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Abstract

The ability to predict low-lying excited states
with the same ease as ground-states would rep-
resent a major advance in understanding inter-
actions between light and chemistry, e.g. for
solar cells or photocatalysis. Recent theory
developments in ensemble density functional
theory (EDFT) promise to bring decades of
work for ground-states to the practical resolu-
tion of excited-state problem – provided newly-
discovered “density-driven correlations” can be
dealt with and adequate effective potentials can
be found. This Letter introduces simple ap-
proximations to both the density-driven corre-
lations and the potential; and shows that EDFT
with the ωB97X density functional approxima-
tion outperforms ∆SCF DFT for singlet–triplet
gaps in small atoms and molecules. It thus es-
tablishes EDFT as a vitally promising tool for
low-cost but high-accuracy studies of excited
states; and provides a clear route to practical
EDFT implementation of arbitrary functional
approximations.
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Quantum chemistry has improved our under-
standing of an enormous range of chemical sys-
tems, from biomolecules to battery materials.
(Hybrid) density functional theory1–3 (DFT) is
the primary tool of quantum chemistry, due to
its low computational cost and generally good
accuracy. Recent developments have seen hy-
brid DFT calculations reach nearly chemical ac-
curacy, across a wide range of tested systems.4,5

Unfortunately, DFT only treats electronic
ground-states. This hampers its application to
systems involving excited state processes, in-
cluding those involving interactions with light
such as photactivation and charge transfer. Ex-
cited state processes are likely to become a vi-
tally important part of future chemistry, due
to increasing control over light and the con-
sequent ability to open up new applications.
Thus, there is signifcant work on modelling ex-
citation processes (see, e.g. various recent re-
view articles6–8). Presently, however, much of
this work is fairly high-level, in terms of its nu-
merical cost and/or required expertise.

Time-dependent DFT (TDDFT), and ∆SCF
DFT are two popular lower-level routes to ex-
cited states. In the latter case, ground-state cal-
culations with restricted symmetries are used
to find, e.g., the lowest-lying singlet and triplet
energies, with the difference being the exci-
tation energy; but this can be quite inaccu-
rate because of “spin contamination” in triplet-
states,9,10 and cannot handle excitations of the
same symmetry. TDDFT gives a range of exci-
tation energies; but is significantly more costly
than DFT, and has some limitations in treating
charge transfers11,12 and double excitations.13

Ensemble DFT (EDFT) for excited states14–16

has recently enjoyed a resurgence as a promis-
ing alternative to DFT or TDDFT for treating
low-level excited states, including charge trans-
fer and double excitations.17–33 In EDFT, the
usual DFT approach of seeking a pure-state
wavefunction |Φ〉 and energy EΦ = 〈Φ|Ĥ|Φ〉, is
replaced by an equivalent quest for a statistical
ensemble Γ̂w =

∑
κwκ|κ〉〈κ| and its average

energy Ew =
∑

κwκEκ = Tr[Γ̂wĤ], for or-
thonormal quantum states |κ〉. (〈κ|κ′〉 = δκκ′).
The set of weights w = {wκ} obey

∑
κwκ = 1

and wκ ≥ 0.

EDFT is variational,14,15 just like pure-state
DFT. In terms of the versatile Levy constrained
minimization34 and adiabatic connection35 con-
ceptual picture, EDFT simply involves replac-
ing the usual universal functional F λ[n] =
min|Φ〉→n〈Φ|T̂ + λŴ |Φ〉 by

Fλ,w[n] = min
Γ̂w→n

Tr[Γ̂w(T̂ + λŴ )], (1)

where T̂ is the usual kinetic energy operator
and Ŵ is the electron-electron Coulomb in-
teraction. The average energy Ew in exter-
nal potential v can then be found by solving,
Ew[v] = minn

{
F1,w[n] +

∫
drn(r)v(r)

}
, where

n(r) = Tr[Γ̂wn̂] =
∑

κwκnκ(r) is the average
density of the ensemble. Variational principles
give Eκ ≤ Eκ′ for wκ > wκ′ , i.e. the ener-
gies become ordered. Excitation energies can
be found by varying weights, and taking differ-
ences or derivatives. Note, calligraphic letters
indicate ensemble density functionals and ex-
plicit dependence on w is henceforth dropped
for notational simplicity.

Recent work24,29 showed how Eq. (1) can be
used to provide EDFT analogs for the usual
DFT functionals. EDFT has a kinetic energy,

Ts[n] =F0[n] ≡
∑
κ

wκTs,κ , (2)

and Hartree-exchange (Hx) functional,

EHx[n] = lim
λ→0+

F λ[n]− Ts[n]

λ
≡
∑
κ

wκΛHx,κ ,

(3)

like usual. Except: i) Ts,κ = 〈κs|T̂ |κs〉 and

ΛHx,κ = 〈κs|Ŵ |κs〉 differ for each member |κs〉
of the KS ensemble; and ii) ΛHx,κ can inherit
multi-configuration qualities to account for dif-
ferent spin symmetries.24

It also has a correlation energy term Ec =
F1−Ts−EHx. However, unlike pure state DFT,

Ec[n] = ESD
c [n] + EDD

c [n] , (4)

involves two terms: ESD
c [n] =

∑
κwκE

SD
c,κ and

EDD
c [n] =

∑
κwκE

DD
c,κ . The state-driven (SD)

correlation energy terms ESD
c,κ are like the usual
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DFT correlation energy, and are invariant to w
in certain cases, including those studied here.
The density-driven (DD) terms EDD

c,κ are unique
to EDFT (i.e., EDD

c = 0 in pure-states) and
carry a non-trivial dependence on w due to the
inability of the KS ensemble members to simul-
taneously reproduce the densities and orbitals
of all interacting ensemble members.29

Putting everything together gives,

E [v] = min
n

{
Ts[n] + EHxc[n] +

∫
drn(r)v(r)

}
,

(5)

where EHxc = ESD
Hxc + EDD

c and

ESD
Hxc =

∑
κ

wκ[ΛHx,κ + ESD
c,κ ] ≡

∑
κ

wκE
SD
Hxc,κ ,

(6)

Both ΛHx,κ and Ec,κ are pure-state-like. Thus, a
useful strategy is to adapt existing density func-
tional approximations (DFAs) for use in ESD

Hxc,κ.
The key outstanding challenges are then how
to modify existing approximations to deal with
different ensemble members, and how to evalu-
ate EDD

c . Both will be tackled later.
Once approximated, the energy functional,

(5), must then be minimized on the den-
sity. Minimization of (5) involves finding a
set of KS orbitals φi that obey the usual spin-
independent KS equation,[

− 1

2
∇2 + vs[n](r)

]
φi(r) =εiφi(r) , (7)

where vs = v+ δEHxc

δn
. Then, n(r) =

∑
i fiφi(r)2,

where 0 ≤ fi ≤ 2 is the average occupation fac-
tor of orbital φi, which obey

∑
i fi = N for N

electrons, and which depend on w.24,36 Unfor-
tunately, the EDFT density functional EHxc has
non-trivial dependencies on orbitals, whether
treated exactly or approximately. Thus, un-
like conventional DFT, direct density functional
derivatives δEHxc/δn cannot easily be found.

To circumvent this problem, one can use a
generalized KS (GKS) formalism37 or an opti-
mized effective potential38,39 (OEP). Both ap-
proaches have challenges. This work adopts
a different approach – any GKS treatment re-

quired by the DFA is done as per the ground-
state case. An additional potential is then in-
troduced, which is approximated by a super
simple OEP (SSOEP), introduced later. Con-
sequently, Eq. (7) can be solved using existing
machinery implemented in any molecular code.

The rest of this Letter proceeds as follows.
First, a methodology is introduced to adapt the
successful ωB97X DFA40 to EDFT. This neces-
sitates dealing with the DD correlation energy
and SSOEP, which are discussed. Next, the
method is assessed on several tests to illustrate
how EDFT usually outperforms DFT for exci-
tations, even when treated at the same level of
theory. Finally, some conclusions are drawn.

Theory: Application of EDFT relies on ap-
proximating EHxc = EHx + ESD

c , like DFT.
Ideally, one would use existing approxima-
tions, which have already been optimized for
ground-states. This work extends the successful
ωB97X functional of Chai and Head-Gordon40

to EDFT. Thus, one obtains,

ESD =Ts +
∑
κ

wκE
ωB97X
Hxc,κ +

∫
nvdr . (8)

for the SD energy, with Hxc terms,

EωB97X
Hxc,κ =ΛHx,κ − 0.8423Λsr

x,κ + EDFA
xc,κ . (9)

The use of ΛHx,κ indicates that spin symme-
tries are properly accounted for. The above and
what follows can, of course, be adapted to any
DFA of (hybrid) generalized-gradient approxi-
mation (GGA) character.

Any (range-separated) hybrid GGA requires
three key inputs: densities n, spin-polarizations
ζ, and (range-separated) Hartree and exchange
energies ΛHx. Each KS state |κs〉 is trivially as-
sociated with a density ns,κ = 〈κs|n̂|κs〉. How-
ever, ζ = 0 in a spin-restricted formalism. In-
stead, ζs,κ = (1− 2P2,κ/n

2
s,κ)

1
2 is employed, per

previous work,29,41 where P2,κ is the KS on-top
pair-density. Together, these terms are used to
semi-locally approximate EDFA

xc,κ ≡ Exc[ns,κ, ζs,κ]
for short-range exchange and all correlations.

ΛHx,κ is an orbital functional defined in
eq. (3). The range-separated Hartree-exchange
energy Λsr

x,κ is found by adopting the same

3



functional form, but replacing the Coulomb
potential 1/r by its short-range counterpart
erfc(ωr)/r (with ω = 0.3 a.u.−1). Then, Λsr

x,κ =
Λsr

Hx,κ −Esr
H [ns,κ] where EH is the usual Hartree

energy expression. Full details are in the Sup-
porting Information.
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Figure 1: Illustration of the exrapolation pro-
cedure applied to SiF2. The inset zooms into
the DD contribution to the singlet–triplet gap.
Light shading indicates the extrapolation re-
gion W ≥ 0.6.

This establishes the SD energy approxima-
tion. However, DD correlations must also be ac-
counted for. Previous work introduced a direct
approximation for DD terms.29 Here, EDD

c is
found by a parameter-free extrapolation, which
is conceptually similar to a technique recently
used to calculate DD correlations for S–P and
S–S transitions in atoms.30 A full derivation
of the approach is rather long, so is left to the
Supporting Information. Key steps are as fol-
lows: 1) Recognise that Ew = ESD,w + EDD,w

c

is linear in w so that the excitation energy
∆E = Ets − Ess = ∂wEw, ∀w – where Ew ≡
E{1−w,w}, ESD,w ≡ EωB97X,w is evaluated using
eq. (8), and EDD,w

c is unknown; 2) Approx-
imate the SD excitation energy as ∆ESD =
ESD

ts − ESD
ss = ∂wEωB97X,w|w=0 so that it corre-

sponds to a “typical” EDFT calculation using
orbitals of the singlet ground-state; 3) Recog-
nise that E0 = EωB97X,0 and E1 = EωB97X,1 in
the pure-state limits.

This gives singlet–triplet gaps

∆E = ext
w→1
EωB97X,w − ext

w→0
EωB97X,w , (10)

∆ESD =∂wEωB97X,w|w=0 , (11)

so that the total DD contribution to the excita-

tion is ∆EDD
c = ∆E − ∆ESD. Here, extw→1

involves fitting a quadratic (chosen to avoid
over-fitting) to values of EωB97X,wi found for
wi ∈ [0, 0.6], then extrapolating to w = 1 (for
numerical consistency, the same fit is also used
to calculate the singlet state at w = 0). This
division into SD/DD differs very slightly from
the formal definition,29 but may be more suited
to studying DFAs. The extrapolation is illus-
trated in Figure 1.

The final approximation is the super sim-
ple OEP (SSOEP), to account for the effec-
tive potential. This involves two steps: 1) try
a variety of conventional DFAs (here, PBE,42

PBE043 and ωB97X – in this last case, the ef-
fective Hamiltonian also includes GKS terms)
to obtain a potential approximation ṽ0

s (e.g.,
ṽ0
s = ṽPBE0

s ) whose orbitals φ0
i [using (7)] and

densitiy n0 give the lowest energy [using (8)];
2) Find ξ such that the orbitals φξi and density
nξ [using (7)] from the potential

ṽξs(r) = ṽ0
s(r) + ξ

n0
gs′(r)

n0(r)
(12)

minimize the energy Eξ [using (8)]. Here,
n0

gs′(r) =
∑

i≤N/2 fiφ
0
i (r)2 is the ground-state-

like density, with excited state orbitals ex-
cluded. This second step involves an ansatz for
the potential inspired by a previous finding for
fractional EDFT that the exact KS potential is
approximately given by a similar expression –
see eq. 15, of Gould and Toulouse.44

This approach avoids spin contamination
when treating singlet or triplet states – unlike
∆SCF DFT, because φi↑(r) = φi↓(r) for all or-
bitals. It thus follows that DFT and EDFT
results for singlet ground-states are the same;
but triplet- states differ. Implementation re-
quires only small modification of existing code,
and iterates to a solution in around five steps.

Together, our approximations for the DD cor-
relation energy and effective potential provide
an overarching methodology that lets a gen-
eral DFA (here ωB97X) be applied to EDFT
problems with the same scaling as conven-
tional DFT, albeit with a larger pre-factor from
the density-driven correlations (×6, here) and
SSOEP (×8, here). It is much cheaper than
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Figure 2: Errors [eV] in the triplet-singlet gap
for the TS12 benchmark set in DFT (green),
EDFT (blue) and sdEDFT (red).

the additional O(N) overhead of TDDFT cal-
culations. The approach is also “black box”,
making it easy to use without specifying active
states or intuiting the processes involved.

Results: With the theory established, the
approach is validated by applying it to various
tests on small molecules. Tests are restricted to
singlet–triplet gaps, as these allow direct com-
parison with ∆SCF DFT at the same level of
theory.

The TS12 benchmark set of small triplet-
singlet gaps in small molecules forms the first
test.46 The small gaps in these systems make
them particularly problematic for DFT, as sym-
metry breaking can lead to substantial errors.
[Note, the triplet-state is the ground-state in
these systems. This does not change the for-
malism.]

Figure 2 shows errors from DFT (using
∆SCF), EDFT and state-driven EDFT cal-
culations without DD correlations (sdEDFT).
Overall, EDFT, with a mean absolute error
(MAE) of 0.25 eV offers a two-fold improvement
over DFT, with MAE 0.52 eV. EDFT without
DD correlations slightly out-performs the full
EDFT treatment, with MAE 0.19 eV.

It is clear from these results that EDFT
can appropriately deal with excitations, as one
would expect from its consistent treatment of
ground- and excited-states. What is notable is
that including the DD correlation energy does
not always improve things, despite its formal
justification. However, this is easy to explain.
In these molecules the DD correlation energy
is typically small (< 0.2 eV), which is smaller

than the underlying error of the DFA. Thus,
any small positive/negative DD correction to
an over/underprediction by the DFAs will make
things slightly worse. Importantly, in the one
case (NO−) where the DD term makes a big
difference to the energy, it improves things.

To supplement TS12, vertical and adia-
batic singlet–triplet gaps are calculated for
three small molecules (SO2, SiF2, CHCl and
CSHH) from the Loos-Jacquemin benchmark
set45 (LJ19). [Note, there is a mistake in
the SO2 triplet structure reported by Loos and
Jacquemin. This work uses a structure pro-
vided by the authors.]

Results for vertical (using the ground-state
geometry) and adiabatic (using the optimal ge-
ometries for ground- and excited states) exci-
tations are reported in Table 1. On average,
DFT slightly (by 0.06 eV on MAE) outperforms
EDFT for vertical excitations. But, DFT does
significantly better for adiabatic excitations (by
0.22 eV on MAE). The poor performance of
EDFT for adiabatic excitations is mostly due to
a very poor prediction for CSHH, which is out
by around 40%. sdEDFT gives the worst results
in all cases, meaning that, for these molecules,
density-driven correlations are both quantita-
tively important and systematically beneficial.

Finally, a particularly challenging test is ap-
plied – predicting key excitations of strongly-
correlated ozone. This involves computing
singlet–triplet gaps at three selected geome-
tries: open minimum (OM), transition state
(TS) and ring minimum (RM). These represent
key steps in the ozone excitation process that
were recently benchmarked using high-level the-
ory.47 This problem represents the sort of ap-
plication for which EDFT will likely prove most
useful, e.g. to simultaneously predict multi-
ple states for use in beyond-Born-Oppenheimer
dynamics. The TS geometry is a very strin-
gent test, due to the degeneracy of singlet- and
triplet- states.

Figure 3 shows that EDFT clearly outper-
forms regular DFT and gives semi-quantitive
agreement with the exact solution. EDFT
almost predicts the degeneracy between the
singlet- (ss) and triplet-states (ts) in TS, unlike
DFT. By contrast, ∆SCF DFT does a poor job
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Table 1: Vertical and adiabatic excitation energies [eV] from DFT, EDFT and sdEDFT
(sdE). Benchmarks from LJ19.45

Vertical Adiabatic
Bench DFT Err EDFT Err sdE Err Bench DFT Err EDFT Err sdE Err

SiF2 3.30 3.76 0.46 3.50 0.20 3.76 0.46 3.20 3.26 0.06 3.38 0.18 3.63 0.43
SO2 3.45 3.37 -0.08 3.51 0.06 3.62 0.17 3.03 2.88 -0.15 3.22 0.19 3.32 0.29
CSHH 1.96 1.70 -0.26 2.47 0.51 2.58 0.62 1.86 1.62 -0.24 2.58 0.73 2.68 0.82
CHCl 0.58 0.46 -0.12 0.98 0.40 1.14 0.56 0.24 0.11 -0.13 0.59 0.35 0.73 0.49
MAE 0.23 0.29 0.45 0.14 0.36 0.51

Figure 3: Energy levels for three geome-
tries of ozone in DFT (green) and EDFT
(blue) and benchmark47 (yellow) calculations.
Lighter colours indicate the ground-state (sin-
glet) and darker colours indicate the excited
state (triplet). Geometries are also shown.

of the triplet state in all cases. EDFT, unlike
DFT, is thus useable for estimating dynamics.
All relevant energies are shown in the Support-
ing Information. Note, in nearly-degenerate TS
there is also a small (0.2 eV) difference be-
tween singlet states calculated using DFT and
EDFT, because the latter are obtained using a
quadratic fit on w.

sdEDFT (not shown) gives very similar re-
sults to full EDFT for OM and RM geome-
tries. But for TS it predicts a significant gap of
5.1 eV, compared to a zero gap in the bench-
mark, and gaps of 0.13 eV for full EDFT and
1.3 eV for DFT. Thus, inclusion of the DD cor-
relation energy term is vital.

Conclusions: In summary, this letter reports
approximately self-consistent and fully corre-
lated ensemble DFT (EDFT) calculations us-
ing the ωB97X DFA, and including recently-
discovered density-driven (DD) correlation en-
ergy terms.29 Obtaining these results required
the introduction of two methodological innova-

tions: 1) a way to deal with DD correlations
[eq. (10)]; 2) a way to deal with self-consistency
[eq. (12)].

Results showed that EDFT improved on
∆SCF DFT for the computation of low-lying
excited states in almost all cases, and is thus a
promising alternative for low-cost calculations.
For the TS12 benchmark set, EDFT gave a
two-fold improvement over DFT using the same
ωB97X approximation. Small atom excitations
(vertical and adiabatic) from LJ19 were repro-
duced reasonable well by both DFT and EDFT,
except the latter failed badly for CSHH. Most
promisingly, EDFT (but not sdEDFT) signif-
icantly out-performed DFT for difficult ozone
excitations.

Including DD correlations in our ensemblised
ωB97X calculations is vital in some systems,
(e.g., NO−, ozone TS) but slightly detrimen-
tal in others (e.g. Si, PF). Since these are small
energies, and ωB97X is an “uncontrolled” (non-
variational) approximation, some variation is
to be expected. Results are certainly consis-
tent with chemical intuition. A deeper concep-
tual understanding of DD terms (e.g., under-
standing when ground-state orbitals are poor
for excited-states) might point the way to im-
proved treatment of excitations generally, not
just in EDFT – analogous to how a better un-
derstanding of dispersion corrections has im-
proved treatment of weak binding generally.
This problem should be investigated.

I speculate that the poor showing for EDFT
in CSHH might reflect deficiencies in the super
simple OEP. Better, low-cost solutions might
be required for general cases. Theoretical and
numerical work along these lines is being pur-
sued.

Finally, unlike ∆SCF DFT, the EDFT
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scheme proposed here can handle singlet–
singlet excitations as readily as singlet–triplet
excitations.30 Their quality will be investigated
in future work, which must accommodate re-
cent developments in Hartree theory for ensem-
bles.48

Computational Methods

All calculations were performed in a custom
Python3 code, based on Psi4/NumPy.49,50 The
code used standard routines therefrom wher-
ever possible. Both DFT and EDFT cal-
culations of the TS12 benchmark set were
performed with the aug-cc-pVQZ basis set.51

These calculations were repeated with aug-cc-
pVTZ, which was found to give similar results
(within 0.04 eV of aug-cc-pVQZ, except for
NO−). Since no other anions were tested, aug-
cc-pVTZ was thus used for the remaining cal-
culations. Spatial symmetries were allowed to
break, to avoid the additional ensemble effects
required to preserve them.30

EDFT calculations used ensemble weights
w ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.6} in the quadratic
extrapolation to w = 1. sdEDFT calculations
used a finite difference ∂wE|w=0 ≈ (Ew=0.1 −
Ew=0.0)/0.1 to approximate the gradient at w =
0.
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Supporting Information Avail-

able

Includes: 1) Full working for the implementa-
tion of the ωB97X density functional approxi-
mation for ensembles. 2) Details of the density-
driven correlation calculation. 3) Tabulated
data for calculations.
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