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Accurate numerical calculations of porosities and related properties are of importance when analyzing metal-
organic frameworks (MOFs). We present porE, an open-source, general-purpose implementation to compute
such properties and discuss all results regarding their sensitivity to numerical parameters. Our code combines
the numerical efficiency of Fortran with the user-friendliness of Python. Three different approaches
to calculate porosities are implemented in porE, and their advantages and drawbacks are discussed. In
contrast to commonly used implementations, our approaches are entirely deterministic and do not require any
stochastic averaging. In addition to the calculation of porosities, porE can calculate pore size distributions
and offers the possibility to analyze pore windows. The underlying approaches are outlined, and pore windows
are discussed concerning their impact on the analyzed porosities. Comparisons with reference values aim for
a clear differentiation between void and accessible porosities, which we provide for a small benchmark set
consisting of 8 MOFs. In addition, our approaches are used for a bigger benchmark set containing 370 MOFs,
where we determine linear relationships within our approaches as well as to reference values. We show how
these relationships can be used to derive corrections to a give porosity approach, minimizing its mean error.
As a highlight we show how complex workflows can be designed with a few lines of Python code using porE.
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INTRODUCTION

Metal-organic frameworks (MOFs) are a material class
aiming for different possible applications1, such as gas
absorbers2,3, catalysts4–6, optical sensors7,8, and post-
synthetic modification (PSM) of MOFs for modulating
reaction outcomes and biomedical applications9. The
class of amorphous MOFs (aMOFs) has possible appli-
cations as liquids or melt quenched glasses10. Recently,
it has been shown that the pore sizes in MOFs can be var-
ied by enforcing an external pressure on a given MOF11.
Many applications of MOFs are based on the porous na-
ture of these materials, as MOFs typically exhibit several
pores. These pores usually have different sizes. With
that, an accurate determination of the porosity and the
pore sizes is important12.

In general, the porosity Φ is defined as the empty vol-
ume Vempty within a given total volume Vtotal, e.g., the
unit cell of a MOF

Φ =
Vempty

Vtotal
· 100 %. (1)

While the total volume for crystal structures is always
well defined, the empty volume misses this general defini-
tion. One major aim of this work is to define and clearly
separate two different empty volumes, namely the void
volume Vvoid and the accessible volume Vacc. The void
volume is the space that is not occupied by any atom in
the unit cell, which can easily be analyzed given the sizes
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of the atoms, e.g., their respective van der Waals (vdW)
radii13. From this volume the void porosity Φvoid can be
obtained, which serves as a first descriptor of a porous
material. However, it has to be considered that a void
porosity does not necessarily reflect the volume/porosity
which can be assumed by adsorbed species. Such a poros-
ity strictly depends on the size of that species12. With
that another volume occurs, i.e., the accessible volume.
Accordingly, the accessible porosity Φacc can be defined.
This porosity, in contrast to Φvoid, depends on a probe
radius rprobe which varies for different species. One has to
be careful when analyzing the porosity in a material, as
the porosity of interest is usually Φacc. When reporting
this quantity one needs to provide the respective probe
radius, such as the vdW radius of H (rprobe = 1.20 Å) or
Xe (rprobe = 2.16 Å).

Within this work it will be shown that choosing differ-
ent probe radii significantly impacts the evaluated poros-
ity. A systematic analysis of the probe radius dependence
allows to evaluate the porosity for any adsorbed species,
i.e., any atom or molecule with an effective probe radius.

This manuscript is structured as follows: in the next
section, the theoretical background as well as detailed as-
pects of the implementation for the different approaches
- a Helium approach (HEA), an overlapping spheres ap-
proach (OSA), and a grid point approach (GPA) - are
presented, including discussions for the GPA about the
grid size dependence as well as the importance of the
probe radius dependence for the accessible porosity. Af-
terwards, an ansatz to calculate the pore size distribution
is outlined, following by an approach to determine pore
windows. A benchmark for a small test set containing
8 MOFs comes right before an analysis of a much larger
test set of 370 MOFs, followed by the conclusion.
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THEORETICAL BACKGROUND

We developed the porE code to calculate porosi-
ties and related properties. While numerically demand-
ing routines are written in Fortran, they are made
available through a Python user-interface. Thus, our
porE code combines numerical efficiency with user-
friendliness. The open-source porE code is available
under Apache 2.0 licence at GitHub, i.e., https://
github.com/kaitrepte/porE, and can easily be in-
stalled through the Python pip package manager. For
calculations using porE, one only needs the unit cell pa-
rameters and the coordinates of the atoms as input, sim-
ilar to alternative implementations14–18.

Three different approaches to calculate porosities are
implemented, namely a He approach (HEA), an overlap-
ping spheres approach (OSA), and a grid point approach
(GPA). The HEA is based on an cell list approach to pre-
dict He-fraction-like porosities, making it numerically ef-
ficient. While the OSA is also very efficient, it rather em-
ploys the overlap of atoms to calculate the (void) poros-
ity. In contrast, the GPA uses a grid inside the unit cell,
which can be adjusted to systematically approach the nu-
merical limit of the porosity. It is also able to distinguish
between void and accessible porosities. All approaches
are summarized below.

In addition, porE can calculate the pore size distri-
bution (PSD) and, based on PSD results, allows for an
evaluation of pore windows. These options are described
below as well. For an initial verification and illustration
of our porosity approaches we propose a small bench-
mark set called porE8, consisting of 8 MOFs. The porE8
benchmark contains UiO-6619–21, UiO-6720–22, DUT-
8(Ni)open23–25, DUT-8(Ni)closed23, IRMOF-1026, MOF-
527, HKUST-128–30 and MOF-21031. For convenience,
the two structures (open, closed) of DUT-8(Ni) are ab-
breviated with DUT-8(Ni)o and DUT-8(Ni)c. Pore cen-
ters determined using porE are plotted for illustration as
spheres within the periodic structures of the investigated
MOFs, see Fig. 1 (MOF-210 is shown in the supplemen-
tal material).

For an extension of our tests, we use MOF structures
optimized using density functional theory with DDEC
charges from the CoRE database32,33. Of those 502 struc-
tures, redundancies and double-countings as found by
Barthel et al. 34 were excluded. Our final count is slightly
different from Barthel et al. 34 , as we found that some
of their exclusion criteria double-counted certain MOFs.
Thus instead of the 364 structures mentioned by Barthel
et al. 34 , we used 370 which can be found at the porE
GitHub repository as well. All structures were used as
published at Zenodo32, and no further modifications were
applied. This allows for an easy usage of the set as the
structures are already published. We refer to this bench-
mark set as porE370.

Figure 1. pore8: Pores visualized as spheres for the con-
sidered MOFs. HKUST-1, UiO-66, and UiO-67 have three
distinct pores. MOF-5 has two characteristic pores, while
DUT-8(Ni)o and IRMOF-10 have one pore, which is re-
peated within the periodic structure. The individual pic-
tures are generated with VESTA using the calculated
pore centers with additional species having an effective
radius equal to the determined pore size. The entire pic-
ture was generated using the Inkscape program.

Helium approach (HEA)

A commonly used approach to determine the void vol-
ume is often referred to as the calculation of the He void
fraction. While various codes differ in details of their
respective implementations, all of them share that they
insert He atoms in the framework. While in principle
it is not known where empty/void positions reside in a
given framework, a common approach is to use Monte-
Carlo based methods to randomly sample positions inside
a framework, determine the interaction energy Etot of the
He atom with the framework using force fields, and calcu-
late the Boltzmann factor (BF) for each random position

BF = exp

(
−Etot

kBT

)
, (2)

https://github.com/kaitrepte/porE
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with kB being the Boltzmann constant and T being the
temperature. The BFs are then used to determine the
He void fraction12,16

ΦHe =
1

N

N∑
i

BFi · 100%, (3)

with N being the number of accepted configurations from
the Monte-Carlo procedure. In practice, such approaches
may need a large number of Monte-Carlo steps to sam-
ple the entire empty space correctly, and also require a
correspondingly large number of energy evaluations.

In contrast, our implementation is based on a cell list
approach. A given unit cell is divided into smaller sub-
cells. These sub-cells have the same orientation as the
unit cell vectors of the original cell, and therefore con-
serve lattice symmetries. To determine the sub-cells, the
lattice vectors lengths L = (Lx, Ly, Lz) are divided by
M = (Mx,My,Mz). The lattice vectors of the sub-cells
are given by

(asub-cell,bsub-cell, csub-cell) = (acell,bcell, ccell)/M, (4)

where acell, bcell, and ccell are the lattice vectors of the
unit cell. The initial values, M0 = M(d = 2rHe), are
calculated to give the best He-He spacing based on the
vdW radius of He and L

M = dL/de, (5)

with d = 2rHe and the ceiling function de. Having this
initial set, M0, the spacing dopt of the He atoms in all
directions is optimized using

dopt =
1

3

∑
i

Li

M0,i
(6)

with i being the vector components x, y, z. For this cell-
optimized He-He spacing, the final set M is derived,
Mopt = M(d = dopt), which is used to determine the
sub-cells.

Having this set of sub-cells, one can calculate the center
of mass (COM) of each sub-cell and place a He atom at
these positions. The overlap of all NCOM inserted He
positions with the framework positions is then calculated;
all He positions showing an overlap with the framework
are excluded. For the overlap calculations, Eq. (8) of
the supplemental material is applied. Further, for the
He radius half of the optimal spacing ropt = dopt/2 is
used, because the He interactions are dominated by weak
vdW interactions. All other species are described by their
covalent radii, because the framework atoms are rather
described by stronger covalent bonds.

This exclusion gives the reduced number of He posi-
tions NHe. One can calculate the total empty sub-cell
volume

Vsub-cell = asub-cell · (bsub-cell × csub-cell)NHe (7)

and the total He volume

VHe =
4

3
πr3optNHe, (8)

while the total unit cell volume is

Vtotal = acell · (bcell × ccell). (9)

In cubic systems, our derived He positions are placed
on a simple cubic (sc) lattice. One can calculate the
atomic packing factor f to be fsc = 0.52. Clearly, a given
MOF does not always have a cubic crystal structure. We
calculate the actual f via

fHEA =
VHe

Vsub-cell
. (10)

Note that for cubic frameworks fHEA = fsc. Finally, one
can calculate the He void fraction within the HEA as

ΦHEA = NHe/NCOM · 100 % (11)
= Vsub-cell/Vtotal · 100 % (12)
= VHe/(VtotalfHEA) · 100 %, (13)

As an illustrative example we present HEA applied to
MOF-5 (see Fig. 2).

Figure 2. HEA applied to MOF-5 with a resulting He-
void fraction of ΦHEA = 77% and a packing factor of
fHEA = 0.52. The individual pictures are generated with
VESTA with an effective radius equal to the radii in HEA
(with ropt for He). The entire picture was generated using
the Inkscape program.

All results for the porE8 benchmark set are given in
Tab. 1. We implemented the HEA completely in Python
as it has no computational bottlenecks and every prop-
erty only needs to be computed once. In contrast to other
He void fraction implementations our approach does not
rely on Monte-Carlo, random sampling and energy eval-
uations within the unit cell. Our deterministic approach
rather places He atoms according to the unit cell vectors,
and obtains the He insertion/packing accordingly.
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Table 1. porE8: All numbers N and volumes V (in Å3)
as well as the packing factor fHEA and the optimal He
radius ropt (in Å) calculated using the HEA are given for
each MOF in the porE8 benchmark set. The unit cell
volume Vtotal is given in Tab. 2, and the HEA porosity
ΦHEA is abbreviated with η.
MOF NCOM NHe Vsub-cell VHe fHEA ropt η
DUT-8(Ni)o 256 178 2218 1524 0.69 1.27 70
DUT-8(Ni)c 60 15 162 122 0.75 1.25 25
UiO-66 216 136 1453 1076 0.74 1.24 63
UiO-67 343 233 3378 2501 0.74 1.37 68
IRMOF-10 770 656 8604 5511 0.64 1.26 85
MOF-5 1000 768 13290 6959 0.52 1.29 77
HKUST-1 392 284 3294 2787 0.85 1.33 72
MOF-210 17576 15308 125767 163714 1.30 1.37 87

Overlapping sphere approach (OSA)

A different approach to evaluate the porosity within
MOFs (or any porous material) is based on a hard sphere
model. In this simple model, the overlap of atomic
spheres is evaluated and consequently subtracted from
the total volume of all spheres/atoms. The volume which
is left, Vvoid, can be compared to the total volume of the
unit cell, providing the (void) porosity ΦOSA as

ΦOSA =
Vvoid
Vtotal

· 100 %, (14)

with the void, occupied, atomic and overlap volumes
given by

Vvoid = Vtotal − Vocc (15)
Vocc = Vatoms − Voverlap (16)

Vatoms =
∑
i

Vi,vdW (17)

Voverlap =
∑
i,j>i

Vij,overlap. (18)

Here, Vi,vdW is the volume of a sphere with a radius
equal to the vdW radius of atom i. The sum of the
volumes of all atoms Vatoms minus the overlap Voverlap
between pairs of atoms defines the occupied volume Vocc.
The overlap volume can be calculated analytically fol-
lowing the derivation in the supplemental material, and
is evaluated if the sum of the covalent radii of two
atoms i and j is smaller than their distance, i.e., if
rcovalenti + rcovalentj ≤ dij . This simple approach gives
reasonable results (see Tab. 2, a comparison to literature
values is given in Tab. 7) at essentially no computational
cost.

As higher-order terms are neglected, only the two-
center overlap is calculated. However, the OSA recovers
the total overlap (three-order and higher terms) almost
entirely for the benzene molecule. The literature value35
of the occupied volume in benzene, considering only the

Table 2. porE8: All volumes V (in Å3) for the determi-
nation of the porosity Φ (in %) of all considered MOFs
based on the simple overlapping sphere approach (OSA).
The OSA porosity ΦOSA is abbreviated with α.
MOF Vtotal Vatoms Voverlap Vocc Vvoid α
DUT-8(Ni)o 3190 1953 709 1244 1946 61
DUT-8(Ni)c 648 976 324 652 −4 −1
UiO-66 2308 1992 823 1169 1139 49
UiO-67 4972 2906 1308 1598 3374 68
IRMOF-10 10099 2549 1297 1252 8847 88
MOF-5 17305 6536 2592 3944 13361 77
HKUST-1 4546 2499 1062 1437 3109 68
MOF-210 144400 29385 14937 14448 129952 90

C-C overlap, is V ref
occ = 114.8 Å3. The proposed OSA de-

livers a value of V OSA
occ = 115.2 Å3. For comparison, the

sum of the vdW spheres of all atoms is 166.9 Å3. The
molecular geometry is taken from the CCCBDB36 with
dC-C = 1.397 Å, in analogy to Gibson and Scheraga 35 .
Given this result, it can be assumed that the results for
the overlap should be accurate, even without the higher-
order terms.

The main advantage of the OSA is the access of rea-
sonable results with essentially no numerical effort. For
example, the calculation for MOF-210 (1854 atoms per
unit cell) takes about 1 s (see supplemental material).
The main disadvantage is that technically only the void
porosity is calculated and there is no information about
accessible terms. The approach presented in the next
section overcomes this shortcoming.

Grid point approach (GPA)

A third approach to calculate the porosity is based on
a numerical grid inside the unit cell. This procedures re-
quires the explicit treatment of each grid point. Any grid
point is either close to an atom (inside its vdW sphere)
and can be considered occupied. If no such occupation
is found, the grid point is unoccupied. In analogy to
equation (12), the void porosity can be evaluated by the
number of unoccupied points divided by the total number
of grid points

Φvoid =
Nunoccupied

Ntotal
· 100 %. (19)

A suitable amount of grid points will provide accurate
results. Using this ansatz one obtains an insight into
the void volume and thus the void porosity. This is not
equivalent to the accessible volume and porosity, which
is often given in the literature. Thus, one needs to be
careful when comparing, e.g., the values for DUT-8(Ni)c
as explained in the supplemental material.

The accessible porosity can be obtained by modifica-
tions to the presented ansatz. Grid points need to be
evaluated such that around each grid point, a sphere with
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a probe radius rprobe is assumed. If this sphere has no
contact with the vdW surface of the MOF, all points in-
side this sphere are considered to be unoccupied as well
as accessible. With that, points can be occupied, unoc-
cupied and not accessible or unoccupied and accessible
(see Fig. 3).

Figure 3. Visual explanation of different grid points in
the GPA. If a grid point is inside the vdW sphere of an
atom, it is occupied (dark pink). Otherwise, it is unoc-
cupied. Then, two different cases can occur. If the point
is in a region which can be accessed by a given probe ra-
dius rprobe, it is unoccupied and accessible (apple green).
Otherwise, it is unoccupied and not accessible (bleu de
france). The difference in the blue de france and the ap-
ple green points defines the difference between void and
accessible porosities.

This ansatz gives rise to another quantity, the acces-
sible porosity Φacc, which depends on a probe radius
Φacc = Φacc(rprobe). The relation Φacc(rprobe) ≤ Φvoid
is clearly fulfilled. A basic outline of the procedure is
given in Fig. 4.

From a numerical point of view, the variable Ncheck_acc
is introduced (see Fig. 4). With this variable, there is
no need to loop over all accessible points to determine
which unoccupied points are also accessible. Only se-
lected points have to be evaluated (see Fig. 5). This
reduces the computational time while not changing the
results. The variable Ncheck_acc is defined as a subset
of points chosen from all immediately accessible points,
i.e., all points with a distance larger than rvdW + rprobe
for all atoms. This subset contains points which have a
distance within rvdW + δ, with δ = rprobe · (1.0 + h),
h = 1.0/n and n is the average grid point density
per Å. Accordingly, δ becomes smaller for larger grids.
All points k within this subset are within a distance of
rvdW+rprobe ≤ dk ≤ rvdW+δ. Visually, this subset forms
a layer of thickness δ− rprobe = rprobe ·h = rprobe/n over
the vdW surface of the MOF (indicated in rose quartz in
Fig. 5).

The obtained subset (Ncheck_acc) is used to identify
whether unoccupied points are also accessible. If the dis-
tance of any unoccupied point to any point in Ncheck_acc

Figure 4. Outline of the grid point approach (GPA) to
evaluate void and accessible porosities. Loop 1 collects
everything for the void porosity (occupied, unoccupied)
as well as all immediately accessible points. During loop
2 it is determined which unoccupied points are also ac-
cessible. This ensures that all remaining accessible points
are collected. Here, δ = rprobe · (1.0 + h), with h = 1.0/n
and n = (nx + ny + nz)/3 being the average grid point
density per Å in all directions. Thus, the denser the grid,
the smaller δ.

is smaller than rprobe, the unoccupied point is accessi-
ble (apple green point in Fig. 5). Otherwise, the point is
not accessible (bleu de france point in Fig. 5). Additional
modifications to this approach can be introduced by only
evaluating Ncheck_acc per atom. If an unoccupied point
is close to atom i, only the points Ncheck_acc,i need to be
evaluated. This is the basis of GPAsub-grid (see supple-
mental material), which gives an additional speed-up.

As a note, the used grid is defined either as a total
number of grid points along each cell vectors or as an
approximate grid density per Å for all cell vectors. In
either case, the grid points are placed along the cell
vectors. With that, a unique grid for any system is
generated. This grid can either be uniform, i.e., grid
density along all cell vectors is the same, or non-uniform.
In this work, we only investigate uniform grids.
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Figure 5. Visualization of Ncheck_acc. Circles for Atom
1 and Atom 2 indicate their respective vdW radii rvdW.
The subset of points Ncheck_acc is chosen from all im-
mediately accessible points, i.e., all points with a dis-
tance larger than rvdW + rprobe for all atoms. This subset
(indicated in rose quartz) contains points which have a
distance within rvdW + δ, where δ = rprobe · (1.0 + h),
h = 1.0/n and n is the average grid point density per Å.
Accordingly, δ becomes smaller for larger grids. If the dis-
tance of an unoccupied point to any Ncheck_acc is smaller
than rprobe, this point is also accessible (apple green).
Otherwise, it is not accessible (bleu de france, color code
adopted from Fig. 3).

Grid size dependence

As the GPA depends on the (uniform) distribution of
grid points, it is important to determine how dense the
grid needs to be to provide numerically reliable results.
For the porE8 set, the grid was successively increased
and the porosities (void and accessible) were calculated.
A probe radius of 1.20 Å was used for all MOFs. In
addition, a probe radius of 2.16 Å has been employed for
DUT-8(Ni)o, UiO-66 and UiO-67. This was done to see
whether the porosities converge differently using different
probe radii. The results for the considered MOFs are
summarized in the supplemental material. For UiO-66,
the results are given in Fig. 6.

The void porosity converges fast with an increasing
grid, and even a small number of grid points provides
good results. For the presented example, a grid point
density of 5 points/Å is sufficient for the void porosity.
On the other hand, the accessible porosity converges
much slower, and more grid points are needed to reach
convergence. Using our example, at least 10 points/Å are
needed to sufficiently converge the results. This is true
for the other MOFs as well. Furthermore, using
different probe radii influences the convergence as
well. It should also be noted that the accessible
porosity for the different probe radii is very different,
which will be discussed in the next section in more detail.

Figure 6. Grid size dependence for UiO-66. The void
porosity as well as the accessible porosity for two different
probe radii are shown. The x-axes denote the used grid.

Probe radius dependence

After establishing that a grid size of ca. 10 points/Å is
sufficient for an accurate description of the porosities,
the next question is how the accessible porosity changes
for different probe radii. This becomes especially impor-
tant if the porosity is analyzed with respect to different
adsorbed species, having different effective probe radii.
Furthermore, it is important to analyze this behavior re-
garding the comparison with literature values. Usually,
the accessible porosity is reported, while the probe radius
is disregarded. Here we show that the accessible poros-
ity strongly depends on the probe radius, which can be
seen for the porE8 benchmark set in Fig. 7. Individual
pictures and values for each MOF are given in the sup-
plemental material.

Figure 7. porE8: Probe radius dependence for MOFs
in the porE8 benchmark set. The accessible porosity is
given on the y-axis, while the probe radius is shown on
the x-axis. The used grid is approximately 10 points/Å
for all MOFs besides UiO-66 (12.5 points/Å) and DUT-
8(Ni)c (20 points/Å). The drops in the accessible porosity
correspond to different pore sizes/radii.

Given the results of Fig. 7, it is obvious that differ-
ent species have different accessible porosities, because of
their different probe radii. For example, one can compare
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the effective probe radii of Xe (2.16 Å), CH4 (≈ 2.29 Å),
SO2−

4 (≈ 3.01 Å) and C2H6 (≈ 5.48 Å). These values
were determined by using the bond distances and the
vdW radii of the atoms. For C2H6, the distance be-
tween the most distant H atoms was used. It should
be noted that all molecules are approximated as spheres
having some effective probe radius, with the goal to make
the comparison and the used probe radii more intuitive
to understand. This shall not be interpreted as an ac-
curate approximation for, e.g., adsorption investigations
(clearly, C2H6 is not spherical and shape effects become
important), but only as a way to analyze the probe radius
dependence.

The accessible porosity for the mentioned species will
be smaller than for, e.g., H (rprobe = 1.20 Å) or He
(rprobe = 1.40 Å). To illustrate this more quantitatively,
the accessible porosities for the different probe radii are
listed in Tab. 3. The same analysis was done with PLA-
TON14 and Zeo++18,37–40 (see supplemental material),
and the general trends are consistent between the used
codes. As an example, the accessible porosity for UiO-
66 behaves as follows: 59.1 % (rprobe = 0.00 Å) to
53.3 % (rprobe = 1.20 Å) to 50.8 % (rprobe = 1.40 Å)
to 42.9 % (rprobe = 2.16 Å) to 39.9 % (rprobe = 2.29 Å)
to 34.2 % (rprobe = 3.01 Å) to 0.0 % (rprobe = 5.48 Å).
It should be noted that the void porosity is recovered for
rprobe = 0.00 Å, and that the accessible porosity has to
become zero for rprobe →∞.

Table 3. porE8: Accessible porosities (in %) for MOFs
in the porE8 benchmark set depending on different probe
radii (between 0.00 and 5.48 Å). The used grid contains
ca. 10 points/Å, except for UiO-66 where the grid point
density is 12.5 points/Å. Values with an ∗ indicate that
the smallest pore window (see section Pore Windows) in
the system is smaller than the probe radius. Thus, the
accessible volumes become inaccessible.
MOF 0.00 1.20 1.40 2.16 2.29 3.01 5.48
DUT-8(Ni)o 70.5 66.3 65.6 55.7 54.5 51.7 0.0∗

UiO-66 59.1 53.3 50.8 42.9∗ 39.9∗ 34.2∗ 0.0∗

UiO-67 72.4 68.8 67.8 64.1 63.2 56.4∗ 23.2∗

IRMOF-10 87.8 86.6 86.5 85.0 84.6 82.8 76.4
MOF-5 80.2 78.3 77.9 75.4 75.0 72.6 64.5∗

HKUST-1 71.4 69.1 68.9 65.1∗ 64.6∗ 57.3∗ 47.0∗

Besides the fundamental importance of the probe ra-
dius dependence, one can calculate the porosities for dif-
ferent probe radii and monitor the corresponding acces-
sible porosity. Once the probe radius is larger than a
specific pore, all grid points within this pore become
inaccessible. Accordingly, the accessible porosity drops
significantly. This gives an intuitive way to characterize
the pore sizes (see Fig. 7). More information is given in
the supplemental material. A more accurate approach
to analyze the pore dimensions/ pore size distribution is
discussed in the next section.

PORE SIZE DISTRIBUTION

An approach to determine the pore sizes based on
a Monte-Carlo (MC) procedure has been implemented.
The strategy is straightforward. At first, NMC random
starting points i are initialized within the unit cell, such
that

ri = α · a + β · b + γ · c. (20)

Here, α, β, γ ∈ [0.1, 0.9] are random numbers and a, b
and c are the unit cell vectors. With that, the initial
point is somewhere inside the unit cell (maybe even inside
an atom). After this initialization, MMC Monte-Carlo
steps are carried out to move these initial points like

xi+1 = xi + (2 · δ − 1) · astep (21)
yi+1 = yi + (2 · ε− 1) · astep (22)
zi+1 = zi + (2 · ζ − 1) · astep (23)

for the x, y and z components. The random numbers
δ, ε and ζ are all ∈ [0, 1] and astep is the step size. After
moving a point, the minimal distance to the vdW surface

di+1 = min
A

(√
∆x + ∆y + ∆z − rvdW,A

)
, (24)

with ∆x = (xi+1 − xA)2 (25)

∆y = (yi+1 − yA)2 (26)

∆z = (zi+1 − zA)2, (27)

is computed. Here, rvdW,A is the vdW radius of atom
A. Periodic boundary conditions are taken into account.
If di+1 < di, the new point is reset (ri+1 = ri). On
the other hand, if di+1 > di, the new point is kept
(ri = ri+1). Then, the next MC step is carried out.
With that, d is maximized. This procedure is done for
all NMC initial points until the maximum number of MC
steps MMC is reached. Several initial points ensure that
different pores inside a MOF can be analyzed. This gives
information about the pore size distribution (PSD), sim-
ply by analyzing how many starting points end up in the
same pore (i.e., bigger pores have more, smaller pores
have less final points).

To increase efficiency, the step size astep is changed
throughout the MC cycle, and adapted to the structure
under consideration. As a starting point, the length of
the largest cell vector Lmax = max(Lx, Ly, Lz) is taken.
The initial step size is defined as ainitstep = Lmax/10, which
is adjusted as shown in Tab. 4 and Fig. 8.

This adaptive way of generating the step size has sev-
eral advantages over a fixed step size. Given that the
step size in the beginning of the MC cycle is fairly large,
the steps taken are large, too. With that, the points are
moved much more quickly towards a nearby maximum,
especially when the starting point is far away from any
maximum (e.g., if it was initialized inside an atom). By
reducing the step size over the course of the MC cycle,
the maximum can be approached more and more accu-
rately without the need for a very large number of MC
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Table 4. Adaptive step size astep with respect to the MC
steps MMC, given in intervals of fractions of the total
number of MC steps.

Fraction of MMC astep/a
init
step

[0.00,0.25] 1.000
]0.25,0.50] 0.100
]0.50,0.75] 0.010
]0.75,1.00] 0.001

Figure 8. Illustration of the adaptive step size used in
the calculation of the pore size distribution. The aqua-
marine dot is the maximum, while the Army green dot
indicates the starting point. Three different step sizes are
shown for simplicity. The Army green lines indicate the
largest step size, the Cambridge blue ones refer to the next
smaller step size and the aquamarine lines correspond to
the smallest step size. With this scheme, accurate results
are obtained using a small number of steps. This is not
possible by only using one of these step sizes.

steps (as would be required for a fixed astep). For the last
steps, the position of the pore centers as well as the pore
diameters are determined very accurately (typically, the
final values are within 10−3 Å of the theoretical maxi-
mum. This can be checked for structures where the pore
centers can be determined by symmetry arguments, like
in the UiOs). With this ansatz, only a small number
of MC steps (usually about 1000) is needed to properly
converge the results. For bigger unit cells one should con-
sider using larger MMC to avoid having insufficient MC
steps to reach a maximum. The PSDs for the considered
MOFs are summarized in Tab. 5 and Fig. 9.

For MOF-210, the first two sizes correspond to distin-
guishable pores in the MOF structure. The other two
share an elongated pore, which is why they are shown
together in Tab. 5. Also, the larger one of those two
pore sizes (27.98 Å) has two symmetry-equivalent posi-
tions around the smaller one (27.65 Å, which sits exactly
at the center of the unit cell). With that, the distribu-
tion of the larger one is about double that of the smaller
one. A figure of these pores is given in the supplemental
material.

It should be noted that only symmetry-in-equivalent
pore centers positions (as determined by the similarity of
their pore sizes) are stored for the final evaluation of the
PSD. These can be used to visualize the pores inside the
frameworks (see Fig. 1).

Table 5. porE8: Pore size distributions for the porE8
benchmark set, using the pore diameters dpore (in Å) and
their distribution Γ (in %) evaluated from the Monte-
Carlo procedure described in the text. For the distribu-
tion, every pore size with less than 5 % has been disre-
garded. Accordingly,

∑
i Γi might not add up to 100 %.

For these values, NMC = 200 and MMC = 2000, except
for MOF-210 where MMC = 10000.

MOF d1pore Γ d2pore Γ d3pore Γ
DUT-8(Ni)o 10.18 95.5
UiO-66 7.19 23.0 7.71 26.5 8.44 50.5
UiO-67 9.63 16.0 10.42 17.5 12.75 66.5
IRMOF-10 18.02 99.5
MOF-5 11.82 28.0 15.10 72.0
HKUST-1 5.54 17.0 11.15 46.0 13.37 37.0

MOF-210 19.58 20.0 19.97 11.5 27.65 20.5
27.98 40.0

Figure 9. porE8: Pore size distributions (PSDs) for MOFs
in the porE8 benchmark set. Using NMC = 200 and
MMC = 2000, except for MOF-210 where MMC = 10000,
see text for details.

PORE WINDOWS

For an accurate determination of the porosity, it is not
only important to analyze which regions in a MOF are
occupied, void or accessible, and how large the pores are.
It is also essential to analyze how large the windows be-
tween pores are. The pore window is the largest possi-
ble size a species can have to travel through the porous
framework. If the species would theoretically fit into a
pore but cannot reach it due to a small pore window,
the pore itself has unoccupied volume which is, however,
inaccessible. To analyze the pore window, the following
ansatz is chosen. First, the PSD (see last section) is com-
puted. With that, the centers of all pores within a MOF
are known. Then, one draws a line in between all pores
(taking periodic boundary conditions into account). The
smallest distance of this line to the vdW surface is charac-
terizing a minimum radius rmin between two pores. This
approach is summarized in Fig. 10 using UiO-66.

An additional characteristic of a pore window is that
it lies in between two pores. With that, if the distance
between the coordinate of rmin and the pore centers,
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Figure 10. Visualization of the pore window in UiO-66.
The pore window is characterized as the minimal dis-
tance to the vdW surface on a line between pore centers.
The picture was generated using the VESTA and the
Inkscape program.

min(dcenter), is very different from the respective pore
sizes dpore (i.e., |min(dcenter) − dpore|/dpore > 0.3), the
rmin does not represent a pore window. This corresponds
to a case where the position of rmin lies almost completely
within one pore, not between two pores. For example, in
UiO-68 one initially finds four rmin with 1.89 Å, 2.06 Å,
4.22 Å and 4.69 Å. However, the first two do not charac-
terize as pore windows and need to be excluded. Thus,
the actual pore windows in UiO-68 are 4.22 Å and 4.69 Å.

By employing this approach, the pore windows for the
considered MOFs were evaluated. The smallest one is
the limiting pore window. If the probe radius is larger
than this limiting pore window, the porosity/volume that
is evaluated to be accessible becomes inaccessible. For
more complex pore structures, this approach might not
be sufficiently accurate. As this is the case for MOF-210,
it is not shown in Tab. 6. An extension is planned for a
future version of the code.

To justify our approach, the calculated pore windows
are compared to Zeo++18,37–40 and pywindow41. We
find consistent results, which are summarized in Tab. 6.

Table 6. porE8: Pore windows (in Å) for the given MOFs,
including a comparison to Zeo++18,37–40 and pywin-
dow41.
MOF porE: r1 porE: r2 Zeo++ pywindow
DUT-8(Ni)o 4.05 4.60 4.80
UiO-66 1.84 2.06 2.06 2.09
UiO-67 2.59 2.91 3.02 3.05
IRMOF-10 5.88 6.09 5.67
MOF-5 3.91 3.96 3.97
HKUST-1 1.84 3.21 3.32 3.33

While there is only one pore window for DUT-8(Ni)o,
IRMOF-10 and MOF-5, there are two different pore win-
dows in all UiOs and HKUST-1. The smaller one in each
MOF represent the limiting pore window.

The presented ansatz is computationally efficient, and
only requires an accurate PSD. The PSD only needs to
be computed once per structure. Once the PSD is known

the pore windows, and accordingly the porosities, can be
analyzed with respect to different grids.

BENCHMARK SETS

Verification benchmark: porE8

To further validate the implementations in porE,
several reference calculations were performed for the
porE8 benchmark set. For this, we used the
codes RASPA216,17, poreblazer15, PLATON14 and
Zeo++18,37–40 (see Tab. 7). The used unit cells contain
the following amount of atoms: DUT-8(Ni)open (132),
DUT-8(Ni)closed (66), UiO-66 (114), UiO-67 (174),
HKUST-1 (156), IRMOF-10 (166), MOF-5 (424) and
MOF-210 (1854). All structures are available at https:
//github.com/kaitrepte/porE.

Table 7. porE8: Comparison of calculated porosi-
ties between reference codes (RASPA216,17 (π), pore-
blazer15 (ρ), PLATON14 (γ), Zeo++18,37–40 (ξ)), lit-
erature values and the presented approaches (HEA (η),
OSA (α), GPA(void) (ωvoid), and GPA(acc) (ωacc)). For
the GPA, rprobe = 1.20 Å using the largest possible grids;
for MOF-210 we used n = 5 points/Å). All porosities
are given in %. The literature values (REF) are: DUT-
8(Ni)23, UiO-66 and UiO-6742, IRMOF-1026, MOF5 and
MOF-21031, HKUST-112,43.

MOF π ρ γ ξ η α ωvoid ωacc ΦREF

DUT-8(Ni)o 70 68 66 68 70 61 70 67 67
DUT-8(Ni)c 0 0 0 0 25 −1 27 1 0
UiO-66 52 51 53 55 63 49 59 54 53
UiO-67 72 72 69 70 68 68 72 69 68
IRMOF-10 91 90 86 87 85 88 88 87 87
MOF-5 81 81 76 79 77 77 80 79 79
HKUST-1 73 72 69 69 72 68 71 69 68
MOF-210 93 — — 88 87 90 90 89 89

The RASPA2 code provides various features for the
calculation of porous materials. The porosity can be ac-
cessed using the calculation mode for the determination
of the helium void fraction. For that, the porous struc-
ture is probed with a helium atom at room temperature.
The helium atom itself is described with a TraPPE force
field16,17,44, while the porous structure can be described
with various available force fields. For our reference cal-
culations, we used the CrystalGenerator force field16,17,
2000 Monte Carlo cycles and the unit cell of the MOFs.
The PLATON code offers several analysis techniques for
crystal structures. It allows to analyze the accessible
porosity using a grid based approach, similar to the GPA
presented here. The poreblazer code can be used to
analyze the surface areas, the pore size distribution and
the porosity. In poreblazer, the porous system is de-
scribed using the universal force field (UFF45) and the
helium atoms are describe using a Lennard-Jones force
field description. The (helium) void volume is calculated

https://github.com/kaitrepte/porE
https://github.com/kaitrepte/porE
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using a cublet procedure. In Zeo++, the accessible vol-
ume is calculated by placing points randomly in the unit
cell. Afterwards, each point is analyzed regarding its ac-
cessibility with respect to a given probe radius using a
Voronoi decomposition scheme18.

In general, the void porosities using porE with the
GPA agree well with results of the RASPA2 and the
poreblazer code (see Tab. 7). The accessible porosi-
ties applying porE with the GPA is in excellent agree-
ment with results calculated with the PLATON and the
Zeo++ codes (see Tab. 7). Further, the comparison to
literature values shows that accessible porosities are re-
ported, while the corresponding probe radius is usually
not provided. Furthermore, void porosities do not neces-
sarily reflect the porous nature of the MOFs. This is es-
pecially true for systems with more complex pores, where
the probe radius plays a crucial role (compare, e.g., UiO-
66 and MOF-5). In MOFs with large, open pores the
void porosity will already reflect the porous nature of
the MOF fairly accurately. If a pore would be entirely
spherical, the calculated porosity would be independent
of the probe radius (unless rprobe ≥ rpore). Using any
probe smaller than the pore radius would sample the en-
tire pore, as there are no areas/volumes which are inac-
cessible. With that, the void and accessible porosities
coincide.

However, if the pores are different from the spherical
symmetry, e.g., having tetrahedral or octahedral symme-
tries as in the UiOs, the probe radius dependence be-
comes significant. In such cases, a sphere is not a suit-
able approximation for the pores (see Fig. 1 for UiO-66
and UiO-67). Quantitatively, this can be seen for UiO-66
(see Tab. 7), where the void and the accessible porosities
are quite different (59 % and 54 % for a probe radius of
1.20 Å). These differences become more pronounced the
larger the probe radius becomes. This also explains the
rather small dependence of the accessible porosity for dif-
ferent rprobe in IRMOF-10, MOF-5 and HKUST-1 (see
Tab. 3 and the supplemental material), as spheres are al-
ready a better approximation to describe the respective
pores for these three MOFs.

In summary, the accessible porosities from the GPA
are in excellent agreement with literature values, reas-
suring a proper implementation. Given the geometric,
deterministic approach of HEA, it is a very efficient way
to compute void porosities. Considering its limitations,
even the OSA provides reasonable void porosities.

Extended benchmark: porE370

To obtain reference values for porE370, which has
been introduced earlier, we performed calculations with
RASPA2. We also calculated porosities using all
presented approaches (HEA, OSA, GPA(void), and
GPA(acc)). As a note, for the GPA calculation a grid
density of 10 points/Å was used. The resulting porosi-
ties show a linear relationship to the RASPA2 porosities

(see Fig. 11). The quality of a linear regression is often
compared with the R2 error

etot =
∑
i

yref,i − 1/N

N∑
j

yref,j

2

(28)

eres =

(∑
i

yref,i − ycalc,i

)2

(29)

R2 = 1− eres/etot, (30)

where R2 = 1 indicates a perfect linear relationship,
while smaller R2 indicate less linear relationships. In
addition to the R2 we report mean errors

ME = 1/N

N∑
i

yref,i − ycalc,i. (31)

Porosities from GPA(acc) show the highest degree
of linearity with respect to the RASPA2 porosities,
R2 = 0.94. This is followed by GPA(void) with
R2 = 0.90 and HEA with R2 = 0.82. OSA shows
the least degree of linearity with R2 = 0.70. On the
other hand, the order from lowest to largest mean error
is ME(GPA(acc)) = 0.29 %, ME(HEA) = 3.26 %,
ME(OSA) = 4.54 %, and ME(GPA(void)) = 13.59 %.

For large porosities, i.e., Φ > 60 %, all of our proposed
approaches work similarly well. As explained above, this
is given by the fact that under these circumstances the
void porosities become a more sufficiently accurate ap-
proximation for the accessible porosities. In contrast,
for smaller porosities we recommend more accurate ap-
proaches like GPA(acc).

Figure 11. porE370: Results for HEA, OSA, GPA(void),
and GPA(acc) given on the y-axis compared to RASPA2
He-void fraction results along the x-axis. For the linear re-
gression fits the Python module scikit-learn (sklearn)46

was used.

Given the linear relationships to RASPA2 porosities,
we compared and fitted OSA, GPA(void), and GPA(acc)
against HEA and also found linear relationships for the
porE370 benchmark set. HEA was chosen as origin be-
cause it presents the best approach combining numerical
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efficiency and accuracy. Given the linear relationships
between HEA and the other approaches, one can derive
corrections to HEA resulting in OSA, GPA(void) and
GPA(acc) accuracy

ΦHEA@OSA = 1.0879ΦHEA − 2.2688 % (32)
ΦHEA@GPA(void) = 0.7769ΦHEA + 19.3323 % (33)
ΦHEA@GPA(acc) = 1.1388ΦHEA − 8.5709 %. (34)

We compare our HEA corrections to RASPA2 results (see
Fig. 12). While the R2 stay the same, R2 = 0.82, the ME
is now the same as the respective approach for which the
corrections was derived.

Figure 12. porE370: Results for ΦHEA@OSA,
ΦHEA@GPA(void), and ΦHEA@GPA(acc) given on the y-axis
compared to RASPA2 He-void fraction results along the
x-axis. For the linear regression the Python module
scikit-learn (sklearn)46 was used.

For the analysis of larger databases, these cheap and
simple corrections may be helpful to efficiently deter-
mine trends. In the future, more advanced models may
be constructed using, e.g., TensorFlow47. The porE
Python file for the benchmark sets shown below has less
than 30 lines of code (see Fig. 13). This illustrates the
simplicity of building complex workflows in porE with a
few lines of Python code.

In addition to calculating the porosities, the PSD has
been calculated for all MOFs in the porE370 test set.
Here, we usedNMC = 200 andMMC = 10000, see Fig. 14.
Clearly, MOFs with one and two different pore sizes are
most common, followed by 3 pore sizes. This is also true
for the porE8 test set. MOFs with more pores are less
common. The maximum pore sizes vary between 2 and
16 Å, but the most common maximum pore sizes are
between 3.5 and 5.5 Å.

CONCLUSION

We present three approaches to analyze the porosity
in porous materials, in specific for metal-organic frame-
works (MOFs). Various MOFs - with detailed analy-
ses for DUT-8(Ni)open, DUT-8(Ni)closed, UiO-66, UiO-
67, IRMOF-10, MOF-5, HKUST-1, and MOF-210, as

Figure 13. Python file for the porE porosity calcula-
tions for the porE8 and porE370 benchmark sets. As a
note, HEA and OSA only depend on the structure, while
the GPA also depends on a probe radius and the used
grid.

Figure 14. porE370: PSD evaluation for the upper plot
shows occurrences of the number of pores, whereas in
the lower plot we show the occurrence of the maximum
pore size per MOFs within the porE370 benchmark. For
this evaluation we used NMC = 200 and MMC = 10000.
Clearly, one and two pores have the highest counts within
the test set, and the maximum pore sizes are centered
around 4.5 Å.

well as additional analyses for 370 other MOFs - have
been studied using these approaches.

The first approach, HEA, is based on a cell list ap-
proach to efficiently compute the He void fraction. An-
other approach employs the overlap of atomic spheres
(OSA) to compute the void porosity, which is also very



12

efficient. The last approach uses a grid inside the unit
cell (GPA), allowing for a clear differentiation between
void and accessible porosities. It was shown that it
is essential to converge the results with respect to the
used grid. In contrast to commonly used implementa-
tions, all approaches are deterministic and do not require
any stochastic methodologies, making them fully repro-
ducible. A comparison to reference calculations and lit-
erature values confirms that all approaches work as in-
tended, and that the GPA gives very accurate results.

Further, the crucial importance of a clear differentia-
tion between accessible and void porosity for the correct
description of porosities in MOFs was demonstrated. For
the accessible porosity, it was shown that a correct treat-
ment of the probe radius is essential for reliable results.
Thus, this dependence must be considered in any case.
In addition, the pore size distribution and the pore win-
dows are analyzed. This is another critical aspect for an
accurate determination of the porosities.

The presented porE code offers many functionalities,
like a graphical user interface (GUI), the ability to read
.cif and other structure information files via ASE, the
general user-friendliness of the Python programming lan-
guage, and the ability to change any parameter that in-
fluences the results right away. Due to the Python infer-
face complex workflows are easily implemented, including
reading and writing structures with ASE, the calculation
of porosities and design of a useful output format for
larger benchmark sets like poreE370 with porE, data
analysis with NumPy, visualization with matplotlib and
building of simple machine learning models using scikit-
learn (sklearn)46 (see Fig. 15)
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