}_{2}\text{D}_{2}}{3/8} \begin{pmatrix} 2^{2} \alpha^{kin} + 2 \alpha^{kin2}_{p} \alpha^{eq}_{\text{H}_{2}-\text{CH}_{2}-\text{H}_4\text{MPT}} \cdots \\ + 2 \alpha^{kin}_{\text{HS-COB}\rightarrow\text{CH}_{4}} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}^{2} \alpha^{eq}_{\text{HS-COB}-\text{CH}_{2}-\text{H}_4\text{MPT}} \end{pmatrix}^{2} (B.18)$$

905

B.3.3 Scenario [1,1,1,0]

⁹⁰⁸ Following equations A.19a–d in Cao et al. (2019) we get:

$$\Delta^{13}\text{CH}_{3}\text{D} = \frac{\begin{pmatrix} 3^{13,2}\gamma^{2}\alpha_{\text{CH}_{3}-\text{SCoM}\to\text{CH}_{4}}^{kin}\left(1 + \Delta_{^{13}\text{CH}_{2}\text{D}-\text{SCoM}}^{eq}\right)\cdots \\ \frac{13,2}{\gamma_{p}}\gamma_{p}^{2}\alpha_{\text{HS-CoB}\to\text{CH}_{4}}^{kin}2\alpha_{\text{HS-CoB}-\text{CH}_{3}-\text{SCoM}}^{eq} \end{pmatrix}}{3^{2}\alpha_{\text{CH}_{3}-\text{SCoM}\to\text{CH}_{4}}^{kin} + 2\alpha_{\text{HS-CoB}\to\text{CH}_{4}}^{kin}2\alpha_{\text{HS-CoB}-\text{CH}_{3}-\text{SCoM}}^{eq}} - 1$$
(B.19)

$$\Delta^{12} \text{CH}_{2} \text{D}_{2} = \frac{\begin{pmatrix} 8^{2} \alpha_{\text{CH}_{3}-\text{SCoM} \to \text{CH}_{4}}^{kin} \begin{pmatrix} 2, 2 \gamma^{2} \alpha_{\text{CH}_{3}-\text{SCoM} \to \text{CH}_{4}}^{kin} \begin{pmatrix} 1 + \Delta_{12}^{\text{eq}} \\ 1 - \Delta_{12}^{\text{eq}} \end{pmatrix} \cdots \\ + 2, 2 \gamma_{p}^{2} \alpha_{\text{HS-CoB} \to \text{CH}_{4}}^{kin} 2 \alpha_{\text{HS-CoB} - \text{CH}_{3}-\text{SCoM}}^{\text{eq}} \end{pmatrix}}{3^{2} \alpha_{\text{CH}_{3}-\text{SCoM} \to \text{CH}_{4}}^{kin} + 2 \alpha_{\text{HS-CoB} \to \text{CH}_{4}}^{kin} 2 \alpha_{\text{HS-CoB} - \text{CH}_{3}-\text{SCoM}}^{\text{eq}} - 1 \quad (B.20)$$

911 **References**

- Alperin, M. J., & Hoehler, T. M. (2009). Anaerobic methane oxidation by archaea/sulfate-reducing
 bacteria aggregates: 2. Isotopic constraints. *Am J Sci*, **309**, 958–984. doi:10.2475/10.2009.02.
- ⁹¹⁴ Alstad, K. P., & Whiticar, M. J. (2011). Carbon and hydrogen isotope ratio characteriza⁹¹⁵ tion of methane dynamics for Fluxnet Peatland Ecosystems. *Org. Geochem.*, 42, 548–558.
 ⁹¹⁶ doi:10.1016/j.orggeochem.2011.03.004.
- Andrae, D., Häußermann, U., Dolg, M., Stoll, H., & Preuß, H. (1990). Energy-adjustedab initio
 pseudopotentials for the second and third row transition elements. *Theoret. Chim. Acta*, 77, 123–141. doi:10.1007/BF01114537.
- Ash, J., Egger, M., Treude, T., Kohl, I., Cragg, B., Parkes, R., Slomp, C., Sherwood Lollar, B., &
 Young, E. (2019). Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2
 and 13CH3D in methane. *Geochem. Perspect. Lett.*, (pp. 26–30). doi:10.7185/geochemlet.1910.
- Bardo, R. D., & Wolfsberg, M. (1976). A theoretical calculation of the equilibrium constant for the
 isotopic exchange reaction between water and hydrogen deuteride. *J. Phys. Chem.*, 80, 1068–
 1071. doi:10.1021/j100551a009.
- Berghuis, B. A., Yu, F. B., Schulz, F., Blainey, P. C., Woyke, T., & Quake, S. R.
 (2019). Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. *Proc. Natl. Acad. Sci.*, **116**, 5037–5044.
 doi:10.1073/pnas.1815631116.
- Bigeleisen, J., & Mayer, M. G. (1947). Calculation of Equilibrium Constants for Isotopic Exchange
 Reactions. J. Chem. Phys., 15, 261–267. doi:10.1063/1.1746492.
- Black, J. R., Yin, Q.-z., Rustad, J. R., & Casey, W. H. (2007). Magnesium Isotopic Equilibrium in
 Chlorophylls. J. Am. Chem. Soc., 129, 8690–8691. doi:10.1021/JA072573I.
- Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized
 gradient approximation functionals. *J. Chem. Phys.*, **114**, 5497–5503. doi:10.1063/1.1347371.
- Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange
 in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. *Geochim. Cos- mochim. Acta*, 33, 49–64. doi:10.1016/0016-7037(69)90092-1.
- Bradley, A. S., Leavitt, W. D., Schmidt, M., Knoll, A. H., Girguis, P. R., & Johnston, D. T. (2016).
 Patterns of sulfur isotope fractionation during microbial sulfate reduction. *Geobiology*, 14, 91–
 101. doi:10.1111/gbi.12149.

- Cao, X., Bao, H., & Peng, Y. (2019). A kinetic model for isotopologue signatures of methane
 generated by biotic and abiotic CO2 methanation. *Geochim. Cosmochim. Acta*, 249, 59–75.
 doi:10.1016/J.GCA.2019.01.021.
- Cao, X., & Liu, Y. (2012). Theoretical estimation of the equilibrium distribution of clumped isotopes in nature. *Geochim. Cosmochim. Acta*, 77, 292–303. doi:10.1016/j.gca.2011.11.021.
- Cerrai, E., Marchetti, C., Renzoni, R., Roseo, L., Silvesti, M., & Villari, S. (1954). A Thermal
 Method for Concentrating Heavy Water. *Chem. Eng. Prog. Symp*, **50**, 292–303.
- ⁹⁴⁹ Chuang, P.-C., Frank Yang, T., Wallmann, K., Matsumoto, R., Hu, C.-Y., Chen, H.-W., Lin, S.,
 ⁹⁵⁰ Sun, C.-H., Li, H.-C., Wang, Y., & Dale, A. W. (2018). Carbon isotope exchange during anaer⁹⁵¹ obic oxidation of methane (AOM) in sediments of the northeastern South China Sea. *Geochim.*

952 *Cosmochim. Acta*, **246**, 138–155. doi:10.1016/J.GCA.2018.11.003.

- ⁹⁵³ Clog, M., Lawson, M., Peterson, B., Ferreira, A. A., Santos Neto, E. V., & Eiler, J. M. (2018). A
 ⁹⁵⁴ reconnaissance study of 13C–13C clumping in ethane from natural gas. *Geochim. Cosmochim.* ⁹⁵⁵ Acta, 223, 229–244. doi:10.1016/J.GCA.2017.12.004.
- DePaolo, D. J. (2011). Surface kinetic model for isotopic and trace element fractionation during
 precipitation of calcite from aqueous solutions. *Geochim. Cosmochim. Acta*, **75**, 1039–1056.
 doi:10.1016/j.gca.2010.11.020.
- Domagal-Goldman, S. D., & Kubicki, J. D. (2008). Density functional theory predictions of equi librium isotope fractionation of iron due to redox changes and organic complexation. *Geochim. Cosmochim. Acta*, 72, 5201–5216. doi:10.1016/j.gca.2008.05.066.
- Douglas, P., Stolper, D., Smith, D., Walter Anthony, K., Paull, C., Dallimore, S., Wik, M., Crill,
 P., Winterdahl, M., Eiler, J., & Sessions, A. (2016). Diverse origins of Arctic and Subarctic
 methane point source emissions identified with multiply-substituted isotopologues. *Geochim. Cosmochim. Acta*, 188, 163–188. doi:10.1016/j.gca.2016.05.031.
- Douglas, P. M. J., Moguel, R. G., Anthony, K. M. W., Wik, M., Crill, P. M., Dawson, K. S., Smith,
 D. A., Yanay, E., Lloyd, M. K., Stolper, D. A., Eiler, J. M., & Sessions, A. L. (2020). Clumped
 Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes. *Geophys. Res. Lett.*, 47, e2019GL086756. doi:10.1029/2019GL086756.
- Egger, M., Riedinger, N., Mogollón, J. M., & Jørgensen, B. B. (2018). Global diffusive fluxes of
 methane in marine sediments. *Nat. Geosci.*, 11, 421–425. doi:10.1038/s41561-018-0122-8.
- Eldridge, D., Guo, W., & Farquhar, J. (2016). Theoretical estimates of equilibrium sulfur isotope
 effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate
 systems. *Geochim. Cosmochim. Acta*, **195**, 171–200. doi:10.1016/J.GCA.2016.09.021.

- Eldridge, D. L., Korol, R., Lloyd, M. K., Turner, A. C., Webb, M. A., Miller, T. F., & Stolper, D.
- 976 (2019). Comparison of Experimental vs. Theoretical Abundances of 13CH3D and 12CH2D2
- ⁹⁷⁷ for Isotopically Equilibrated Systems From 1-500oC. ACS Earth Space Chem., **3**, 2747–2764.
- doi:10.1021/acsearthspacechem.9b00244.
- Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone,
 V., Petersson, G., Nakatsuji, H. et al. (2016). Gaussian 16. *Revis. A*, 3.
- Fujii, T., Moynier, F., Blichert-Toft, J., & Albarède, F. (2014). Density functional theory estimation
 of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biolog ical environments. *Geochim. Cosmochim. Acta*, 140, 553–576. doi:10.1016/J.GCA.2014.05.051.
- ⁹⁸⁴ Galimov, E. (2006). Isotope organic geochemistry. Org. Geochem., **37**, 1200–1262.
 ⁹⁸⁵ doi:10.1016/j.orggeochem.2006.04.009.
- Gelwicks, J. T., Risatti, J. B., & Hayes, J. M. (1994). Carbon isotope effects associated with
 aceticlastic methanogenesis. *Appl. Environ. Microbiol.*, **60**, 467–72.
- ⁹⁸⁸ Giunta, T., Young, E. D., Warr, O., Kohl, I., Ash, J. L., Martini, A., Mundle, S. O., Rum⁹⁸⁹ ble, D., Pérez-Rodríguez, I., Wasley, M., LaRowe, D. E., Gilbert, A., & Sherwood Lollar, B.
 ⁹⁹⁰ (2019). Methane sources and sinks in continental sedimentary systems: New insights from
 ⁹⁹¹ paired clumped isotopologues 13CH3D and 12CH2D2. *Geochim. Cosmochim. Acta*, 245, 327–
 ⁹⁹² 351. doi:10.1016/J.GCA.2018.10.030.
- ⁹⁹³ Goevert, D., & Conrad, R. (2009). Effect of substrate concentration on carbon isotope fractionation
 ⁹⁹⁴ during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice
 ⁹⁹⁵ field soil. *Appl. Environ. Microbiol.*, **75**, 2605–2612. doi:10.1128/AEM.02680-08.
- ⁹⁹⁶ Gruen, D. S., Wang, D. T., Könneke, M., Topçuoğlu, B. D., Stewart, L. C., Goldhammer, T.,
 ⁹⁹⁷ Holden, J. F., Hinrichs, K.-U., & Ono, S. (2018). Experimental investigation on the controls of
 ⁹⁹⁸ clumped isotopologue and hydrogen isotope ratios in microbial methane. *Geochim. Cosmochim.* ⁹⁹⁹ Acta, 237, 339–356. doi:10.1016/J.GCA.2018.06.029.
- Hattori, S., Nashimoto, H., Kimura, H., Koba, K., Yamada, K., Shimizu, M., Watanabe, H., Yoh,
 M., & Yoshida, N. (2012). Hydrogen and carbon isotope fractionation by thermophilic hy drogenotrophic methanogens from a deep aquifer under coculture with fermenters. *Geochem. J.*,
 46, 193–200. doi:10.2343/geochemj.1.0161.
- He, Y., Bao, H., & Liu, Y. (2020). Predicting equilibrium intramolecular isotope distribution within
 a large organic molecule by the cutoff calculation. *Geochimica et Cosmochimica Acta*, 269, 292–
 doi:10.1016/j.gca.2019.10.032.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. *Phys. Rev.*, **136**, B864–B871.
 doi:10.1103/PhysRev.136.B864.

Holler, T., Wegener, G., Knittel, K., Boetius, A., Brunner, B., Kuypers, M. M. M., & Widdel, F.
(2009). Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by
marine consortia enriched in vitro. *Environ. Microbiol. Rep.*, **1**, 370–376. doi:10.1111/j.17582229.2009.00074.x.

- ¹⁰¹³ Horibe, Y., & Craig, H. (1995). D/H fractionation in the system methane-hydrogen-water.
 ¹⁰¹⁴ *Geochim. Cosmochim. Acta*, **59**, 5209–5217. doi:10.1016/0016-7037(95)00391-6.
- Horita, J. (2001). Carbon isotope exchange in the system CO2-CH4 at elevated temperatures.
 Geochim. Cosmochim. Acta, 65, 1907–1919. doi:10.1016/S0016-7037(01)00570-1.
- Horita, J., & Wesolowski, D. J. (1994). Liquid-vapor fractionation of oxygen and hydrogen isotopes
 of water from the freezing to the critical temperature. *Geochim. Cosmochim. Acta*, 58, 3425–
 3437. doi:10.1016/0016-7037(94)90096-5.
- Iron, M. A., & Gropp, J. (2019). Cost-Effective Density Functional Theory (DFT) Calculations of
 Equilibrium Isotopic Fractionation in Large Organic Molecules. *Phys. Chem. Chem. Phys.*, 21,
 17555–17570. doi:10.1039/C9CP02975C.
- Kaupp, M., Schleyer, P. v. R., Stoll, H., & Preuss, H. (1991). Pseudopotential approaches to Ca,
 Sr, and Ba hydrides. Why are some alkaline earth MX2 compounds bent? *J. Chem. Phys.*, 94, 1360–1366. doi:10.1063/1.459993.
- Kawagucci, S., Kobayashi, M., Hattori, S., Yamada, K., Ueno, Y., Takai, K., & Yoshida, N. (2014). Hydrogen isotope systematics among H2–H2O–CH4 during the growth of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH. *Geochim. Cosmochim. Acta*, **142**, 601–614. doi:10.1016/j.gca.2014.07.020.
- Kesharwani, M. K., Karton, A., & Martin, J. M. L. (2016). Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods. J. Chem. Theory Comput., 12, 444–54. doi:10.1021/acs.jctc.5b01066.
- Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation
 Effects. *Phys. Rev.*, **140**, A1133–A1138. doi:10.1103/PhysRev.140.A1133.
- Krzycki, J. A., Kenealy, W. R., Deniro, M. J., & Zeikus, J. G. (1987). Stable Carbon Isotope
 Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or
 Carbon Dioxide-Hydrogen. *Appl. Environ. Microbiol.*, 53, 2597–9.

- Kueter, N., Schmidt, M. W., Lilley, M. D., & Bernasconi, S. M. (2019). Experimental determination
 of equilibrium CH4–CO2–CO carbon isotope fractionation factors (300–1200 oC). *Earth Planet. Sci. Lett.*, **506**, 64–75. doi:10.1016/J.EPSL.2018.10.021.
- Leininger, T., Nicklass, A., Küchle, W., Stoll, H., Dolg, M., & Bergner, A. (1996). The accuracy
 of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of
 alkali fluorides XF (X = K, Rb, Cs). *Chemical Physics Letters*, 255, 274–280. doi:10.1016/0009 2614(96)00382-X.
- Li, X., & Liu, Y. (2011). Equilibrium Se isotope fractionation parameters: A first-principles study. *Earth Planet. Sci. Lett.*, **304**, 113–120. doi:10.1016/J.EPSL.2011.01.022.
- Liu, Q., & Liu, Y. (2016). Clumped-isotope signatures at equilibrium of CH4, NH3, H2O, H2S and SO2. *Geochim. Cosmochim. Acta*, **175**, 252–270. doi:10.1016/J.GCA.2015.11.040.
- Liu, Q., Tossell, J. A., & Liu, Y. (2010). On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. *Geochim. Cosmochim. Acta*, **74**, 6965–6983. doi:10.1016/J.GCA.2010.09.014.
- Londry, K. L., Dawson, K. G., Grover, H. D., Summons, R. E., & Bradley, A. S. (2008). Stable
 carbon isotope fractionation between substrates and products of Methanosarcina barkeri. *Org. Geochem.*, **39**, 608–621. doi:10.1016/j.orggeochem.2008.03.002.
- Luxem, K. E., Leavitt, W. D., & Zhang, X. (2020). Large hydrogen isotope fractiona tions distinguish nitrogenase-derived methane from other sources. *Appl. Environ. Microbiol.* doi:10.1128/AEM.00849-20.
- Mardirossian, N., & Head-Gordon, M. (2016). *ω*B97M-V: A combinatorially optimized, range separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. *J. Chem. Phys.*,
 144, 214110. doi:10.1063/1.4952647.
- Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal Solvation Model Based
 on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk
 Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B*, **113**, 6378–6396.
 doi:10.1021/jp810292n.
- McGlynn, S. E. (2017). Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea. *Microbes Environ.*, **32**, 5–13. doi:10.1264/jsme2.ME16166.
- Méheut, M., Lazzeri, M., Balan, E., & Mauri, F. (2007). Equilibrium isotopic fractionation in
 the kaolinite, quartz, water system: Prediction from first-principles density-functional theory.
 Geochim. Cosmochim. Acta, **71**, 3170–3181. doi:10.1016/j.gca.2007.04.012.

- Metz, B., Stoll, H., & Dolg, M. (2000). Small-core multiconfiguration-Dirac–Hartree–Fock adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J.
 Chem. Phys., **113**, 2563–2569. doi:10.1063/1.1305880.
- Milucka, J., Ferdelman, T. G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I.,
 Wagner, M., Widdel, F., & Kuypers, M. M. M. (2012). Zero-valent sulphur is a key intermediate
 in marine methane oxidation. *Nature*, **491**, 541–546. doi:10.1038/nature11656.
- ¹⁰⁷⁷ Moynier, F., & Fujii, T. (2017). Theoretical isotopic fractionation of magnesium between chloro-¹⁰⁷⁸ phylls. *Sci. Rep.*, **7**, 6973. doi:10.1038/s41598-017-07305-6.
- Okumura, T., Kawagucci, S., Saito, Y., Matsui, Y., Takai, K., & Imachi, H. (2016). Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2 enriched conditions: Implications for the origin of methane and its isotopic diagnosis. *Prog. Earth Planet. Sci.*, **3**, 14. doi:10.1186/s40645-016-0088-3.
- Ono, S., Rhim, J. H., Gruen, D. S., Taubner, H., Kölling, M., & Wegener, G. (2020). Clumped
 Isotopologue Fractionation by Microbial Cultures Performing the Anaerobic 10 Oxidation of
 Methane. *ChemRxiv*. doi:10.26434/chemrxiv.12888347.v1.
- Ono, S., Wang, D. T., Gruen, D. S., Sherwood Lollar, B., Zahniser, M. S., McManus, B. J.,
 & Nelson, D. D. (2014). Measurement of a doubly substituted methane isotopologue,
 ¹³CH3D, by tunable infrared laser direct absorption spectroscopy. *Anal. Chem.*, **86**, 6487–94.
 doi:10.1021/ac5010579.
- Otake, T., Lasaga, A. C., & Ohmoto, H. (2008). Ab initio calculations for equilib rium fractionations in multiple sulfur isotope systems. *Chem. Geol.*, 249, 357–376.
 doi:10.1016/J.CHEMGEO.2008.01.020.
- Penger, J., Conrad, R., & Blaser, M. (2012). Stable carbon isotope fractionation by methylotrophic
 methanogenic archaea. *Appl. Environ. Microbiol.*, **78**, 7596–602. doi:10.1128/AEM.01773-12.
- Penger, J., Conrad, R., & Blaser, M. (2014). Stable carbon isotope fractionation of six strongly
 fractionating microorganisms is not affected by growth temperature under laboratory conditions.
 Geochim. Cosmochim. Acta, 140, 95–105. doi:10.1016/j.gca.2014.05.015.
- Penning, H., Claus, P., Casper, P., & Conrad, R. (2006). Carbon isotope fractionation during
 acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment. *Appl. Environ. Microbiol.*, 72, 5648–52. doi:10.1128/AEM.00727-06.
- ¹¹⁰¹ Penning, H., Plugge, C. M., Galand, P. E., & Conrad, R. (2005). Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental

samples at different energy status. *Glob. Change Biol.*, **11**, 2103–2113. doi:10.1111/j.1365 2486.2005.01076.x.

Proskurowski, G., Lilley, M. D., Kelley, D. S., & Olson, E. J. (2006). Low temperature volatile pro duction at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geother mometer. *Chem. Geol.*, 229, 331–343. doi:10.1016/J.CHEMGEO.2005.11.005.

- Richet, P., Bottinga, Y., & Javoy, M. (1977). A Review of Hydrogen, Carbon, Nitrogen, Oxygen,
- ¹¹⁰⁹ Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules. Annu. Rev.
- *Earth Planet. Sci.*, **5**, 65–110. doi:10.1146/annurev.ea.05.050177.000433.
- Röckmann, T., Popa, M. E., Krol, M. C., & Hofmann, M. E. G. (2016). Statistical clumped isotope
 signatures. *Sci. Rep.*, 6, 31947. doi:10.1038/srep31947.
- Rolston, J. H., Den Hartog, J., & Butler, J. P. (1976). The deuterium isotope separation factor between hydrogen and liquid water. *J. Phys. Chem.*, **80**, 1064–1067. doi:10.1021/j100551a008.
- Roothaan, C. C. J. (1951). New Developments in Molecular Orbital Theory. *Rev. Mod. Phys.*, 23, 69–89. doi:10.1103/RevModPhys.23.69.
- Rosenfeld, W. D., & Silverman, S. R. (1959). Carbon Isotope Fractionation in Bacterial Production
 of Methane. *Science*, 130, 1658–1659. doi:10.1126/science.130.3389.1658-a.
- Rustad, J. R. (2009). Ab initio calculation of the carbon isotope signatures of amino acids. *Org. Geochem.*, **40**, 720–723. doi:10.1016/j.orggeochem.2009.03.003.
- Rustad, J. R., Nelmes, S. L., Jackson, V. E., & Dixon, D. A. (2008). Quantum-chemical calculations
 of carbon-isotope fractionation in CO2(g), aqueous carbonate species, and carbonate minerals.
 J. Phys. Chem. A, **112**, 542–55. doi:10.1021/jp076103m.
- Scheller, S., Ermler, U., & Shima, S. (2017). Catabolic Pathways and Enzymes Involved in Anaer obic Methane Oxidation. In *Anaerobic Utilization of Hydrocarbons, Oils, and Lipids* (pp. 1–29).
 Springer International Publishing. doi:10.1007/978-3-319-33598-8-3-1.
- Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K., & Jaun, B. (2010). The key nickel en zyme of methanogenesis catalyses the anaerobic oxidation of methane. *Nature*, 465, 606–8.
 doi:10.1038/nature09015.
- Scheller, S., Goenrich, M., Thauer, R. K., & Jaun, B. (2013). Methyl-coenzyme M reductase from
 methanogenic archaea: Isotope effects on the formation and anaerobic oxidation of methane. *J. Am. Chem. Soc.*, 135, 14975–84. doi:10.1021/ja406485z.

- Shuai, Y., Etiope, G., Zhang, S., Douglas, P. M., Huang, L., & Eiler, J. M. (2018). Methane
 clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon
 formation. *Earth Planet. Sci. Lett.*, 482, 213–221. doi:10.1016/J.EPSL.2017.10.057.
- Sim, M. S., Ogata, H., Lubitz, W., Adkins, J. F., Sessions, A. L., Orphan, V. J., & McGlynn, S. E.
 (2019). Role of APS reductase in biogeochemical sulfur isotope fractionation. *Nat. Commun.*, **10**, 44. doi:10.1038/s41467-018-07878-4.
- Stolper, D., Lawson, M., Davis, C. L., Ferreira, A. A., Santos Neto, E. V., Ellis, G. S., Lewan,
 M. D., Martini, A. M., Tang, Y., Schoell, M., Sessions, A. L., & Eiler, J. M. (2014a).
 Formation temperatures of thermogenic and biogenic methane. *Science*, 344, 1500–1503.
 doi:10.1126/science.1254509.
- Stolper, D., Martini, A., Clog, M., Douglas, P., Shusta, S., Valentine, D., Sessions, A., &
 Eiler, J. (2015). Distinguishing and understanding thermogenic and biogenic sources of
 methane using multiply substituted isotopologues. *Geochim. Cosmochim. Acta*, 161, 219–247.
 doi:10.1016/j.gca.2015.04.015.
- ¹¹⁴⁷ Stolper, D., Sessions, A., Ferreira, A., Santos Neto, E., Schimmelmann, A., Shusta, S., Valen-¹¹⁴⁸ tine, D., & Eiler, J. (2014b). Combined 13C–D and D–D clumping in methane: Methods and ¹¹⁴⁹ preliminary results. *Geochim. Cosmochim. Acta*, **126**, 169–191. doi:10.1016/j.gca.2013.10.045.
- Suess, H. E. (1949). Das Gleichgewicht H2 + HDO = HD + H2O und die weiteren Austauschgleichgewichte im System H2 , D2 und H2O. *Z. Für Naturforschung A*, **4**, 328–332. doi:10.1515/ZNA-1949-0502.
- Taenzer, L., Carini, P. C., Masterson, A. M., Bourque, B., Gaube, J. H., & Leavitt, W. D. (2020).
 Microbial Methane From Methylphosphonate Isotopically Records Source. *Geophys. Res. Lett.*,
 47, e2019GL085872. doi:10.1029/2019GL085872.
- Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Naka gawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122 degrees C and isotopi cally heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation.
 Proc. Natl. Acad. Sci. U. S. A., **105**, 10949–54. doi:10.1073/pnas.0712334105.
- ¹¹⁶⁰ Tennant, A., Rauk, A., & Wieser, M. E. (2017). Computational modelling of the redistribution of
- ¹¹⁶¹ copper isotopes by proteins in the liver. *Metallomics*, **9**, 1809–1819. doi:10.1039/C7MT00248C.
- Thauer, R. K. (2011). Anaerobic oxidation of methane with sulfate: On the reversibility of the
 reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. *Curr. Opin. Microbiol.*, 14, 292–299. doi:10.1016/j.mib.2011.03.003.

- Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic
 archaea: Ecologically relevant differences in energy conservation. *Nat. Rev. Microbiol.*, 6, 579–
 591. doi:10.1038/nrmicro1931.
- Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. *Chem. Rev.*, **105**, 2999–3093. doi:10.1021/cr9904009.
- ¹¹⁷⁰ Topçuoğlu, B. D., Meydan, C., Nguyen, T. B., Lang, S. Q., & Holden, J. F. (2019). Growth Kinet-

ics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile Methanocaldo-

¹¹⁷² coccus jannaschii during Hydrogen-Limited Growth and Interspecies Hydrogen Transfer. *Appl.*

Environ. Microbiol., **85**, 1–14. doi:10.1128/AEM.00180-19.

- ¹¹⁷⁴ Urey, H. C. (1947). The thermodynamic properties of isotopic substances. *J. Chem. Soc. Resumed*, ¹¹⁷⁵ (pp. 562–581). doi:10.1039/jr9470000562.
- ¹¹⁷⁶ Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S., & Tyler, S. C. (2004). Carbon and
 ¹¹⁷⁷ hydrogen isotope fractionation by moderately thermophilic methanogens. *Geochim. Cosmochim.* ¹¹⁷⁸ Acta, 68, 1571–1590. doi:10.1016/j.gca.2003.10.012.
- ¹¹⁷⁹ Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B. J., Hugenholtz, P.,
 ¹¹⁸⁰ & Tyson, G. W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum
 ¹¹⁸¹ Verstraetearchaeota. *Nat. Microbiol.*, **1**, 16170. doi:10.1038/nmicrobiol.2016.170.
- Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K.-U., Stewart, L. C., Holden, J. F., Hristov,
 A. N., Pohlman, J. W., Morrill, P. L., Könneke, M., Delwiche, K. B., Reeves, E. P., Sutcliffe,
 C. N., Ritter, D. J., Seewald, J. S., McIntosh, J. C., Hemond, H. F., Kubo, M. D., Cardace,
 D., Hoehler, T. M., & Ono, S. (2015). Nonequilibrium clumped isotope signals in microbial
 methane. *Science*, 348, 428–431. doi:10.1126/science.aaa4326.
- ¹¹⁸⁷ Wang, D. T., Reeves, E. P., McDermott, J. M., Seewald, J. S., & Ono, S. (2017). Clumped isotopologue constraints on the origin of methane at seafloor hot springs. *Geochim. Cosmochim. Acta*, 223, 141–158. doi:10.1016/j.gca.2017.11.030.
- ¹¹⁹⁰ Wang, D. T., Welander, P. V., & Ono, S. (2016). Fractionation of the methane isotopologues
 ¹¹⁹¹ 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsu¹¹⁹² latus (Bath). *Geochim. Cosmochim. Acta*, **192**, 186–202. doi:10.1016/j.gca.2016.07.031.
- ¹¹⁹³ Wang, Y., Sessions, A. L., Nielsen, R. J., & Goddard, W. A. (2009a). Equilibrium 2H/1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations. *Geochim. Cosmochim. Acta*, **73**, 7060–7075. doi:10.1016/J.GCA.2009.08.019.

- Wang, Y., Sessions, A. L., Nielsen, R. J., & Goddard, W. A. (2009b). Equilibrium 2H/1H fractiona tions in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols
 and ethers. *Geochim. Cosmochim. Acta*, **73**, 7076–7086. doi:10.1016/J.GCA.2009.08.018.
- Wang, Y., Sessions, A. L., Nielsen, R. J., & Goddard, W. A. (2013). Equilibrium 2H/1H fraction ation in organic molecules: III. Cyclic ketones and hydrocarbons. *Geochim. Cosmochim. Acta*,
 107, 82–95. doi:10.1016/J.GCA.2013.01.001.
- Webb, M. A., & Miller, T. F. (2014). Position-specific and clumped stable isotope studies: Comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and
 propane. J. Phys. Chem. A, 118, 467–74. doi:10.1021/jp411134v.
- Webb, M. A., Wang, Y., Braams, B. J., Bowman, J. M., & Miller, T. F. (2017). Equilibrium
 clumped-isotope effects in doubly substituted isotopologues of ethane. *Geochim. Cosmochim. Acta*, **197**, 14–26. doi:10.1016/J.GCA.2016.10.001.
- Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and
 quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.*, 7, 3297. doi:10.1039/b508541a.
- Welte, C., & Deppenmeier, U. (2014). Bioenergetics and anaerobic respiratory chains of
 aceticlastic methanogens. *Biochim. Biophys. Acta BBA Bioenerg.*, 1837, 1130–1147.
 doi:10.1016/J.BBABIO.2013.12.002.
- Wenk, C. B., Wing, B. A., & Halevy, I. (2017). Electron carriers in microbial sulfate reduction
 inferred from experimental and environmental sulfur isotope fractionations. *ISME J.*, **12**, 495–
 507. doi:10.1038/ismej.2017.185.
- Whitehill, A. R., Joelsson, L. M. T., Schmidt, J. A., Wang, D. T., Johnson, M. S., & Ono, S. (2017).
 Clumped isotope effects during OH and Cl oxidation of methane. *Geochim. Cosmochim. Acta*, 196, 307–325. doi:10.1016/J.GCA.2016.09.012.
- Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chem. Geol.*, **161**, 291–314. doi:10.1016/S0009-2541(99)00092-3.
- Wing, B. A., & Halevy, I. (2014). Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. *Proc. Natl. Acad. Sci. U. S. A.*, **111**, 18116–25.
 doi:10.1073/pnas.1407502111.
- Yeung, L. Y. (2016). Combinatorial effects on clumped isotopes and their significance in biogeochemistry. *Geochim. Cosmochim. Acta*, **172**, 22–38. doi:10.1016/j.gca.2015.09.020.

- Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W., Brunner, B., Kuypers,
 M. M. M., Hinrichs, K.-U., & Elvert, M. (2014). Carbon isotope equilibration during sulphate-
- limited anaerobic oxidation of methane. *Nat. Geosci.*, **7**, 190–194. doi:10.1038/ngeo2069.
- Yoshioka, H., Sakata, S., & Kamagata, Y. (2008). Hydrogen isotope fractionation by Methanother mobacter thermoautotrophicus in coculture and pure culture conditions. *Geochim. Cosmochim. Acta*, **72**, 2687–2694. doi:10.1016/j.gca.2008.03.015.
- Young, E., Kohl, I., Lollar, B. S., Etiope, G., Rumble, D., Li, S., Haghnegahdar, M., Schauble,
 E., McCain, K., Foustoukos, D., Sutclife, C., Warr, O., Ballentine, C., Onstott, T., Hosgormez,
 H., Neubeck, A., Marques, J., Pérez-Rodríguez, I., Rowe, A., LaRowe, D., Magnabosco, C.,
 Yeung, L., Ash, J., & Bryndzia, L. (2017). The relative abundances of resolved 12CH2D2 and
- 1237 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases.
- 1238 *Geochim. Cosmochim. Acta*, **203**, 235–264. doi:10.1016/j.gca.2016.12.041.
- Young, E. D. (2019). A Two-Dimensional Perspective on CH4 Isotope Clumping. In *Deep Carbon: Past to Present* (pp. 388–414). Cambridge University Press.
- Young, E. D., Rumble, D., Freedman, P., & Mills, M. (2016). A large-radius high-mass-resolution
- ¹²⁴² multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2,
- ¹²⁴³ CH4 and other gases. *Int. J. Mass Spectrom.*, **401**, 1–10. doi:10.1016/J.IJMS.2016.01.006.
- Zaarur, S., Wang, D. T., Ono, S., & Bosak, T. (2017). Influence of Phosphorus and Cell Geometry
 on the Fractionation of Sulfur Isotopes by Several Species of Desulfovibrio during Microbial
 Sulfate Reduction. *Front. Microbiol.*, 8, 890. doi:10.3389/fmicb.2017.00890.
- Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combin ing the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Ther mochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput., 2, 364–382.
 doi:10.1021/ct0502763.
- ¹²⁵¹ Zhao, Y., & Truhlar, D. G. (2011). Applications and validations of the Minnesota density function-¹²⁵² als. *Chem. Phys. Let.*, **502**, 1–13. doi:10.1016/j.cplett.2010.11.060.
- ¹²⁵³ Zhuang, G.-C., Heuer, V. B., Lazar, C. S., Goldhammer, T., Wendt, J., Samarkin, V. A., Elvert,
- M., Teske, A. P., Joye, S. B., & Hinrichs, K.-U. (2018). Relative importance of methylotrophic
- methanogenesis in sediments of the Western Mediterranean Sea. *Geochim. Cosmochim. Acta*,
- ¹²⁵⁶ **224**, 171–186. doi:10.1016/j.gca.2017.12.024.