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Abstract
Sampling multiple binding modes of a ligand in
a single molecular dynamics simulation is dif-
ficult. A given ligand may have many inter-
nal degrees of freedom, along with many differ-
ent ways it might orient itself a binding site or
across several binding sites, all of which might
be separated by large energy barriers. We have
developed a novel Monte Carlo move called
Molecular Darting (MolDarting) to reversibly
sample between predefined binding modes of a
ligand. Here, we couple this with nonequilib-
rium candidate Monte Carlo (NCMC) to im-
prove acceptance of moves. We apply this tech-
nique to a simple dipeptide system, a ligand
binding to T4 Lysozyme L99A, and ligand bind-
ing to HIV integrase in order to test this new
method. We observe significant increases in ac-
ceptance compared to uniformly sampling the
internal, and rotational/translational degrees of
freedom in these systems.

1 Introduction
Structure-based drug design allows for rational
design of ligands, as computational methods
can help predict desired qualities of a poten-
tial ligand prior to its synthesis.1–4 However,
an understanding of ligand binding modes is
often viewed as critical for structure-based de-
sign5–7 yet binding modes are not necessarily
well known before compounds are made and

tested.8–10
Thus, many computational methods seek to

predict ligand binding modes. Several such
methods for binding mode prediction are avail-
able, but overall computational prediction of
binding modes is a difficult problem.8,11 One
of the most commonly used methods for bind-
ing mode prediction, docking, is able to sift
through millions of compounds efficiently, how-
ever, docking does not tend to do well at pre-
dicting the true binding mode.9 On the other
end of the spectrum of computational cost are
free energy simulation-based methods, which
are very promising for structure-based design
and are attracting tremendous interest from in-
dustry.12–15
However, computational methods for study-

ing binding have their limitations. Free energy
methods for predicting binding affinity need to
start close to, or sample the correct binding
mode in order to offer accurate free energy pre-
dictions.13,16–18 This reliance on the starting po-
sition can cause issues; since the binding mode
of a novel ligand has to be predicted and is typi-
cally slow to sample in a simulation,19 adequate
sampling of the ligand’s motion in the binding
site can be challenging. Even in the case of
a congeneric series of molecules binding to the
same target, the binding mode of the ligands
can differ.8,20
In order to circumvent some of these short-

comings of MD-based methods, we previously
developed a mixed MD/nonequilibrium can-
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didate Monte Carlo (NCMC) based method,
and implemented it in a package called Bind-
ing modes of Ligands Using Enhanced Sam-
pling (BLUES).21 Typically, Monte Carlo (MC)
moves have difficulty achieving high acceptance
rates in condensed-phase systems because of
tight packing, allowing for only small pertur-
bations to be performed on a system. NCMC
provides a framework where a larger, instanta-
neous MC move can be broken up into a series
of smaller perturbations. Between each pertur-
bation the system is allowed to relax by apply-
ing dynamics. This process is repeated a num-
ber of times and the whole move is accepted
or rejected based on the total work done dur-
ing the perturbation steps. In BLUES we use
NCMC moves to alchemically remove the inter-
actions of a ligand and then reinstate them over
the course of some number of steps (N). At
the start of reinserting the ligand, a MC move
can also be performed to further improve bind-
ing mode sampling. By slowly removing and
regrowing the ligand, we can insert the ligand
into a new binding mode and allow the rest of
the system to slowly relax in response to the
ligand’s motion, potentially leading to higher
rates of acceptance compared to instantaneous
MC moves.
As noted, an MC move can be performed at

the midpoint of the NCMC protocol. In our
original paper describing the BLUES method,
the only such move offered was a center of mass
rotation of the ligand. In subsequent work, the
MC moves available were further expanded to
include protein side-chain torsions22 as well as
selected torsions of the ligand.22,23
These types of moves are helpful in generat-

ing small perturbations of the ligand’s binding
mode, but ideally we would like to be able to
generate binding mode predictions and sample
between those directly. Generally, proposing
reasonable candidate binding modes is a rela-
tively easy task, since docking methods tend to
do a good job at generating plausible binding
modes, but are poor at ranking these binding
modes.9,24,25 In many cases, such poses can be
equilibrated via MD simulations to find a va-
riety of different stable or metastable binding
mode candidates. 20,26–28

While some methods can improve sampling
of a ligand’s internal degrees of freedom, we are
not aware of any current MC method which can
efficiently hop between potentially disparate
predefined ligand binding modes in a way that
preserves detailed balance.
Techniques such as Rosenbluth sampling,29

or configurational bias Monte Carlo30 are sam-
pling methods originally applied to flexible
molecules to grow and arrange polymers favor-
ably, but these methods do not offer a way to
directly sample between two specific conforma-
tions of a molecule.
Distance Geometry is another technique used

to perform conformational analysis of ligands.
methods.31 In this technique the atoms of a
molecule are randomly placed and then mini-
mized to generate a new structure. Like config-
urational bias MC, however, distance geometry
methods do not satisfy detailed balance since
they depend on a minimization step.
To more efficiently sample binding moves,

we have developed a new Monte Carlo based
method to directly sample transitions between
candidate poses–which may even be in differ-
ent binding sites. Furthermore, we have imple-
mented this method in the BLUES package in
connection with our previous BLUES NCMC-
based method in an attempt to directly sample
multiple binding modes in protein systems.

2 Theory and computa-
tional methods

Here, we first describe the background and mo-
tivation of the method we implement here, then
move on to discuss technical details of its im-
plementation and how it was tested.

2.1 Smart Darting allows for se-
lective sampling between min-
ima

Our novel Monte Carlo method is a logical
descendant of another Monte Carlo sampling
method called Smart Darting Monte Carlo.32
The general process of Smart Darting involves
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defining two key pieces of information. The
first piece we need to specify is a set of "darts",
which represent different configurations of the
system that are of interest. The second piece we
need to specify is a set of parameters (and their
ranges), which correspond to and define each of
those darts, in order to specify the boundaries
associated with each conformation.
To explain Smart Darting in more technical

terms, a set of darts d0, d1...dj are first spec-
ified. Each of those darts corresponds to a
particular set of microstates (i.e. a metastable
binding mode which was given as input) each
of which is defined by a set of parameters k0,
k1,...kn, with each parameter ki having an as-
sociated range rki . Each parameter refers to a
quantity that defines that microstate–such as a
torsion angle, or some distance measurement,
such as the distance between two atoms. The
range should be the same for each parameter
ki, (which is necessary to preserve detailed bal-
ance, or the acceptance criterion needs to be
altered). When a given parameter is within its
associated range, we refer to it as being within
that parameter region. These parameters (and
the size of the parameter range) are user-defined
input and should be designed to cover the typi-
cal value ranges of those parameters, which can
be determined by example by running short ex-
ploratory/equilibration simulations. When at-
tempting to make a Smart Darting Monte Carlo
move, the parameters are evaluated (the cur-
rent value of that parameter is checked) for
each dart. When the parameter is evaluated,
if the current configuration is within the pa-
rameter regions rki for all rk of a given dart—
which we refer to as being within the dart—
then the system can jump to another set of pa-
rameters with equal probability. In the process
of jumping to the new configuration, a new k0,
k1,...kn are each generated–either uniformly be-
tween the ranges for a given rki or determinis-
tically through some one-to-one mapping from
the old k0 to the new k0. Additionally, to main-
tain detailed balance, no Smart Darting move
can be performed on a system if the system is
within the range of multiple darts.

2.2 Molecular darting moves use
internal coordinates as part of
move proposals

In our novel Smart Darting-inspired method-
ology, called Molecular Darting (MolDarting),
the parameters that define a dart are defined
by the internal torsions of the molecule, as well
as a translational and rotational distance to a
given configuration. The internal coordinates
are described by a Z-matrix, which describes
the molecule’s configuration in terms of internal
bond distances, angles, and dihedrals. For this
case of MolDarting, we assume the bond and
angle internal coordinates are invariant between
ligand conformations, and that the dihedral in-
ternal coordinates are independent of one an-
other. The translational distance is defined by
the Euclidean distance between the first atom
of the Z-matrix of the current configuration and
the corresponding atomic positions of the given
dart. The translational distance is defined by
the Euclidean distance of a given configuration
to each reference position of the first atom in
the Z-matrix. We used Chemcoords33 to gener-
ate the internal coordinates for our molecules of
interest. The rotation matrix of the first three
Z-matrix atoms of the ligand is calculated to
each of the first three Z-matrix atoms of the
references. The rotational distance is calculated
by Eq 1, where R is the rotation matrix.

θ = arccos(
Tr(R)− 1

2
) (1)

When using MolDarting on a protein-ligand
system, it’s necessary to first account for the
overall rotation and translational changes for
the protein-ligand complex in regards to the ref-
erence darts. To account for those rotational
and translational changes, heavy atoms of the
residues around the binding site are chosen.
When checking if the current configuration is
within the rotational and translational regions,
the chosen binding site residues of the selected
dart are superposed to the same binding site
residues of the current pose, then the rotational
and translational distances are calculated.
When MolDarting between binding modes,
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the proposed internal coordinates from
MolDarting are uniformly chosen anywhere
inside the newly selected internal coordinate
region (Figure 1). The rotational and trans-
lational motions are deterministically updated
by assessing the displacement from the starting
pose to the center of each of their respective
regions and then applying those same displace-
ments again after it is MolDarted (Figure 2,
Figure 3).
When combining MolDarting with BLUES,

an additional step is added to the MolDarting
procedure. We found that these restraints were
needed because when the ligand steric interac-
tions are diminished, it is more labile inside the
binding pocket and can frequently end up out-
side the darts. To reduce the lability of the lig-
and, an orientational restraint, also known as a
Boresch-style restraint34 is applied to the first
three ligand Z-matrix atoms, relative to three
reference atoms in the protein. This restraint
restricts the orientation relative to the bind-
ing site via restricting one distance, two angles
and three torsions, and involves three reference
atoms in the ligand and three in the receptor.
Here, we scale this restraint with the lambda
parameter that controls the electrostatics and
sterics; when the ligand is fully non-interacting,
the restraints are in full effect (Figure 4). To
maintain detailed balance when applying re-
straints, before the NCMC move occurs the we
check if the ligand is currently within a dart;
if it is then the orientational restraints associ-
ated with that pose will be turned on over the
first half of the NCMC move. If the ligand is
not within the same dart as at the start of the
move, then the move is rejected.
Subsequently, after the MolDarting move is

performed, the restraints corresponding the
new pose are turned on, and the previous
pose’s restraints are turned off. Finally, after
the NCMC move occurs, the parameters are
evaluated again to see if they are within any
dart. The modulation of steric, electrostatic
and restraint interactions over the course of the
NCMC move are illustrated in Figure 4, and
the overall procedure is illustrated in Figure 5.
If the ligand is in a different pose than the

pose the ending restraints were associated with,

then the move is automatically rejected, since
such a move would not be reversible. Other-
wise the protocol work (the work that is done
over the course of the NCMC move) determines
whether the NCMC move is accepted or re-
jected. The application of the restraint is taken
into account in the work done during the course
of the NCMC move.
Taking into account the major degrees of free-

dom of the molecule allows reversible MolDart-
ing moves between different potential ligand
binding modes, not only with different ligand
conformations, but potentially even in separate
binding pockets.

2.3 We tested Molecular Darting
on three different systems

To validate and explore the potential of
MolDarting, we look at three different system
with different requirements needed to sample
binding modes. The first system explored is an
alanine-valine dipeptide. While not typically
considered a ligand, this peptide is a simple
model system which exhibits three different
stable conformations that vary by an internal
torsion and can be slow to sample through plain
MD.22 It also is a good test system for the dart-
ing approach we develop here, as MolDarting
can be applied to any selected object in our sys-
tem, not just a ligand. Here, since sidechains
play an important role in ligand binding it is
also important to be able to sample the ro-
tamers in a binding site. The second system
we look at with MolDarting is T4 lysozyme
L99A with toluene bound, where the binding
modes varies by rotation and translation. The
final system we look at is HIV integrase with a
variety of ligands bound. HIV integrase is an
interesting test system because it has multiple
binding sites where ligands can bind, and has
proven difficult for binding mode predictions in
a previous blind challenge,8 and we would like
to test whether MolDarting can directly sample
the binding modes in each binding site.
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Figure 1: Dihedrals are uniformly sampled during MolDarting. We illustrate how we perform our rotational
darting moves using a rose plot representation of a dihedral angle (in degrees) as an example. The dihedral regions
are represented by the blue areas, and the current dihedral angle is represented by the yellow line/areas. In this
example, there are three total darts, each with an associated region. (A) The Newman projection of a hypothetical
ligand illustrating three different stable conformations. (B) A representation of the three dihedral regions for the
three conformations. (C) When a particle is within a dihedral region then a darting move can be performed. (D)
When MolDarting the dihedrals, the new dihedral is selected uniformly from a region the dihedral is not currently
in (shown in yellow). The arrows refer to the two potential outcomes of the MolDarting move in which the ligand is
darted to a new configuration. (E) One of the other dihedral regions are chosen randomly (with equal probability) to
be MolDarted, and then a new dihedral is chosen randomly from the chosen region, resulting in a new configuration.
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Figure 2: Translations are handled deterministically during MolDarting. We illustrate how we perform our
translational darting moves using a 2-dimensional translational region as an example, with a single particle, (that can
represent an atom of a ligand, for example) that will be Moldarted. The translational regions are represented by the
blue circle, with the center of each translational region represented by a black dot, and simplified molecule represented
by yellow circles. In this example, there are three total darts. (A) A representation of the three rotational regions
used. (B) When a particle is within a translational region, the vector from the particle’s center, to the translational
region’s center is calculated (represented by the arrow). (C) When MolDarting the vector calculated in (B) is applied
to the center of each other translational region to determine the particle’s new position. The dotted arrows refer
to the two potential outcomes of the MolDarting move in which the ligand is darted to a new configuration. (D)
One of the new reference regions are chosen randomly (with equal probability) to be MolDarted, resulting in a new
configuration.
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Figure 3: Rotations are handled deterministically during MolDarting. We illustrate how we perform our
rotational darting moves using a 2-dimensional rotational region as an example, with a single molecule that will be
moved via MolDarting. The rotational regions are represented by the blue triangle, with the center of each rotational
region (which was defined by some reference pose) represented by the three black circles connected by black lines,
and the ligand in our simulations represented by the yellow circles connected by yellow lines. In this example, there
are three total darts, each with an associated rotational region. (A) A representation of the three rotational regions
used. (B) When a particle is within a rotational region the rotation matrix is calculated from the current positions
to the reference positions. (C) When MolDarting, the rotation matrix calculated in (B) is applied to the reference
positions of each other rotational region to determine the molecule’s new position. The dotted arrows refer to the two
potential outcomes of the MolDarting move in which the ligand is darted to a new configuration. (D) One of the new
reference regions are chosen randomly (with equal probability) to be MolDarted, resulting in a new configuration.
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Figure 4: Restraints are included in the NCMC
switching protocol. In order to keep the ligand
in the binding site while the ligand’s interactions
are off, an orientational restraint is used which
corresponds to the dart that the ligand is in at
the beginning of an NCMC move proposal. At
the middle of the NCMC protocol, a MolDarting
move is performed, and the restraint switches to
a new orientational restraint corresponding to
the new dart, which is subsequently turned off
throughout the rest of the protocol.

3 Methodology

3.1 System preparation

3.1.1 Alanine-valine dipeptide system
setup

An alanine-valine dipeptide system was created
using tleap from AmberTools 16 .35 The am-
ber99SBILDN forcefield was used for the pro-
tein parameters. Simulations were carried out
at 300K with a Langevin integrator using a
0.002ps step size in implict OBC2 solvent36 us-
ing OpenMM version 7.3.37 Nonperiodic cutoffs
were used, with the hydrogen bonds constrained
and a 1/ps friction applied. The peptide’s CA,
N, and O backbone atoms were restrained using
a restraint of 25 kcal/(mol·angstrom2) based on
their starting conformation.
To prepare for MolDarting between the differ-

ent stable rotameric states for this dipeptide,
we initially ran a 100 ns simulation to iden-
tify the dihedral minima of the system. From
this simulation, we found three stable valine ro-
tamers, with dihedral maxima at approximately
-170, -65, and 53 degrees. These dihedrals was

Figure 5: Adding restraints with NCMC and
MolDarting requires additional consideration.
When restraints are used alongside NCMC and
MolDarting, it’s necessary to take into account
several additional factors, which are illustrated
by this flowchart and elaborated further in Sec-
tion 2.2.
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calculated by measuring the dihedral angle be-
tween the CA, CB and CG1 atoms of valine on
the alanine-valine dipeptide atom using MDTraj
1.9.3.38
From the three maxima, regions were chosen

so that the region size encompassed 95% of the
probability density associated with that dihe-
dral maximum, estimated from a kernel den-
sity approximation with a 0.2 bandwidth and a
Gaussian kernel.
Simulations of the alanine-valine system were

performed using BLUES for 150000 iterations,
with each iteration consisting of 1000 steps of
MD and an instantaneous MC move consist-
ing of either a sidechain rotation using the
SideChainMove class or a MolDarting move us-
ing the MolDartMove class. The code used to
run these simulations can be found in the SI.
Populations of the three dihedral maximums

were separated based on the following bin defi-
nitions: from (-120,-40] defined one bin (with a
maximum at 68 degrees), from [20,100] defined
another bin (with a maximum at 68 degrees)
and a third bin is discontinuous and is defined
between [-180, -120] and [115,180] (with a max-
imum at 180 degrees).

3.1.2 T4 lysozyme/toluene system and
simulation setup

Here, we used the same T4 lysozyme and
toluene system and parameters for NCMC from
our previous work.21 The only difference in our
simulation protocol was that now a MolDarting
move was performed instead a random center
of mass rotation. For the MolDarting move, a
rotational dart of 40 degrees was defined, using
two poses of the non-symmetrically equivalent
binding poses as a reference. A Boresch re-
straint with a force constant of 3kcal/(mol ∗
angstrom2) for the radial component and
3kcal/(mol ∗ rad ∗ ∗2) for the angular and
dihedral components was used with the first
three internal coordinate atoms of toluene as
chosen by ChemCoords (being the C6, C4, and
C5 atoms respectively of the toluene molecule)
and the CA atoms of PRO85, ALA98, and
LEU117 using the Yank’s BoreschRestraint
class to implement the restraints with the

provided atoms from the receptor as the
restrained_receptor_atoms and the ligand
atoms as the restrained_ligand_atoms argu-
ments for the class.39

3.1.3 HIV integrase system setup

We used the 4CHY pdb file as the basis struc-
ture for our study to serve as a uniform start-
ing point for docking and equilibration. Omega
from Openeye40 was used to generate the con-
formers for the 4 ligands from the pdb files of
4CHY, 4CGD, 4CHZ, and 4CJV,41 and Fred
was used to dock the compounds in the three
different binding sites.42 The highest scoring
poses from docking was used, and to gener-
ate a diverse set of structures, root-mean-square
deviation (RMSD) centroid clustering was per-
formed on the poses, and the most diverse poses
retained, to promote pose diversity. To further
elaborate on the clustering procedure, the first
centroid was defined using the top-scoring dock-
ing pose, and the subsequent centroids were
chosen which were the greatest RMSD distance
away from the other existing centroids for that
binding site. Clustering of poses were done sep-
arately for each binding site, and the two poses
with the centroids furthest from the top scoring
pose were used as reference poses for use with
MolDarting, for a total of three poses per bind-
ing site. Antechamber was then used with the
AM1-BCC method35,43 to assign partial charges
to the molecules.
Finally, Amber was used to add missing

sidechains, heavy atoms, and hydrogens to the
protein, with the parameter set from ff14SB
used for the protein.35 Because the binding sites
of HIV integrase are solvent exposed, we chose
to use OBC2 implicit solvent model36 to re-
duce the amount the system has to respond to
solvating and desolvating the binding sites in
response to the ligand being removed and in-
serted when MolDarting the ligand. Equilibra-
tion MD simulations were performed at 300K
for 1 ns for each binding pose. The positions of
this equilibration trajectory were saved every
10,000 steps.
Unless otherwise noted, the simulation set-

tings were the same as alanine-valine dipeptide
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system. The equilibration simulation trajecto-
ries were also used to define the dihedral re-
gions. Kernel density estimation (KDE) was
performed on the dihedral internal coordinates
from the trajectory with a bandwidth of 0.5.
From this, the maxima in the dihedral KDEs
were identified. The maxima that the dihedral
was closest to at the end of equilibration was
used to determine the start of the region for
that dihedral. The width of the dihedral re-
gions were determined were made account for
95% of the probability density estimated by
KDE. The width was calculated by first finding
the total probability density contained within
a maximum, and then expanding the width of
the region starting at the maximum until 95%
of that maximum’s probability density was cov-
ered by the region. During MolDarting simula-
tions, restraint atoms were automatically cho-
sen from the heavy atoms within 10 angstroms
of the ligand using Yank.39

4 Results

4.1 We validated the internal
coordinate sampling of our
method against uniform di-
hedral sampling of the valine-
alanine dipeptide.

4.1.1 Molecular Darting samples the
three dihedrals of valine-alanine
dipeptide efficiently

We assessed the ability of MolDarting to sam-
ple the sidechain torsion of the valine-alanine
dipeptide in implicit solvent. We also the com-
pare the sampling efficiency of Moldarting to
that of uniform sampling of the torsion. We
applied the MolDarting procedure described in
Section 3.1.1 to validate this MC move cor-
rectly samples the correct population distribu-
tions, and to compare the sampling efficiency of
MolDarting to a traditional MC method. Both
methods converged to the same values for the
three dihedral populations (Figure 6). Across
seven simulations replicates using MolDarting,
the acceptance rate of MolDarting moves was

only 2.23%±0.6%, compared to the acceptance
rate of uniform sampling at 8.04%± 0.5%. Al-
though the acceptance rate for molecular dart-
ing was lower, the number of transitions gener-
ated between dihedral populations was nearly
doubled compared to uniform dihedral sam-
pling, with an average of approximately 3400
transitions generated with MolDarting com-
pared to approximately 1400 transitions on av-
erage with uniform dihedral sampling. Thus,
because of the targeted nature of MolDarting,
the number of transitions between conforma-
tions is higher than the uniform sampling case,
despite the lower number of accepted moves.

4.2 We applied Molecular Dart-
ing to a T4 lyosozyme L99A
system

4.2.1 Molecular Darting selectively the
rotational and translational de-
grees of freedom in a binding site

We further evaluated our method to sample ro-
tational and translational degrees of freedom by
applying MolDarting to sampling the binding
modes of toluene bound to T4 lysozme L99A.
The are four binding modes of toluene when
bound to T4 Lysozyme L99A. These binding
modes vary by rotational and translational de-
grees of freedom; two are distinct and vary by
a rotation, and the other two binding modes
are symmetry-equivalent to the first pair.21 We
applied MolDarting sampling with BLUES to
the non-symmetric binding modes of toluene.
The populations of the two binding modes were
selectively sampled using MolDarting, with-
out sampling the non-symmetric binding modes
(Figure 7). MolDarting also was able to recover
the correct populations of the binding modes,
with the correct population split being 60:40,
and our triplicate runs giving 58%± 3% for the
dominant binding mode and 42%± 3% for the
less populated binding mode. The acceptance
rate for these moves over these trials was ap-
proximately 22%, which is roughly two times
the acceptance rate for random center of mass
moves we explored in the original BLUES pa-
per,21 which further shows the benefit of tar-
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(a) Uniform sidechain sampling

(b) Moldarting

Figure 6: MolDarting efficiently samples the conformations of valine-alanine. (a) (top) A trajectory
consisting of MD+MC uniform rotations of the valine sidechain, with the histogram of the data (right). (b) (bottom)
A trajectory consisting of MD+MC MolDarting moves of the valine sidechain. Molecular darting converges to the
same distribution as uniform torsion rotations. However, MolDarting ends up being about twice as efficient at
generating torsion transitions in this system. The red horizontal lines are included to help visually separate the
three binding modes.
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Figure 7: MolDarting generates selective transitions between binding modes Toluene has four binding
modes in the binding site, but only two of the binding modes are sampled here, due to the targeted nature of
MolDarting. MolDarting is able to reproduce the correct relative probabilities of both binding modes, which are
approximately 60% for binding mode A (the crystallographic binding mode), and 40% for the noncrystallographic
pose.
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geted moves.

4.3 Molecular Darting does not
accelerate sampling when
outside the dart

Sometimes, running longer simulations on the
T4 lysozyme/toluene system resulted in toluene
switching to the symmetry-equivalent binding
mode (Figure 8). When this occurs, the ligand

Figure 8: MolDarting does not improve sampling
when the simulation moves outside the darts.
Here, the initial binding modes of toluene between 0
and π radians are well sampled (in the first 400 itera-
tions), since these are covered by the rotational regions
from MolDarting. However if the simulation leaves that
region, then a MolDarting move cannot take place, and
thus the simulation becomes just a normal MD simu-
lation. In this particular simulation, around the 400th
iteration toluene flips to the symmetric equivalent bind-
ing mode, which is not covered by the rotational regions,
greatly reducing sampling.

ends up being outside the pre-specified darts
we defined in this test, and thus MolDarting
moves cannot be attempted. We could have
instead included all four ligand binding modes
(two symmetry-equivalent pairs) as darts, but
we elected not to here as we wanted to focus on
non-redundant sampling. This issue highlights
a key point: while MolDarting can be used to
accelerate sampling, it is only effective when
the system is within the selected darts; when
outside the darts, we are effectively running
plain MD. Thus, to maximize the applicabil-
ity of MolDarting moves, care should be taken
when defining the regions used for MolDarting.

Essentially, MolDarting attempts to trade
bias for efficiency. More random procedures,
like our initial translational moves in BLUES,
allow enhanced exploration of binding mode
transitions regardless of what pose the ligand
is in, but do so rather inefficiently since so
many proposed moves are to unfavorable bind-
ing modes. MolDarting requires more advance
input or bias – selection of a set of potential
binding modes to focus sampling on – and thus
is able to ensure that proposed moves focus near
those binding modes, potentially enhancing ef-
ficiency, but when the simulation strays from
pre-defined binding modes, no enhanced sam-
pling is possible.

4.4 We attempt to use Molecu-
lar Darting to explore multi-
ple binding modes of HIV in-
tegrase Ligands

We applied Molecular Darting to an HIV inte-
grase system with a set of diverse ligands. We
chose HIV integrase in this study since this pro-
tein has three distinct binding sites ligands po-
tentially bind to, leading to a plethora of poten-
tial binding modes which were hard for meth-
ods to discriminate between in a previous blind
challenge.8 By using MolDarting we aimed to
sample the various binding modes in the three
binding sites in a single simulation.
The ligands we tested were chosen from the

SAMPL4 dataset to include a diverse set of lig-
ands as well as a diverse set of three poses in
each binding site, for a total of 9 different bind-
ing modes (Section 3.1.3).
We attempted to use MolDarting to sample

between binding sites. However, in all the cases
with the ligands we studied, the acceptance rate
for the moves was 0, thus no moves were ac-
cepted.
We looked at two possible sources that could

lead to these MolDarting moves being rejected.
One possible source of rejection is that the lig-
and falls outside the regions when MolDarting
is being attempted, leading to these moves be-
ing rejected.
Another possible source of rejection is the pro-
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tocol work produced during the move is high,
so these moves are rejected by the acceptance
criteria.
We first looked at the distribution of at-

tempted MolDarting moves for the ligands (Fig-
ure 9). We found that although some moves did
end up outside the defined regions (indicated by
the ligand staying in the initial binding mode,
shown in red), the majority of times, the lig-
and is being proposed to a new binding mode.
While our handling of the regions could be im-
proved, it does not appear to be the major cause
of MolDarting moves being rejected.
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od
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Figure 9: MolDarting attempts sample all the
defined binding modes. We looked at the binding
modes sampled by MolDarting moves attempts. All
9 binding modes that were used for MolDarting with
this ligand (4CGD) were sampled over the 200 itera-
tions performed. The ligand started in binding mode 1.
The points in blue indicate MolDarting move attempts
which were successful at sampling new binding modes,
while the red indicates that the ligand was outside the
defined regions, so no darting move was attempted.

We then looked at the protocol work distri-
butions that are accumulated throughout the
NCMC MolDarting move attempts (Figure 10).
From the work distributions, we can see that

there is that the protocol work accumulation is
very large. Even for 50,000 NCMC switching
steps, most of the moves attempted aren’t close
to being favorable (near 0). To investigate fur-
ther into these high protocol work values, we
looked at the instantaneous derivative through-
out the NCMC switching protocol (Figure 11).
If there were infinite switching steps, then we
would expect to see the instantaneous deriva-
tive being roughly inversely symmetric around
the middle of the protocol. Instead, what we see

is that when the ligand’s steric interactions are
being turned back on, there is a huge spike of
protocol work being accumulated. On the other
hand, the electrostatics for the system are well-
behaved when both turning off and turning on
those interactions. These pieces of data sug-
gest that the moves we propose introduce the
steric interactions too quickly or in a way which
causes clashes that are too severe. We therefore
could potentially improve MolDarting move ac-
ceptance rates by altering our NCMC switching
protocol. Specifically, one route we can take to
improve the switching protocol is to increase
the proportion of steric NCMC switching steps
to the electrostatic NCMC switching steps. An-
other potential way to increase the acceptance
rates is to minimize the variance of the proto-
col work .44 As seen in Figure 11, the protocol
work variance is not constant and changes over
the course of the switching steps, so modifica-
tion of how we change the sterics and, to a lesser
extent, the electrostatics (Figure 4) during our
NCMC protocol could improve our acceptance
rates of these MolDarting moves–and NCMC
moves in general.

5 Conclusion/Discussion

5.1 MolDarting allows sampling
of specific binding modes

We have shown that our newly developed
Monte Carlo method — Molecular Darting —
allows reversible sampling of specific binding
modes/conformations by constructing darting
moves based on the internal and external de-
grees of freedom of a ligand. This allows re-
versible hops between pre-defined metastable
binding modes or conformations, opening up
exciting new possibilities. Molecular Darting
worked well in improving sampling of the dif-
ferent binding modes/conformations in the sim-
pler model systems we considered, and notably
showed marked improvements in sampling com-
pared to uniform Monte Carlo sampling meth-
ods and plain Molecular Dynamics.
We did experience challenges, however, in get-

ting acceptance of MolDarting moves in combi-
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Figure 10: High protocol work leads to rejection for MolDarting moves. (a) The protocol work distribution
of NCMC with MolDarting move attempts with 1,000 (a), 10,000 ((b), and 50,000 ((c) NCMC switching steps with
the HIV integrase and the ligand found in 4CGD. The protocol work done over the course of the NCMC moves
generally is highly positive (unfavorable), leading those moves to be rejected by the acceptance criteria. There are
a small number of cases when the work values approach zero or are negative, but these were still rejected. In these
cases, rejection was due to the ligand ending up outside the defined regions at one of the checks during the course
of the move.

14



0 200 400 600 800 1000
NCMC step

10

0

10

20

30

40
Pr

ot
oc

ol
 W

or
k 

(k
T)

(a) 1,000 NCMC switching steps
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Figure 11: Turning on the steric interactions leads to unfavorable accumulation of protocol work. (a)
(left) The instantaneous difference of protocol work accumulation over 1000 switching steps. (b)The instantaneous
difference of protocol work accumulation over 10,000 switching steps. From 200 iterations of NCMC and MolDarting
simulation, we took the average values of the protocol work at each step for 1000 and 10,000 switching steps. From
these average values, we calculated the instantaneous difference between the work values, shown by the blue line.
The standard deviation of these differences are shown in red. We can see that there is a large accumulation of
protocol work when the ligand’s interactions are being turned back on (after the halfway point of the NCMC steps).

nation with NCMC in the HIV integrase sys-
tem. Even though the NCMC/MolDarting
moves were not accepted, we did find that
the attempted MolDarting move proposals were
into the intended binding sites/binding modes.
More work can be done in regards to improv-

ing move acceptance with NCMC. Potential ar-
eas to be explored could be to look into more
efficient paths of turning off and on the elec-
trostatics and sterics of the system. Different
soft-core potentials could potentially be used as
well, to further decrease the accumulated pro-
tocol work while turning on the ligand’s inter-
actions by minimize the variance of this pro-
cess.44,45
Molecular Darting also has potential applica-

tions in combination with other methods, which
can be further explored. For instance, MolDart-
ing could find use in equilibrium or expanded
ensemble simulations to improve sampling. In
the non-interacting states, MolDarting moves
should have significant acceptance rates; since
there are no clashes with the surrounding atoms
of the ligand acceptance will just depend on the
ligand’s internal degrees of freedom.

Further work can be also be done on generaliz-
ing Molecular Darting. One aspect of MolDart-
ing to improve would be allowing regions of
arbitrary sizes. While our original implemen-
tation of MolDarting only handles regions of
the same size, different sized regions can be
used instead if they are factored into the accep-
tance criterion.46 Similarly, instead of uniform
sampling the dihedral regions, we could sample
using a Gaussian distribution centered at the
maximum of the dihedral, which would favor
lower energy conformations of the ligand and
thus potentially yield higher acceptance.
Overall, we are excited of the potential appli-

cations of Molecular Darting, and its ability to
sample phase space in combination with other
sampling techniques.
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7 Supporting information
The Supporting Information is available free of
charge. The SI contains the set of scripts used
to run the BLUES simulations with MolDart-
ing on the systems described in this paper. Also
included are the parameter and coordinate files
for the systems used, as well as the analysis
scripts used to interpret the output. In addi-
tion, a copy of the BLUES version used here
is included, along with a README.md file de-
tailing the files present in this SI.

• Set of scripts for running BLUES simula-
tions with MolDarting,

• Parameter and coordinate files for the sys-
tems used

• Analysis scripts for interpreting the out-
put

• A copy of the BLUES version used

• A README.md file detailing the layout
of these files

BLUES is also available at https://github.
com/mobleylab/BLUES.
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