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Abstract Carbazole/cyanobenzene photocatalysts promote the direct isotopic carboxylate exchange of 

C(sp3)-acids with labelled CO2. Substrates that are not compatible with transition metal catalyzed 

degradation-reconstruction approaches or prone to thermally induced reversible decarboxylation 

undergo isotopic incorporation at room temperature in short reaction times. The radiolabelling of drug 

molecules and precursors with [11C]CO2 is demonstrated.  

 

 The synthesis of isotopically labelled molecules is essential to drug development and nuclear 

medicine. As drug candidates move towards clinical research and human trials, absorption, distribution, 

metabolism, and excretion (ADME) studies require compounds enriched with long-lived radioisotopes 

like 3H and 14C.1 Positron emission tomography (PET) techniques that probe the advance of disease 

states and can determine the efficacy of drug treatment require molecular targets radiolabelled with 

short-lived positron-emitting isotopes such as 11C or 18F.2 The limited availability and high cost of 

isotopically enriched precursors make the preparation of complex targets challenging. For PET studies, 

compounds must be synthesized and purified within a few half-lives of the radiolabel (11C t1/2 = 20.3 

minutes). Approaches that selectively introduce isotopic labels from feedstock sources with compatibility 

towards common structural motifs found in clinical candidates will have a positive impact on both drug 

discovery efforts and medical imaging. 

  

 Metal-catalyzed 1H/3H exchange is widely used in drug development to introduce long-lived 

radiolabels into target molecules.3-9 The loss of 3H labels through (bio)chemical reactions and metabolic 

shifting due to primary kinetic isotope effects are liabilities of 3H-labelling approachs.10-11 ADME tracer 

compounds with greater stability can be obtained by using 14C radiolabels.12 Similarly, 11C-isotopologues 

of native bioactive molecules enable PET probe generation without changes to their biological or 



pharmacological properties.13 The incorporation of 14C, 13C or 11C (*C) units into drug molecules or 

precursors by the formation of a *C–C bond is challenging and often requires revised synthetic pathways 

to introduce the label from *CO,14-18 *CH3I,19-20 or other small molecules derived by reduction of *CO2.21-

25 The direct exchange of carboxylate groups with CO2 offers the potential for simple and cost-effective 

syntheses of C-labelled small molecules, particularly as CO2 (or BaCO3) is the feedstock for all 

radiolabelled carbon-based precursors.26 The easy conversion of carboxylic acids into other common 

functionalities (esters, amides, ketones, alcohols) makes this an attractive tactic for isotope 

incorporation. 

  

 The use of redox active hydroxyphthalimide ester substrates in combination with Ni-based 

mediators and stoichiometric metal reductants enables carboxylate groups to undergo net exchange 

with CO2 (Fig 1A).27-28 These reactions are limited to primary alkyl or cyclic secondary alkyl acids lacking 

b-heteroatoms to achieve >10% label incorporation. The requirements for long reaction times and use 

of large excesses of CO2 (³16 h, often >20 equiv. CO2) make these methods incompatible for 11C PET 

applications. C(sp3) acids that form stabilized carbanions upon ionic decarboxylation can undergo 

exchange with CO2 spontaneously at high temperatures in the solid state29 or in solution.30-32 (Fig 1A). 

In contrast, compounds that lack strong anion stabilizing groups like nitro- or cyanoaryl acetate groups 

require high reaction temperatures (³150 ºC), long reaction times (³24 hours), or are simply inert towards 

exchange. Audisio and co-workers demonstrated the 11C-labelling of the arylacetate drugs Flurbiprofen 

and Tolmetin by uncatalyzed exchange with [11C]CO2, although slow kinetics and harsh conditions 

resulted in low radiochemical yields (RCY) (7% and 3% respectively at 150 ºC).30 

  

 With the goal of developing a mild method for direct carboxylate exchange at rates appropriate for 
11C-labelling, we considered alternative strategies for C(sp3)–carboxylate bond cleavage and 

subsequent CO2 recapture. Here we show that a family of organic photocatalysts mediate the exchange 

of CO2 groups without the need for prior stoichiometric carboxylate activation or high temperatures (Fig 

1B). The radical-polar crossover process combines the advantages of low barrier C–CO2 bond cleavage 

initiated by carboxylate single electron oxidation with the efficient, uncatalyzed recombination of 

carbanion intermediates with CO2.33 Tertiary carboxylic acid substrates not compatible with either Ni-

catalysis or thermal reactions can be labelled to useful levels. The kinetics of CO2 exchange are 

compatible with 11C labelling of nonsteroidal anti-inflammatory drugs (NSAIDs) and precursors to other 

bioactive molecules. 

 



Figure 1. (A) Existing approaches for carboxylate/CO2 exchange for isotopic labelling (NHPI = N-
hydroxyphthalimide). (B) Fast, mild isotopic carboxylate exchange by organic photoredox catalysis (Cz 
= carbazole) 
 

 Photoredox catalysis can be used to induce decarboxylation by substrate single electron oxidation, 

however the recapture of CO2 under these conditions has not been reported.34-39 In considering new 

strategies for reversible decarboxylation of organic acids, we were inspired by Konig’s studies40-41 which 

demonstrated that carbazole/dicyanobenzene based photocatalysts could mediate decarboxylative 

electrophile trapping by radical-polar crossover mechanisms.42 Upon surveying a wide array of organic 

and metal-based catalysts we found that 5 mol% 4CzIPN43-44 enabled the isotopic labelling of Ibuprofen 

(1) with [13C]CO2 at room temperature upon irradiation with blue LEDs (52% 13C incorporation, 77% 

yield). Other donor-acceptor cyanoarenes or isomers of 4CzIPN performed poorly under similar 

conditions regardless of their redox properties (Fig 2A).45 Cs2CO3 was the optimal base, although other 

bases could be used (K2CO3, DBU). DMA could be replaced with DMSO, but the use of less polar 

solvents (THF, MeCN) resulted in low 13C incorporation (Fig 2A, see the SI for optimization details). 

Radical traps (TEMPO, BHT) completely inhibit reactivity. The exchange process remains efficient when 

using only 2 equivalents of [13C]CO2 (43% 13C incorporation, 75% yield). 

  

 Under standard reaction conditions alkylative decyanation of 4CzIPN occurs,40-41 this process is 

important to generating a more active catalyst. The direct use of benzylated catalyst 4CzBnBN (prepared 

by reacting 4CzIPN with phenylacetic acid) resulted in a pronounced increase in 13C incorporation rates 

(Fig 2B). With 3 equivalents of [13C]CO2 >40% labelling of Ibuprofen was obtained in 10 minutes using
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Figure 2. (A) Overview of photocatalyst effects and changes to reaction parameters. (B) 4CzIPN and 
4CzBnBN rate comparison for [13C]CO2 exchange with Ibuprofen. (C) 4CzBnBN enables carboxylate 
exchange with tertiary carboxylic acids.  
 

4CzBnBN, which is double the incorporation observed with 4CzIPN. 4CzBnBN enabled isotopic labelling 

of more challenging substrate classes. Tertiary acid 2 undergoes efficient labelling using 4CzBnBN (60% 
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13C incorporation, 70% yield), while low levels of exchange were detected using 4CzIPN (2%). The 

difference in catalytic activity with tertiary substrates between these two catalysts can be rationalized by 

the observation that tertiary acid 2 reacts with 4CzIPN to give a carbazole elimination species 3CzBn-2 
(Fig 2C). 3CzBn-2 is a poor mediator of carboxylate exchange, likely owing to attenuated donor-acceptor 

properties. Catalyst screening studies showed little correlation between activity in carboxylate exchange 

and (pre)catalyst electrochemical potentials (see the SI for details). The selective generation of 

monoalkylated benzonitrile species under the reaction conditions appears to be the most important factor 

in dictating successful carboxylate exchange. For example, 4ClCzIPN undergoes double benzylation in 

the presence of phenylacetic acid to generate an inactive species, while 4MeOCzIPN and 4DPAIPN are 

resistant to benzylation and perform sluggishly (Fig 2A, see the SI for details). These findings should 

have broader implications when designing and optimizing photocatalytic decarboxylative coupling 

reactions with donor-acceptor cyanoarenes. 

 

 With optimized reaction conditions, the scope and limitations of photoredox catalyzed carboxylate 

isotopic exchange were explored (Fig 3). For less challenging substrate classes, the commercially 

available 4CzIPN catalyst was used. Arylacetates, including those with halogens (4, 5), moderate 

electron-withdrawing groups including amides (6), sulfonyls (7), CF3 groups (8), and Bpin units (9) 

underwent smooth carboxylate exchange. Electron-rich arylacetates with methoxy, thioether, or NHBoc 

groups (10–13, 21) also underwent 13C-labelling using the standard conditions. Heterocycles (18, 19) 

and more complex structures bearing potentially reactive ketone or phenol groups (20) were tolerated. 

Arylacetates substituted with a-alkyl, a-alkoxy, and a-NH benzoyl groups were productive substrates 

(23-25), as were molecules featuring an alkene or terminal alkyne (26-27). Alkylated or heteroatom 

containing b-carboxy amides, b-carboxy lactams, malonate half-esters, and b-carboxy nitriles were 

compatible substrates (30-33). The labelling of complex molecules featuring malonate half-esters was 

possible (34-35). A series of tertiary carboxylic acids were isotopically labelled using 4CzBnBN as the 

catalyst, including a, a-dialkylated arylacetates (2, 37-39), fully substituted malonate half-esters (41), 

and carboxy lactams (42). These tertiary substrates do not undergo significant carboxylate exchange 

without catalyst under thermal conditions (see SI for details). Scope limitations include 4-OH or 4-SH 

containing arylacetates (15-16), simple alkyl acid 36, and the a-cyclopropyl acid 40. 

  

 Photoredox catalyzed carboxylate exchange enables direct isotopic labelling of drug molecules 

and synthetic precursors under mild conditions. An array of NSAIDs underwent smooth exchange at 

room temperature, including those with potentially reactive functionalities and heterocyclic fragments 

(Fig 3, 43–50). Precursors to other classes of pharmaceuticals and clinical candidates that feature 

arylacetate units such as the acid of Zolpidem (51) or Pentoxyverine (52), and the core of VLA-4  



Figure 3. Scope and limitations. Unless noted yields are of isolated material. a Calibrated 1H NMR 
spectroscopy yield; b %13C incorporation and yield determined after conversion to benzyl ester; c 5 mol% 
4CzBnBN; d ~3 equiv. [13C]CO2, e 2.5 mol% 4CzIPN. See the SI for details
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antagonist (53),46 could be labelled with good 13C-incorporation and yield. In the above cases 

replacement of [13C]CO2 with [14C]CO2 would allow for the preparation of compounds with specific 

activities suitable for most radiolabelling ADME studies (37-300 mCi/mg). 

 

 The rapid labelling of arylacetate drug molecules with [11C]CO2 is feasible using a photocatalytic 

approach.47 [11C]Ibuprofen could be generated with 20% radiochemical yield (RCY) following 10 

minutes of LED irradiation (Fig 4). Use of 4CzBnBN catalyst was essential for 11C-radiolabelling; no 

exchange was observed when using 4CzIPN. Thermal conditions (160 ºC) provided no radiolabeled 

product. Related targets Carprofen, Loxoprofen, and Fenoprofen could be radiolabelled under the 

standard conditions in 7–29% RCY, as could the tertiary acid substrate 52. [11C]Fenoprofen could be 

radiolabelled and isolated in 20 minutes starting from [11C]CO2 (~2 GBq) to give the product in 9.5% 

RCY and >99% radiochemical purity with a molar activity of 0.029 GBq/mmol (Fig 4). This level of molar 

activity is consistent with isotopic exchange reactions and is useful for studying biodistribution 

processes. 

  

Figure 4. Photoredox catalyzed carboxylate exchange with 11CO2 (TE = trapping efficiency of 
radioactivity in solution; RCP = radiochemical purity; RCY = TE × RCP). 
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 In conclusion, organic photoredox catalysis enables a mild and rapid pathway for direct 

carboxylate exchange, including processes that use [11C]CO2. The reaction conditions and substrate 

scope complement Ni-catalyzed strategies for isotopic labelling of alkyl carboxylates using CO2. 

Compatibility with potentially reactive functional groups, heterocycles, and tertiary acids, combined with 

the opportunity to refine photocatalyst performance should provide an avenue for future use in 

radiolabelling applications. 
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