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Abstract 

 

Chemical reactions typically have numerous controllable factors that need to be optimized to yield 

the desired products. Although traditional experimental methods are limited to explore possible 

combinations of these factors, artificial intelligence (AI) can provide the optimal solution based 

on chemical reaction data. In this study, we optimize the non-oxidative conversion of methane to 

C2 compounds using AI, such as machine learning (ML) to predict experimental results and 

metaheuristics to optimize reaction conditions. A decision tree-based machine learning method 

can reasonably predict the reaction outcomes (CH4 conversion, C2 yield, and selectivities for C2 

and coke) with an error of < 5%. Trained ML models are applied to maximize the C2 yield by 

optimizing the reaction parameters with metaheuristics. We can simultaneously enhance the C2 

yield and suppress the coke formation by improving the multi-objective function for the 

optimization. We believe that our method will be helpful to optimize the chemical reaction 

conditions with multiple targets. 

 

Table of Contents 

 

Using machine learning and global optimization, we optimize reaction conditions  

for non-oxidative conversion of methane. 
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Introduction 

Numerous factors govern chemical reactions and some of the factors can be artificially 

manipulated to optimize the yield of desired products. In the presence of catalysts, engineering 

these factors for chemical reactions is required to improve the catalysts as well as reaction 

conditions for the best performance.1 Due to the complexity of catalytic processes, numerous 

approaches have been employed, such as high-throughput methods,2, 3 data-mining,4-6 and genetic 

algorithms.7-9 Although these approaches have been successfully applied to design new 

heterogeneous catalysts, machine learning (ML) methods have recently attracted considerable 

attention as they require smaller datasets and lower computational costs than traditional methods. 

10 Moreover, in chemical reaction engineering, ML methods can play an essential role, for example, 

in self-optimizing platforms11 and suggesting reaction conditions.12 

ML can match input variables (or features) to target properties and thus can be generally 

employed to available datasets for numerous catalytic reactions.4, 13-15 For example, successful 

applications of ML methods toward the optimization of heterogeneous catalysts are shown for a 

database of oxidative coupling of methane (OCM) which contains ~1800 catalysts and reaction 

conditions.4 With the advancements in data science, chemical reaction data can be investigated 

with several approaches such as statistical analysis,4 machine learning.10, 16, 17 micro-kinetic 

simulations,18 and meta-analysis.19 Moreover, a recent experimental study demonstrated that the 

combination of high-throughput experiments and ML techniques can provide catalyst 

compositions with improved catalytic efficiencies for the OCM with less effort.20, 21  

In chemistry-related fields, the developments of OCM catalysts is important as methane is 

abundant in natural gas22 and is easily found in biomass.23, 24 Considering its importance, several 

processes have been proposed for the activation of methane molecules, such as steam reforming,25 
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dry reforming,26 and oxidative27 and non-oxidative28 coupling of methane. Recently, non-oxidative 

coupling of methane (NOCM) or methane to olefins, aromatics, and hydrogen (MTOAH) has 

attracted considerable attention29, 30 because it does not require any oxidizing reagents, which 

potentially transform methane to oxidized products such as CO2. Although undesirable oxidation 

reactions do not occur in MTOAH unlike OCM, the application of MTOAH is still limited as it 

occurs through thermodynamically unfavorable processes toward hydrocarbons.31 Several 

strategies with external energy sources such as heat.28, 32-34 photon,35, 36 and plasma37, 38 have been 

proposed to overcome this limitation.   

The main challenge of MTOAH is the maximum conversion of methane possible while 

achieving high energy efficiency. The initial C-H bond activation of methane requires the highest 

energy (425 kJ mol‑1) among other steps. Thus, controlling the reaction pathways toward target 

products is quite challenging.39 Thermodynamics favors coke formation under radical-mediated 

conditions, requiring a precise design of lateral active sites,40 catalytic systems,41 and reaction 

engineering.42, 43 Experimentally, an MTOAH system facilitates numerous improvements in terms 

of conversion and selectivity (i.e., methane conversion of 48%  and  ethylene selectivity of 50% 

using a silica-lattice-confined single Fe atom).30 However, the lack of theoretical understanding 

may hinder the development of breakthrough technologies in this field. According to our previous 

study, although the MTOAH reaction is dominated in the gas phase, a proper use of the catalytic 

surface can improve the reaction activity toward the efficient formation of the hydrocarbon 

products.29  

To maximize the yield of the desired product in the MTOAH reaction proceeding at a high 

temperature, it is necessary to simultaneously consider the catalytic reaction44 and gas-phase 

radical reaction. However, despite the significant contribution of the gas-phase reaction to the 
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product distribution, no chemical method, other than changing operation conditions, has been 

reported to control its kinetics. Moreover, as the gas-phase reaction is a set of numerous radical 

chain reactions, it is almost impossible to determine the optimal reaction conditions by simulating 

each individual reaction. Therefore, it is essential to accumulate information on gas-phase methane 

pyrolysis and optimize operating conditions for further improvement of the catalytic system. 

 To this end, we employed a hybrid approach by combining supervised ML models and 

metaheuristics-based optimizations45 to enhance the MTOAH to C2 molecules. Adopting an idea 

that artificial intelligence (AI) is a broad concept, which includes machine learning,46 we will 

shortly denote our hybrid approach as an AI method. Experimentally, we chose a quartz tubular 

reactor with a crystalline SiO2 surface, which can balance gas-phase reactions. We then 

constructed ML models to predict experimental results. A decision treebased method47 could 

reasonably predict the reaction outcomes (CH4 conversion, C2 yield, and selectivities for C2 and 

coke) with an error of < 5%. After establishing ML models, we maximized the C2 yield by 

optimizing the experimental input variables using metaheuristics.45 We also experimentally 

demonstrated that the C2 yield can be enhanced without increasing the coke formation with AI 

acting as a guide. We believe that our method can be useful for optimizion of chemical reaction 

conditions with multiple targets. 

 

Methods 

Experiment 

MTOAH was carried out in a quartz tubular reactor (length = 150 cm) with various inner diameters 

in which the fluid moves horizontally. The reactor achieved a uniform temperature profile by 

connecting three different furnaces in series to a heating zone (45 cm). Each reactor was controlled 
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by six SiC heating elements monitored by three R-type thermocouples in direct contact with the 

outer surface of the tubular reactor. The reactivity of methane in the space between the furnaces 

was negligible. For safe operation, the system was installed in a container where negative pressure 

was maintained and could automatically shut off in case of gas leaks and pressure changes. The 

reactor reached the reaction temperature at a flow rate of 100 mL min-1 using He at a ramping rate 

of 10°C min−1. Methane and methane/hydrogen gas containing Ar as an internal standard were 

then fed into the reactor using mass flow controllers (5850E, Brooks®). All gases were passed 

through an oxygen/moisture trap (OT3-4, Agilent) before they were fed into the system to remove 

O2 and H2O. To impede the condensation of aromatics, all lines from the reactor to the online gas 

chromatograph (GC) were heated to 190 °C, and additional H2 was supplied to dilute the gas 

effluent from the reactor. We installed a 500 mL gas-solid separator and particle filters behind the 

reactor to prevent it from clogging due to coke. The gas analysis was carried out using an online 

GC (7820A, Agilent) equipped with two blocks of detectors composed of a thermal conductivity 

detector (TCD) and flame ionization detectors (FIDs). The molar concentrations of H2, CH4, Ar, 

CO, CO2, and C2 (ethane, ethylene, and acetylene) components were determined by the TCD with 

a ShinCarbon ST column (Restek Corp., Catalog No. 80486-800). The injection port and detector 

were maintained at 250°C and 200°C, respectively. The column flow rate of the He carrier gas was 

30 mL min−1. C3C4 hydrocarbons and aromatics including benzene, naphthalene, and alkyl 

aromatics (toluene, xylenes, etc.) were separated using an Rtx-VMS column (Restek Corp., 

Catalog No. 49915). Their concentrations were measured using the FID. The injection port and 

detector were maintained at 200°C and 250°C, respectively. The column flow rate of the He carrier 

gas was 0.5 mL min−1. The GC oven temperature regime started off with a constant temperature 
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of 50°C for 6 min, followed by an increase to 200°C at 15°C min−1, and finally maintained a 

constant temperature of 200°C for 8 min. 

 The methane conversion was calculated as mole ratio of reacted methane to methane fed 

into the system. The product selectivity was calculated by the carbon amount of the product (mol) 

divided by the carbon amount of the reacted methane (mol). We calculate the coke selectivity 

according to the carbon balance at which the sum of the product selectivities detected by GC was 

subtracted from 100%. The product yield was calculated by dividing the carbon amount (mol) of 

the product by the amount of fed methane (mol). These experimental results were tabulated in ESI 

(see Table S1). 

 

Target property prediction with ML  

To apply the ML approach, we reorganized the experimental data with six input variables and four 

target values. The input variables included (1) pressure (p), (2) temperature (T), (3) flow rate (f), 

(4) H2 content (H2), and (5) length (lR) and (6) diameter (dR) of the reactors. The four target values 

were the (1) C2 yield, (2) C2 selectivity, (3) CH4 conversion, and (4) coke selectivity. After 

preparing the experimental data for the training of the ML models, we generated two ML models 

based on different algorithms such as fully-connected neural network (FNN)46, 48 and XGBoost 

(abbreviated as XGB in this paper).47 In fact, FNN and XGB are used in various the chemistry-

related areas.49 FNN was employed as implemented in Tensorflow,50 while XGB was used as 

present in the XGBoost python package. By using the five-fold cross-validation, we searched the 

optimal hyperparameters of FNN by varying three factors: activation function, number of nodes, 

and optimizer. These parameters are listed in Table S2 in ESI. Scanning of possible combinations 

of hyperparameters showed that the combination of Sigmoid function, 60 nodes for two hidden 
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layers, and Adadelta optimizer51 provided the best performance in the training of the FNN model 

for the prediction of the C2 selectivity. We targeted the C2 selectivity in hyperparameter 

optimization as it showed the largest error as shown later. We also performed the hyperparameter 

optimization for XGB models and selected 300 estimators and a maximum depth of 5. The range 

of the number of estimators and depth considered in this work are also listed in Table S2. For all 

cases, 80% of the experimental data were used as the training set to optimize model parameters, 

while the rest were treated as the test set for evaluations. Here, we randomly selected data for 

training and test sets and listed indices of test set (see Table S3 in ESI) as splitting training set and 

test set can influence the performance of the ML model. 

 

Global optimization with metaheuristics  

Metaheuristics is a widely used mathematical optimization method to find the optimal solution of 

a complex black-box model such as deep road networks,52 neural networks,53 and materials 

discovery,54, 55 In this work, we adopted the artificial bee colony (ABC)53 algorithm as a 

representative example of metaheustrics, which had been verified in several benchmarks56 and 

applied to various fields.57 Figure 1 depicts the overall optimization process of the ABC algorithm, 

consisting mainly of four steps as follows: (1) Initial feature vectors (or population) are randomly 

generated based on a random seed, (2) each feasible solution is evaluated by the trained ML model 

and penalty function, (3) feasible solutions for the next trial are generated according to the 

algorithm-specific rules and solutions scored at the current stage, and finally (4) if the user-defined 

termination condition is satisfied, the optimization is terminated and the solution with the best 

score is returned. We repeated these optimization cycles 1000 times. The size of population was 

set to 100. Notably, the optimization reached the converged solution after ~100 optimization cycles. 
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Results and Discussion 
 
 The MTOAH was performed in a tubular quartz reactor with a crystalline surface as shown 

in Fig. 2 and Table S1. The methane conversion in the tubular reactor occurred through four main 

reaction steps:58 (1) initial activation of the C−H bond in methane, (2) conversion of methyl 

radicals to ethane and subsequent dehydrogenations, (3) C−C coupling of C2 species to aromatics, 

and  (4) subsequent reactions for coke formation. Each reaction step is largely dependent on the 

concentration of unstable radicals, which can only remain for a period of microseconds in the 

reaction system.58 The SiO2 surface of the tubular reactor not only activates the C−H bond of 

methane, but also acts as a coke terminator for unsaturated hydrocarbons.29 We adjusted several 

reaction parameters to change the free energies of the reaction, such as the temperature 

(8901200 °C), pressure (0.0050.888 barg) and the reactant flow rate (40320 mL min-1), reactor 

diameter (416 mm), and reactor length (1545 cm). To improve the stability of unsaturated 

hydrocarbons during the entire reaction, we varied the H2 content in the feed, which was calculated 

as the mole ratio of  H2 to CH4 and Ar. The yield of hydrocarbons was not thermodynamically 

limited. Only the C2 distribution of ethane, ethylene, and acetylene was near the equilibrium. 

Notably, the C2 selectivity altered by the reaction parameter tended to be inversely proportional to 

the coke selectivity. According to our experimental data used in this study, the quartz reactor 

achieved a C2 yield of 15.7 %; however, coke selectivity of 27.7%  was observed as well (Table 

S1, Index 245). We found that by keeping the C2 yield in a parametric way, we systematically 

reduced the coke selectivity to 10.4% (Table S1, Index 249). To further improve the C2 yield, 

individual parameters must define their role. Therefore, ML is suitable for logically designing 

optimal operation conditions. 



 10

 Before the application of AI methods, we briefly analyzed the experimental data. As shown 

in Fig. 2, we visualized four important experimental quantities: C2 yield, C2 selectivity, CH4 

conversion, and coke selectivity. As we focused on enhancing the C2 yield, a total of 250 

experimental data were collected, and categorized into five groups according to the C2 yield in 

ascending order.  We assigned indices to these data. Thus, index 250 is the experimental result 

with the highest C2 yield, while index 1 corresponds to the lowest C2 yield. Fig. 2 shows that the 

C2 yield varied in the range of ~0 to ~15%. Complex relationships were observed between other 

quantities and these indices. We analyzed the C2 yield, according to the input variables such as (1) 

pressure, (2) temperature, (3) flow rate, (4) H2 content, and (5) length and (6) diameter of the 

reactor, as shown in Fig. 3. Out of these, only temperature was weakly related to the C2 yield, 

which was almost independent of the other experimental input variables. Therefore, we can expect 

that ML methods can be used to determine the complex relationships between the experimental 

input and output variables. 

 In Fig. 4, the ML models based on FNN and XGB predicted the experimental results within 

a mean absolute error (MAE) of 5%. Overall, XGB provides better prediction results than FNN. 

As it is challenging to generate high-quality experimental data for a specific purpose, the 

applicability of XGB to the small dataset generated from our experimental results is valuable. With 

these, we adopted XGB for the further analysis in this work and displayed prediction results for 

four target quantities as shown in Fig. 5. We can explain relatively large MAEs for C2 and coke 

selectivities based on several outliers in the prediction of these quantities, depicted in Fig. 5(b) and 

5(d). In addition, XGB can rank input features based on their relative importance in the 

construction of the ML as shown in Fig. 6. This is a valuable characteristic of XGB because it 

records the contribution of each feature during the training step, unlike the typical FNN. The 
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reaction temperature is the most important variable in the prediction of C2 yield as the temperature 

was roughly related to the C2 yield as shown in Fig. 3(b). Other variables also participated to 

improve the XGB model. Their relative importance values ranged between 5  20%. The relative 

contributions of the temperature and pressure are different for MTOAH and OCM as the pressure 

exhibits the highest importance among several experimental parameters of OCM.17 For the C2 and 

coke selectivities, pressure was chosen as the most important factor among the input variables 

although the C2 selectivity is also considerably affected by the flow rate and H2 content. According 

to relative importances from the XGB algorithm, the prediction of methane conversion was mostly 

influenced by the flow rate. By comparing the contributions of each input variable, we can propose 

a simple guide to optimize the reaction conditions for MTOAH as the modulation of temperature 

and pressure is important to increase the C2 yield and C2 selectivity, respectively. 

 We employed the metaheuristics-based optimization to evaluate the experimental 

conditions for maximum C2 yield. As explained above, the optimization algorithm utilizes the 

trained XGB model to predict MTOAH results based on our experimental data. During the 

optimization, we restricted the range of experimental input parameters such as temperature 

(8501250 °C), pressure (01 barg), the reactant flow rate (10350 mL min-1), the H2 content (0–

5.5), reactor diameter (318 mm), and reactor length (1050 cm). These ranges of parameters are 

experimentally feasible as they are ~ 10% beyond the parameters that were used in the data 

generation. Notably, the algorithm proposes a feasible solution based on AI without relying on 

additional experiments. Figure 7 shows XGB-model-based predicted values for the C2 yield and 

coke selectivity under the optimized experimental conditions. The x-axis represents the number of 

data. We show the maximum and average values of the experimental data for each case. For the 

coke selectivity, it is meaningless to show the maximum because the value was larger than 80% 
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even with the first 50 experimental data. As we reorganized experimental data based on the C2 

yield in ascending order, the C2 yield increased with the number of data. Therefore, training the 

XGB model with more and more data means that the data with higher C2 yield is used for training. 

The results obtained with the XGB models with different numbers of experimental data were 

varied. For all tested cases, our AI-based optimization improved the C2 yield from 8.03% to 18.10% 

when compared with the maximum C2 yield obtained by experiments. However, the formation of 

coke, a by-product of MTOAH, also increased with the increase in the C2 yield.  

The ideal optimization should maximize the yield of C2 compounds and their selectivity, 

and thus minimize the selectivity for the coke. The optimization of multiple target quantities is an 

important issue in catalytic reaction engineering.59, 60 We devised a set of scoring functions by 

taking the geometric mean of linear functions of three quantities, which are CH4 conversion, C2 

selectivity, and coke selectivity. These linear functions have been shown in Fig. 8. It should be 

noted that there coule be enumorous possibilities to construct scoring functions and we selected 

one of them. Here, we use the C2 selectivity, as a high C2 selectivity is roughly related to a low 

coke selectivity. The yield of C2 compounds and their selectivities were scored linearly from 0 to 

1. For the coke selectivity, we approached in the opposite way and introduced a cutoff. If the coke 

selectivity becomes higher than the cutoff, the score is set to 0. We tested four cutoffs for the coke 

selectivity as shown in Fig. 8(b). Using these, we could change the optimization of three target 

quantities to that of a single quantity called the scoring function. Our aim is to maximize the value 

of these functions instead of the C2 yield because they enable us to consider the C2 yield and coke 

selectivity simultaneously. Figure 9 shows the C2 yield and coke selectivity obtained by optimizing 

the scoring functions. These results support the finding that a reduction in the cutoff increases the 

penalty for the coke formation. Therefore, the AI can find the experimental conditions to optimize 
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the C2 yield with a smaller amount of coke formation. When the cutoff for the coke was 40%, the 

XGB model predicted a C2 yield of 13.97% and coke selectivity of 3.76%. As the MAE of the 

coke selectivity was 2.78%, the coke selectivity already reached the prediction limit in this case 

and we could not reduce the cutoff below 40%. This experimental condition was further used to 

validate our AI approach with an additional MTOAH experiment, as shown in Table 1. Although 

some mismatches in experimental variables existed in practice, we could achieve a C2 yield of 

10.52% with a low coke selectivity of 1.10%. Five cases (Indices of 172, 175, 184, 186, and 188) 

in Table S1 show similar C2 yields to this results, but the coke selectivities were 3.24.8% in these 

cases, which were higher than the experimental values in Table 1. We also tabulated these 

experimental data in Table S4 in ESI. In our experiment, 73 practices provided C2 yields above 

10.52%; however, they mostly exhibited coke selectivity above 6%. Considering the prediction 

errors of ML models (~3% in this study), we confirm that AI suggestions can predict experimental 

conditions with better results. As quantifying the uncertainty from ML prediction is an active 

research topic,61, 62 quantitative error analysis could be helpful for improving AI suggestions in the 

future. From the experimental perspective, with this Al's reasonable prediction, we expect that 

complex reaction mechanisms of MTOAH will be further optimized with cascade reactors 

containing different parameters for better C2 yield as well as C2H4 yield while maintaining 

negligible coke selectivity. Furthermore, it is also necessary to develop AI approaches and 

accumulate refined data for more accurate ML models, which can enhance AI suggestions to 

improve catalytic processes such as MTOAH for application in the chemical industry.  
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Table 1. Experimental conditions and outcomes of the AI suggestion and additional experiment. 

 p (barg) T (°C) f (sccm)
H2 

content
lR (cm)

dR 
(mm) 

C2 yield 
(%) 

Coke 
selectivity 

(%) 

AI 0.16 1196.3 148.7 3.6 10.6 6.4 13.97 3.76 
Exp. 0.13 1196.3 148.8 3.6 15.0 6.5 10.52 1.10 

 

 

Conclusions 

In summary, we propose an AI approach to optimize the MTOAH reaction to C2 

compounds using ML for regression and metaheuristics for global optimization. We 

experimentally generated MTOAH data and then applied two well-known ML methods, XGB and 

FNN. As these ML models can predict the experimental results with errors of < 5% and XGB 

works better than FNN, we further employed the trained XGB models. In addition, we can take 

advantage of using XGB models as they can provide a qualitative guideline for better experimental 

results based on the relative importance of the input variables. We can also propose the 

experimental conditions for enhancing the C2 yield in a quantitiative manner by adopting ABC 

algorithm, which is a metaheuristic method. However, we observed that focusing on the C2 yield 

only will increase the production of the coke, a side product in this work. To optimize both C2 

yield and the coke selectivity at the same time, we devised scoring functions and found 

experimental conditions suggested by ABC algorithm. We experimentally verified that the 

suggested condition can indeed provide a reasonable C2 yield with a low coke selectivity. With 

these, we believe that our approach can be applied to optimize various chemical reactions in the 

future.  
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Figure 1. Schematic of the metaheuristic optimization.  
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Figure 2. Distribution of experimental data for the (a) C2 yield, (b) C2 selectivity, (c) CH4 

conversion, and, (d) coke selectivity. We classified the data for C2 yield into five groups in 

ascending order. Grouped data with higher yields are shown by darker colors. 
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Figure 3. Experimental input parameters for C2 yield. The color scheme is the same as in Fig. 2. 
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Figure 4. Prediction errors of the two ML models (XGB and FNN) for the experimental results: 

C2 yield, CH4 conversion, C2 selectivity, and coke selectivity. We measured the prediction error 

five times by changing the number of data by 50, from 50 to 250. The average of these errors and 

their standard deviation are displayed. 
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Figure 5. Comparison of the predicted and reference data with corresponding MAE for (a) C2 

yield, (b) C2 selectivity, (c) CH4 conversion, and (d) coke selectivity. 
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Figure 6. Relative importance values of the experimental input variables used for building ML 

models to predict the (a) C2 yield, (b) C2 selectivity, (c) CH4 conversion, and (d) coke selectivity. 

The most important variable is highlighted with a red box.  
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Figure 7. Results of the AI-based optimization and experiments for the (a) C2 yield and (b) coke 

selectivity. The AI optimization results (filled blue circles) are compared to the maximum value 

of the experimental results (open red circles) and their average (open gray triangles).  
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Figure 8. Scoring functions for the (a) CH4 convsersion and C2 selectivity and (b) coke selectivity. 

In (b), the cutoff values for the coke selectivity are set to 40% (yellow), 60% (gray), 80% (orange), 

and 100% (blue).  
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Figure 9. Effects of the cutoff for coke selectivity on the C2 yield (red) and coke selectivity (black). 

 


